Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <string>
#include <vector>

using namespace llvm;
using namespace dwarf;


// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;

Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset,
                        uint64_t EndOffset) {
  DataExtractor::Cursor C(*Offset);
  while (C && C.tell() < EndOffset) {
    uint8_t Opcode = Data.getRelocatedValue(C, 1);
    if (!C)
      break;

    // Some instructions have a primary opcode encoded in the top bits.
    if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) {
      // If it's a primary opcode, the first operand is encoded in the bottom
      // bits of the opcode itself.
      uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
      switch (Primary) {
      case DW_CFA_advance_loc:
      case DW_CFA_restore:
        addInstruction(Primary, Op1);
        break;
      case DW_CFA_offset:
        addInstruction(Primary, Op1, Data.getULEB128(C));
        break;
      default:
        llvm_unreachable("invalid primary CFI opcode");
      }
      continue;
    }

    // Extended opcode - its value is Opcode itself.
    switch (Opcode) {
    default:
      return createStringError(errc::illegal_byte_sequence,
                               "invalid extended CFI opcode 0x%" PRIx8, Opcode);
    case DW_CFA_nop:
    case DW_CFA_remember_state:
    case DW_CFA_restore_state:
    case DW_CFA_GNU_window_save:
      // No operands
      addInstruction(Opcode);
      break;
    case DW_CFA_set_loc:
      // Operands: Address
      addInstruction(Opcode, Data.getRelocatedAddress(C));
      break;
    case DW_CFA_advance_loc1:
      // Operands: 1-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 1));
      break;
    case DW_CFA_advance_loc2:
      // Operands: 2-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 2));
      break;
    case DW_CFA_advance_loc4:
      // Operands: 4-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 4));
      break;
    case DW_CFA_restore_extended:
    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_def_cfa_register:
    case DW_CFA_def_cfa_offset:
    case DW_CFA_GNU_args_size:
      // Operands: ULEB128
      addInstruction(Opcode, Data.getULEB128(C));
      break;
    case DW_CFA_def_cfa_offset_sf:
      // Operands: SLEB128
      addInstruction(Opcode, Data.getSLEB128(C));
      break;
    case DW_CFA_offset_extended:
    case DW_CFA_register:
    case DW_CFA_def_cfa:
    case DW_CFA_val_offset: {
      // Operands: ULEB128, ULEB128
      // Note: We can not embed getULEB128 directly into function
      // argument list. getULEB128 changes Offset and order of evaluation
      // for arguments is unspecified.
      uint64_t op1 = Data.getULEB128(C);
      uint64_t op2 = Data.getULEB128(C);
      addInstruction(Opcode, op1, op2);
      break;
    }
    case DW_CFA_offset_extended_sf:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_val_offset_sf: {
      // Operands: ULEB128, SLEB128
      // Note: see comment for the previous case
      uint64_t op1 = Data.getULEB128(C);
      uint64_t op2 = (uint64_t)Data.getSLEB128(C);
      addInstruction(Opcode, op1, op2);
      break;
    }
    case DW_CFA_def_cfa_expression: {
      uint64_t ExprLength = Data.getULEB128(C);
      addInstruction(Opcode, 0);
      StringRef Expression = Data.getBytes(C, ExprLength);

      DataExtractor Extractor(Expression, Data.isLittleEndian(),
                              Data.getAddressSize());
      // Note. We do not pass the DWARF format to DWARFExpression, because
      // DW_OP_call_ref, the only operation which depends on the format, is
      // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
      Instructions.back().Expression =
          DWARFExpression(Extractor, Data.getAddressSize());
      break;
    }
    case DW_CFA_expression:
    case DW_CFA_val_expression: {
      uint64_t RegNum = Data.getULEB128(C);
      addInstruction(Opcode, RegNum, 0);

      uint64_t BlockLength = Data.getULEB128(C);
      StringRef Expression = Data.getBytes(C, BlockLength);
      DataExtractor Extractor(Expression, Data.isLittleEndian(),
                              Data.getAddressSize());
      // Note. We do not pass the DWARF format to DWARFExpression, because
      // DW_OP_call_ref, the only operation which depends on the format, is
      // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
      Instructions.back().Expression =
          DWARFExpression(Extractor, Data.getAddressSize());
      break;
    }
    }
  }

  *Offset = C.tell();
  return C.takeError();
}

namespace {


} // end anonymous namespace

ArrayRef<CFIProgram::OperandType[2]> CFIProgram::getOperandTypes() {
  static OperandType OpTypes[DW_CFA_restore+1][2];
  static bool Initialized = false;
  if (Initialized) {
    return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
  }
  Initialized = true;

#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1)       \
  do {                                          \
    OpTypes[OP][0] = OPTYPE0;                   \
    OpTypes[OP][1] = OPTYPE1;                   \
  } while (false)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)

  DECLARE_OP1(DW_CFA_set_loc, OT_Address);
  DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
  DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
  DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
  DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
  DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
  DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
  DECLARE_OP1(DW_CFA_undefined, OT_Register);
  DECLARE_OP1(DW_CFA_same_value, OT_Register);
  DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
  DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
  DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
  DECLARE_OP1(DW_CFA_restore, OT_Register);
  DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
  DECLARE_OP0(DW_CFA_remember_state);
  DECLARE_OP0(DW_CFA_restore_state);
  DECLARE_OP0(DW_CFA_GNU_window_save);
  DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
  DECLARE_OP0(DW_CFA_nop);

#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2

  return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
}

/// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
void CFIProgram::printOperand(raw_ostream &OS, const MCRegisterInfo *MRI,
                              bool IsEH, const Instruction &Instr,
                              unsigned OperandIdx, uint64_t Operand) const {
  assert(OperandIdx < 2);
  uint8_t Opcode = Instr.Opcode;
  OperandType Type = getOperandTypes()[Opcode][OperandIdx];

  switch (Type) {
  case OT_Unset: {
    OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
    auto OpcodeName = CallFrameString(Opcode, Arch);
    if (!OpcodeName.empty())
      OS << " " << OpcodeName;
    else
      OS << format(" Opcode %x",  Opcode);
    break;
  }
  case OT_None:
    break;
  case OT_Address:
    OS << format(" %" PRIx64, Operand);
    break;
  case OT_Offset:
    // The offsets are all encoded in a unsigned form, but in practice
    // consumers use them signed. It's most certainly legacy due to
    // the lack of signed variants in the first Dwarf standards.
    OS << format(" %+" PRId64, int64_t(Operand));
    break;
  case OT_FactoredCodeOffset: // Always Unsigned
    if (CodeAlignmentFactor)
      OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
    else
      OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
    break;
  case OT_SignedFactDataOffset:
    if (DataAlignmentFactor)
      OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
    else
      OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
    break;
  case OT_UnsignedFactDataOffset:
    if (DataAlignmentFactor)
      OS << format(" %" PRId64, Operand * DataAlignmentFactor);
    else
      OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
    break;
  case OT_Register:
    OS << format(" reg%" PRId64, Operand);
    break;
  case OT_Expression:
    assert(Instr.Expression && "missing DWARFExpression object");
    OS << " ";
    Instr.Expression->print(OS, MRI, nullptr, IsEH);
    break;
  }
}

void CFIProgram::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
                      unsigned IndentLevel) const {
  for (const auto &Instr : Instructions) {
    uint8_t Opcode = Instr.Opcode;
    if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
      Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
    OS.indent(2 * IndentLevel);
    OS << CallFrameString(Opcode, Arch) << ":";
    for (unsigned i = 0; i < Instr.Ops.size(); ++i)
      printOperand(OS, MRI, IsEH, Instr, i, Instr.Ops[i]);
    OS << '\n';
  }
}

// Returns the CIE identifier to be used by the requested format.
// CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5.
// For CIE ID in .eh_frame sections see
// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) {
  if (IsEH)
    return 0;
  if (IsDWARF64)
    return DW64_CIE_ID;
  return DW_CIE_ID;
}

void CIE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
  // A CIE with a zero length is a terminator entry in the .eh_frame section.
  if (IsEH && Length == 0) {
    OS << format("%08" PRIx64, Offset) << " ZERO terminator\n";
    return;
  }

  OS << format("%08" PRIx64, Offset)
     << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
     << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8,
               getCIEId(IsDWARF64, IsEH))
     << " CIE\n"
     << "  Format:                " << FormatString(IsDWARF64) << "\n"
     << format("  Version:               %d\n", Version)
     << "  Augmentation:          \"" << Augmentation << "\"\n";
  if (Version >= 4) {
    OS << format("  Address size:          %u\n", (uint32_t)AddressSize);
    OS << format("  Segment desc size:     %u\n",
                 (uint32_t)SegmentDescriptorSize);
  }
  OS << format("  Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor);
  OS << format("  Data alignment factor: %d\n", (int32_t)DataAlignmentFactor);
  OS << format("  Return address column: %d\n", (int32_t)ReturnAddressRegister);
  if (Personality)
    OS << format("  Personality Address: %016" PRIx64 "\n", *Personality);
  if (!AugmentationData.empty()) {
    OS << "  Augmentation data:    ";
    for (uint8_t Byte : AugmentationData)
      OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
    OS << "\n";
  }
  OS << "\n";
  CFIs.dump(OS, MRI, IsEH);
  OS << "\n";
}

void FDE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
  OS << format("%08" PRIx64, Offset)
     << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
     << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, CIEPointer)
     << " FDE cie=";
  if (LinkedCIE)
    OS << format("%08" PRIx64, LinkedCIE->getOffset());
  else
    OS << "<invalid offset>";
  OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation,
               InitialLocation + AddressRange);
  OS << "  Format:       " << FormatString(IsDWARF64) << "\n";
  if (LSDAAddress)
    OS << format("  LSDA Address: %016" PRIx64 "\n", *LSDAAddress);
  CFIs.dump(OS, MRI, IsEH);
  OS << "\n";
}

DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch,
    bool IsEH, uint64_t EHFrameAddress)
    : Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {}

DWARFDebugFrame::~DWARFDebugFrame() = default;

static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
                                              uint64_t Offset, int Length) {
  errs() << "DUMP: ";
  for (int i = 0; i < Length; ++i) {
    uint8_t c = Data.getU8(&Offset);
    errs().write_hex(c); errs() << " ";
  }
  errs() << "\n";
}

Error DWARFDebugFrame::parse(DWARFDataExtractor Data) {
  uint64_t Offset = 0;
  DenseMap<uint64_t, CIE *> CIEs;

  while (Data.isValidOffset(Offset)) {
    uint64_t StartOffset = Offset;

    uint64_t Length;
    DwarfFormat Format;
    std::tie(Length, Format) = Data.getInitialLength(&Offset);
    bool IsDWARF64 = Format == DWARF64;

    // If the Length is 0, then this CIE is a terminator. We add it because some
    // dumper tools might need it to print something special for such entries
    // (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator").
    if (Length == 0) {
      auto Cie = std::make_unique<CIE>(
          IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0,
          SmallString<8>(), 0, 0, None, None, Arch);
      CIEs[StartOffset] = Cie.get();
      Entries.push_back(std::move(Cie));
      break;
    }

    // At this point, Offset points to the next field after Length.
    // Length is the structure size excluding itself. Compute an offset one
    // past the end of the structure (needed to know how many instructions to
    // read).
    uint64_t StartStructureOffset = Offset;
    uint64_t EndStructureOffset = Offset + Length;

    // The Id field's size depends on the DWARF format
    Error Err = Error::success();
    uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset,
                                         /*SectionIndex=*/nullptr, &Err);
    if (Err)
      return Err;

    if (Id == getCIEId(IsDWARF64, IsEH)) {
      uint8_t Version = Data.getU8(&Offset);
      const char *Augmentation = Data.getCStr(&Offset);
      StringRef AugmentationString(Augmentation ? Augmentation : "");
      // TODO: we should provide a way to report a warning and continue dumping.
      if (IsEH && Version != 1)
        return createStringError(errc::not_supported,
                                 "unsupported CIE version: %" PRIu8, Version);

      uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
                                          Data.getU8(&Offset);
      Data.setAddressSize(AddressSize);
      uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
      uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
      int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
      uint64_t ReturnAddressRegister =
          Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset);

      // Parse the augmentation data for EH CIEs
      StringRef AugmentationData("");
      uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
      uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
      Optional<uint64_t> Personality;
      Optional<uint32_t> PersonalityEncoding;
      if (IsEH) {
        Optional<uint64_t> AugmentationLength;
        uint64_t StartAugmentationOffset;
        uint64_t EndAugmentationOffset;

        // Walk the augmentation string to get all the augmentation data.
        for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
          switch (AugmentationString[i]) {
          default:
            return createStringError(
                errc::invalid_argument,
                "unknown augmentation character in entry at 0x%" PRIx64,
                StartOffset);
          case 'L':
            LSDAPointerEncoding = Data.getU8(&Offset);
            break;
          case 'P': {
            if (Personality)
              return createStringError(
                  errc::invalid_argument,
                  "duplicate personality in entry at 0x%" PRIx64, StartOffset);
            PersonalityEncoding = Data.getU8(&Offset);
            Personality = Data.getEncodedPointer(
                &Offset, *PersonalityEncoding,
                EHFrameAddress ? EHFrameAddress + Offset : 0);
            break;
          }
          case 'R':
            FDEPointerEncoding = Data.getU8(&Offset);
            break;
          case 'S':
            // Current frame is a signal trampoline.
            break;
          case 'z':
            if (i)
              return createStringError(
                  errc::invalid_argument,
                  "'z' must be the first character at 0x%" PRIx64, StartOffset);
            // Parse the augmentation length first.  We only parse it if
            // the string contains a 'z'.
            AugmentationLength = Data.getULEB128(&Offset);
            StartAugmentationOffset = Offset;
            EndAugmentationOffset = Offset + *AugmentationLength;
            break;
          case 'B':
            // B-Key is used for signing functions associated with this
            // augmentation string
            break;
          }
        }

        if (AugmentationLength.hasValue()) {
          if (Offset != EndAugmentationOffset)
            return createStringError(errc::invalid_argument,
                                     "parsing augmentation data at 0x%" PRIx64
                                     " failed",
                                     StartOffset);
          AugmentationData = Data.getData().slice(StartAugmentationOffset,
                                                  EndAugmentationOffset);
        }
      }

      auto Cie = std::make_unique<CIE>(
          IsDWARF64, StartOffset, Length, Version, AugmentationString,
          AddressSize, SegmentDescriptorSize, CodeAlignmentFactor,
          DataAlignmentFactor, ReturnAddressRegister, AugmentationData,
          FDEPointerEncoding, LSDAPointerEncoding, Personality,
          PersonalityEncoding, Arch);
      CIEs[StartOffset] = Cie.get();
      Entries.emplace_back(std::move(Cie));
    } else {
      // FDE
      uint64_t CIEPointer = Id;
      uint64_t InitialLocation = 0;
      uint64_t AddressRange = 0;
      Optional<uint64_t> LSDAAddress;
      CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];

      if (IsEH) {
        // The address size is encoded in the CIE we reference.
        if (!Cie)
          return createStringError(errc::invalid_argument,
                                   "parsing FDE data at 0x%" PRIx64
                                   " failed due to missing CIE",
                                   StartOffset);
        if (auto Val = Data.getEncodedPointer(
                &Offset, Cie->getFDEPointerEncoding(),
                EHFrameAddress ? EHFrameAddress + Offset : 0)) {
          InitialLocation = *Val;
        }
        if (auto Val = Data.getEncodedPointer(
                &Offset, Cie->getFDEPointerEncoding(), 0)) {
          AddressRange = *Val;
        }

        StringRef AugmentationString = Cie->getAugmentationString();
        if (!AugmentationString.empty()) {
          // Parse the augmentation length and data for this FDE.
          uint64_t AugmentationLength = Data.getULEB128(&Offset);

          uint64_t EndAugmentationOffset = Offset + AugmentationLength;

          // Decode the LSDA if the CIE augmentation string said we should.
          if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) {
            LSDAAddress = Data.getEncodedPointer(
                &Offset, Cie->getLSDAPointerEncoding(),
                EHFrameAddress ? Offset + EHFrameAddress : 0);
          }

          if (Offset != EndAugmentationOffset)
            return createStringError(errc::invalid_argument,
                                     "parsing augmentation data at 0x%" PRIx64
                                     " failed",
                                     StartOffset);
        }
      } else {
        InitialLocation = Data.getRelocatedAddress(&Offset);
        AddressRange = Data.getRelocatedAddress(&Offset);
      }

      Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer,
                                   InitialLocation, AddressRange, Cie,
                                   LSDAAddress, Arch));
    }

    if (Error E =
            Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset))
      return E;

    if (Offset != EndStructureOffset)
      return createStringError(
          errc::invalid_argument,
          "parsing entry instructions at 0x%" PRIx64 " failed", StartOffset);
  }

  return Error::success();
}

FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
  auto It = partition_point(Entries, [=](const std::unique_ptr<FrameEntry> &E) {
    return E->getOffset() < Offset;
  });
  if (It != Entries.end() && (*It)->getOffset() == Offset)
    return It->get();
  return nullptr;
}

void DWARFDebugFrame::dump(raw_ostream &OS, const MCRegisterInfo *MRI,
                           Optional<uint64_t> Offset) const {
  if (Offset) {
    if (auto *Entry = getEntryAtOffset(*Offset))
      Entry->dump(OS, MRI, IsEH);
    return;
  }

  OS << "\n";
  for (const auto &Entry : Entries)
    Entry->dump(OS, MRI, IsEH);
}