Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
//===-- MinidumpParser.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"

#include "Plugins/Process/Utility/LinuxProcMaps.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"

// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <vector>
#include <utility>

using namespace lldb_private;
using namespace minidump;

llvm::Expected<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
  auto ExpectedFile = llvm::object::MinidumpFile::create(
      llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
  if (!ExpectedFile)
    return ExpectedFile.takeError();

  return MinidumpParser(data_sp, std::move(*ExpectedFile));
}

MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
                               std::unique_ptr<llvm::object::MinidumpFile> file)
    : m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}

llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
  return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
                                 m_data_sp->GetByteSize());
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
  return m_file->getRawStream(stream_type)
      .getValueOr(llvm::ArrayRef<uint8_t>());
}

UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
  auto cv_record =
      GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);

  // Read the CV record signature
  const llvm::support::ulittle32_t *signature = nullptr;
  Status error = consumeObject(cv_record, signature);
  if (error.Fail())
    return UUID();

  const CvSignature cv_signature =
      static_cast<CvSignature>(static_cast<uint32_t>(*signature));

  if (cv_signature == CvSignature::Pdb70) {
    const CvRecordPdb70 *pdb70_uuid = nullptr;
    Status error = consumeObject(cv_record, pdb70_uuid);
    if (error.Fail())
      return UUID();

    CvRecordPdb70 swapped;
    if (!GetArchitecture().GetTriple().isOSBinFormatELF()) {
      // LLDB's UUID class treats the data as a sequence of bytes, but breakpad
      // interprets it as a sequence of little-endian fields, which it converts
      // to big-endian when converting to text. Swap the bytes to big endian so
      // that the string representation comes out right.
      swapped = *pdb70_uuid;
      llvm::sys::swapByteOrder(swapped.Uuid.Data1);
      llvm::sys::swapByteOrder(swapped.Uuid.Data2);
      llvm::sys::swapByteOrder(swapped.Uuid.Data3);
      llvm::sys::swapByteOrder(swapped.Age);
      pdb70_uuid = &swapped;
    }
    if (pdb70_uuid->Age != 0)
      return UUID::fromOptionalData(pdb70_uuid, sizeof(*pdb70_uuid));
    return UUID::fromOptionalData(&pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
  } else if (cv_signature == CvSignature::ElfBuildId)
    return UUID::fromOptionalData(cv_record);

  return UUID();
}

llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
  auto ExpectedThreads = GetMinidumpFile().getThreadList();
  if (ExpectedThreads)
    return *ExpectedThreads;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_THREAD),
                 ExpectedThreads.takeError(),
                 "Failed to read thread list: {0}");
  return {};
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
  if (location.RVA + location.DataSize > GetData().size())
    return {};
  return GetData().slice(location.RVA, location.DataSize);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const minidump::Thread &td) {
  return GetThreadContext(td.Context);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
  // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
  // the minidump was captured with a 64-bit debugger, then the CONTEXT we just
  // grabbed from the mini_dump_thread is the one for the 64-bit "native"
  // process rather than the 32-bit "guest" process we care about.  In this
  // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
  // Block) of the 64-bit process.
  auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
  if (teb_mem.empty())
    return {};

  const TEB64 *wow64teb;
  Status error = consumeObject(teb_mem, wow64teb);
  if (error.Fail())
    return {};

  // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
  // that includes the 32-bit CONTEXT (after a ULONG). See:
  // https://msdn.microsoft.com/en-us/library/ms681670.aspx
  auto context =
      GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
  if (context.size() < sizeof(MinidumpContext_x86_32))
    return {};

  return context;
  // NOTE:  We don't currently use the TEB for anything else.  If we
  // need it in the future, the 32-bit TEB is located according to the address
  // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}

ArchSpec MinidumpParser::GetArchitecture() {
  if (m_arch.IsValid())
    return m_arch;

  // Set the architecture in m_arch
  llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();

  if (!system_info) {
    LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                   system_info.takeError(),
                   "Failed to read SystemInfo stream: {0}");
    return m_arch;
  }

  // TODO what to do about big endiand flavors of arm ?
  // TODO set the arm subarch stuff if the minidump has info about it

  llvm::Triple triple;
  triple.setVendor(llvm::Triple::VendorType::UnknownVendor);

  switch (system_info->ProcessorArch) {
  case ProcessorArchitecture::X86:
    triple.setArch(llvm::Triple::ArchType::x86);
    break;
  case ProcessorArchitecture::AMD64:
    triple.setArch(llvm::Triple::ArchType::x86_64);
    break;
  case ProcessorArchitecture::ARM:
    triple.setArch(llvm::Triple::ArchType::arm);
    break;
  case ProcessorArchitecture::ARM64:
  case ProcessorArchitecture::BP_ARM64:
    triple.setArch(llvm::Triple::ArchType::aarch64);
    break;
  default:
    triple.setArch(llvm::Triple::ArchType::UnknownArch);
    break;
  }

  // TODO add all of the OSes that Minidump/breakpad distinguishes?
  switch (system_info->PlatformId) {
  case OSPlatform::Win32S:
  case OSPlatform::Win32Windows:
  case OSPlatform::Win32NT:
  case OSPlatform::Win32CE:
    triple.setOS(llvm::Triple::OSType::Win32);
    triple.setVendor(llvm::Triple::VendorType::PC);
    break;
  case OSPlatform::Linux:
    triple.setOS(llvm::Triple::OSType::Linux);
    break;
  case OSPlatform::MacOSX:
    triple.setOS(llvm::Triple::OSType::MacOSX);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::IOS:
    triple.setOS(llvm::Triple::OSType::IOS);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::Android:
    triple.setOS(llvm::Triple::OSType::Linux);
    triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
    break;
  default: {
    triple.setOS(llvm::Triple::OSType::UnknownOS);
    auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
    if (!ExpectedCSD) {
      LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                     ExpectedCSD.takeError(),
                     "Failed to CSD Version string: {0}");
    } else {
      if (ExpectedCSD->find("Linux") != std::string::npos)
        triple.setOS(llvm::Triple::OSType::Linux);
    }
    break;
  }
  }
  m_arch.SetTriple(triple);
  return m_arch;
}

const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);

  if (data.size() == 0)
    return nullptr;

  return MinidumpMiscInfo::Parse(data);
}

llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);

  if (data.size() == 0)
    return llvm::None;

  return LinuxProcStatus::Parse(data);
}

llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
  const MinidumpMiscInfo *misc_info = GetMiscInfo();
  if (misc_info != nullptr) {
    return misc_info->GetPid();
  }

  llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
  if (proc_status.hasValue()) {
    return proc_status->GetPid();
  }

  return llvm::None;
}

llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (ExpectedModules)
    return *ExpectedModules;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES),
                 ExpectedModules.takeError(),
                 "Failed to read module list: {0}");
  return {};
}

std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (!ExpectedModules) {
    LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
                   "Failed to read module list: {0}");
    return {};
  }

  // map module_name -> filtered_modules index
  typedef llvm::StringMap<size_t> MapType;
  MapType module_name_to_filtered_index;

  std::vector<const minidump::Module *> filtered_modules;

  for (const auto &module : *ExpectedModules) {
    auto ExpectedName = m_file->getString(module.ModuleNameRVA);
    if (!ExpectedName) {
      LLDB_LOG_ERROR(log, ExpectedName.takeError(),
                     "Failed to get module name: {0}");
      continue;
    }

    MapType::iterator iter;
    bool inserted;
    // See if we have inserted this module aready into filtered_modules. If we
    // haven't insert an entry into module_name_to_filtered_index with the
    // index where we will insert it if it isn't in the vector already.
    std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
        *ExpectedName, filtered_modules.size());

    if (inserted) {
      // This module has not been seen yet, insert it into filtered_modules at
      // the index that was inserted into module_name_to_filtered_index using
      // "filtered_modules.size()" above.
      filtered_modules.push_back(&module);
    } else {
      // This module has been seen. Modules are sometimes mentioned multiple
      // times when they are mapped discontiguously, so find the module with
      // the lowest "base_of_image" and use that as the filtered module.
      auto dup_module = filtered_modules[iter->second];
      if (module.BaseOfImage < dup_module->BaseOfImage)
        filtered_modules[iter->second] = &module;
    }
  }
  return filtered_modules;
}

const minidump::ExceptionStream *MinidumpParser::GetExceptionStream() {
  auto ExpectedStream = GetMinidumpFile().getExceptionStream();
  if (ExpectedStream)
    return &*ExpectedStream;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                 ExpectedStream.takeError(),
                 "Failed to read minidump exception stream: {0}");
  return nullptr;
}

llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
  llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);

  auto ExpectedMemory = GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
  } else {
    for (const auto &memory_desc : *ExpectedMemory) {
      const LocationDescriptor &loc_desc = memory_desc.Memory;
      const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
      const size_t range_size = loc_desc.DataSize;

      if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
        if (!ExpectedSlice) {
          LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
                         "Failed to get memory slice: {0}");
          return llvm::None;
        }
        return minidump::Range(range_start, *ExpectedSlice);
      }
    }
  }

  // Some Minidumps have a Memory64ListStream that captures all the heap memory
  // (full-memory Minidumps).  We can't exactly use the same loop as above,
  // because the Minidump uses slightly different data structures to describe
  // those

  if (!data64.empty()) {
    llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
    uint64_t base_rva;
    std::tie(memory64_list, base_rva) =
        MinidumpMemoryDescriptor64::ParseMemory64List(data64);

    if (memory64_list.empty())
      return llvm::None;

    for (const auto &memory_desc64 : memory64_list) {
      const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
      const size_t range_size = memory_desc64.data_size;

      if (base_rva + range_size > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        return minidump::Range(range_start,
                               GetData().slice(base_rva, range_size));
      }
      base_rva += range_size;
    }
  }

  return llvm::None;
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
                                                  size_t size) {
  // I don't have a sense of how frequently this is called or how many memory
  // ranges a Minidump typically has, so I'm not sure if searching for the
  // appropriate range linearly each time is stupid.  Perhaps we should build
  // an index for faster lookups.
  llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
  if (!range)
    return {};

  // There's at least some overlap between the beginning of the desired range
  // (addr) and the current range.  Figure out where the overlap begins and how
  // much overlap there is.

  const size_t offset = addr - range->start;

  if (addr < range->start || offset >= range->range_ref.size())
    return {};

  const size_t overlap = std::min(size, range->range_ref.size() - offset);
  return range->range_ref.slice(offset, overlap);
}

static bool
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
                                std::vector<MemoryRegionInfo> &regions) {
  auto data = parser.GetStream(StreamType::LinuxMaps);
  if (data.empty())
    return false;
  ParseLinuxMapRegions(llvm::toStringRef(data),
                       [&](const lldb_private::MemoryRegionInfo &region,
                           const lldb_private::Status &status) -> bool {
    if (status.Success())
      regions.push_back(region);
    return true;
  });
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
                                     std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
  if (!ExpectedInfo) {
    LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
                   "Failed to read memory info list: {0}");
    return false;
  }
  constexpr auto yes = MemoryRegionInfo::eYes;
  constexpr auto no = MemoryRegionInfo::eNo;
  for (const MemoryInfo &entry : *ExpectedInfo) {
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(entry.BaseAddress);
    region.GetRange().SetByteSize(entry.RegionSize);

    MemoryProtection prot = entry.Protect;
    region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
    region.SetWritable(
        bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetExecutable(
        bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetMapped(entry.State != MemoryState::Free ? yes : no);
    regions.push_back(region);
  }
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
                                 std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
    return false;
  }
  regions.reserve(ExpectedMemory->size());
  for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
    if (memory_desc.Memory.DataSize == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
    region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
                                   std::vector<MemoryRegionInfo> &regions) {
  llvm::ArrayRef<uint8_t> data =
      parser.GetStream(StreamType::Memory64List);
  if (data.empty())
    return false;
  llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
  uint64_t base_rva;
  std::tie(memory64_list, base_rva) =
      MinidumpMemoryDescriptor64::ParseMemory64List(data);
  
  if (memory64_list.empty())
    return false;
    
  regions.reserve(memory64_list.size());
  for (const auto &memory_desc : memory64_list) {
    if (memory_desc.data_size == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
    region.GetRange().SetByteSize(memory_desc.data_size);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
  // We create the region cache using the best source. We start with
  // the linux maps since they are the most complete and have names for the
  // regions. Next we try the MemoryInfoList since it has
  // read/write/execute/map data, and then fall back to the MemoryList and
  // Memory64List to just get a list of the memory that is mapped in this
  // core file
  MemoryRegionInfos result;
  const auto &return_sorted = [&](bool is_complete) {
    llvm::sort(result);
    return std::make_pair(std::move(result), is_complete);
  };
  if (CreateRegionsCacheFromLinuxMaps(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryInfoList(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryList(*this, result))
    return return_sorted(false);
  CreateRegionsCacheFromMemory64List(*this, result);
  return return_sorted(false);
}

#define ENUM_TO_CSTR(ST)                                                       \
  case StreamType::ST:                                                         \
    return #ST

llvm::StringRef
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
  switch (stream_type) {
    ENUM_TO_CSTR(Unused);
    ENUM_TO_CSTR(ThreadList);
    ENUM_TO_CSTR(ModuleList);
    ENUM_TO_CSTR(MemoryList);
    ENUM_TO_CSTR(Exception);
    ENUM_TO_CSTR(SystemInfo);
    ENUM_TO_CSTR(ThreadExList);
    ENUM_TO_CSTR(Memory64List);
    ENUM_TO_CSTR(CommentA);
    ENUM_TO_CSTR(CommentW);
    ENUM_TO_CSTR(HandleData);
    ENUM_TO_CSTR(FunctionTable);
    ENUM_TO_CSTR(UnloadedModuleList);
    ENUM_TO_CSTR(MiscInfo);
    ENUM_TO_CSTR(MemoryInfoList);
    ENUM_TO_CSTR(ThreadInfoList);
    ENUM_TO_CSTR(HandleOperationList);
    ENUM_TO_CSTR(Token);
    ENUM_TO_CSTR(JavascriptData);
    ENUM_TO_CSTR(SystemMemoryInfo);
    ENUM_TO_CSTR(ProcessVMCounters);
    ENUM_TO_CSTR(LastReserved);
    ENUM_TO_CSTR(BreakpadInfo);
    ENUM_TO_CSTR(AssertionInfo);
    ENUM_TO_CSTR(LinuxCPUInfo);
    ENUM_TO_CSTR(LinuxProcStatus);
    ENUM_TO_CSTR(LinuxLSBRelease);
    ENUM_TO_CSTR(LinuxCMDLine);
    ENUM_TO_CSTR(LinuxEnviron);
    ENUM_TO_CSTR(LinuxAuxv);
    ENUM_TO_CSTR(LinuxMaps);
    ENUM_TO_CSTR(LinuxDSODebug);
    ENUM_TO_CSTR(LinuxProcStat);
    ENUM_TO_CSTR(LinuxProcUptime);
    ENUM_TO_CSTR(LinuxProcFD);
    ENUM_TO_CSTR(FacebookAppCustomData);
    ENUM_TO_CSTR(FacebookBuildID);
    ENUM_TO_CSTR(FacebookAppVersionName);
    ENUM_TO_CSTR(FacebookJavaStack);
    ENUM_TO_CSTR(FacebookDalvikInfo);
    ENUM_TO_CSTR(FacebookUnwindSymbols);
    ENUM_TO_CSTR(FacebookDumpErrorLog);
    ENUM_TO_CSTR(FacebookAppStateLog);
    ENUM_TO_CSTR(FacebookAbortReason);
    ENUM_TO_CSTR(FacebookThreadName);
    ENUM_TO_CSTR(FacebookLogcat);
  }
  return "unknown stream type";
}