Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64RegisterBankInfo.h"
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>

#define GET_TARGET_REGBANK_IMPL
#include "AArch64GenRegisterBank.inc"

// This file will be TableGen'ed at some point.
#include "AArch64GenRegisterBankInfo.def"

using namespace llvm;

AArch64RegisterBankInfo::AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
    : AArch64GenRegisterBankInfo() {
  static llvm::once_flag InitializeRegisterBankFlag;

  static auto InitializeRegisterBankOnce = [&]() {
    // We have only one set of register banks, whatever the subtarget
    // is. Therefore, the initialization of the RegBanks table should be
    // done only once. Indeed the table of all register banks
    // (AArch64::RegBanks) is unique in the compiler. At some point, it
    // will get tablegen'ed and the whole constructor becomes empty.

    const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
    (void)RBGPR;
    assert(&AArch64::GPRRegBank == &RBGPR &&
           "The order in RegBanks is messed up");

    const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
    (void)RBFPR;
    assert(&AArch64::FPRRegBank == &RBFPR &&
           "The order in RegBanks is messed up");

    const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
    (void)RBCCR;
    assert(&AArch64::CCRegBank == &RBCCR &&
           "The order in RegBanks is messed up");

    // The GPR register bank is fully defined by all the registers in
    // GR64all + its subclasses.
    assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");

    // The FPR register bank is fully defined by all the registers in
    // GR64all + its subclasses.
    assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
           "Subclass not added?");
    assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
           "Subclass not added?");
    assert(RBFPR.getSize() == 512 &&
           "FPRs should hold up to 512-bit via QQQQ sequence");

    assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
           "Class not added?");
    assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit");

    // Check that the TableGen'ed like file is in sync we our expectations.
    // First, the Idx.
    assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR,
                                  {PMI_GPR32, PMI_GPR64}) &&
           "PartialMappingIdx's are incorrectly ordered");
    assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR,
                                  {PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128,
                                   PMI_FPR256, PMI_FPR512}) &&
           "PartialMappingIdx's are incorrectly ordered");
// Now, the content.
// Check partial mapping.
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)                      \
  do {                                                                         \
    assert(                                                                    \
        checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
        #Idx " is incorrectly initialized");                                   \
  } while (false)

    CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
    CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
    CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);

// Check value mapping.
#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset)                              \
  do {                                                                         \
    assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size,            \
                             PartialMappingIdx::PMI_First##RBName, Size,       \
                             Offset) &&                                        \
           #RBName #Size " " #Offset " is incorrectly initialized");           \
  } while (false)

#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)

    CHECK_VALUEMAP(GPR, 32);
    CHECK_VALUEMAP(GPR, 64);
    CHECK_VALUEMAP(FPR, 16);
    CHECK_VALUEMAP(FPR, 32);
    CHECK_VALUEMAP(FPR, 64);
    CHECK_VALUEMAP(FPR, 128);
    CHECK_VALUEMAP(FPR, 256);
    CHECK_VALUEMAP(FPR, 512);

// Check the value mapping for 3-operands instructions where all the operands
// map to the same value mapping.
#define CHECK_VALUEMAP_3OPS(RBName, Size)                                      \
  do {                                                                         \
    CHECK_VALUEMAP_IMPL(RBName, Size, 0);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 1);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 2);                                      \
  } while (false)

    CHECK_VALUEMAP_3OPS(GPR, 32);
    CHECK_VALUEMAP_3OPS(GPR, 64);
    CHECK_VALUEMAP_3OPS(FPR, 32);
    CHECK_VALUEMAP_3OPS(FPR, 64);
    CHECK_VALUEMAP_3OPS(FPR, 128);
    CHECK_VALUEMAP_3OPS(FPR, 256);
    CHECK_VALUEMAP_3OPS(FPR, 512);

#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min;               \
    unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min;               \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getCopyMapping(                                  \
        AArch64::RBNameDst##RegBankID, AArch64::RBNameSrc##RegBankID, Size);  \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && #RBNameDst #Size                       \
           " Dst is incorrectly initialized");                                 \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && #RBNameSrc #Size                       \
           " Src is incorrectly initialized");                                 \
                                                                               \
  } while (false)

    CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64);

#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)                                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min;                    \
    unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min;                    \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize);               \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && "FPR" #DstSize                         \
                                        " Dst is incorrectly initialized");    \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && "FPR" #SrcSize                         \
                                        " Src is incorrectly initialized");    \
                                                                               \
  } while (false)

    CHECK_VALUEMAP_FPEXT(32, 16);
    CHECK_VALUEMAP_FPEXT(64, 16);
    CHECK_VALUEMAP_FPEXT(64, 32);
    CHECK_VALUEMAP_FPEXT(128, 64);

    assert(verify(TRI) && "Invalid register bank information");
  };

  llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
}

unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A,
                                           const RegisterBank &B,
                                           unsigned Size) const {
  // What do we do with different size?
  // copy are same size.
  // Will introduce other hooks for different size:
  // * extract cost.
  // * build_sequence cost.

  // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
  // FIXME: This should be deduced from the scheduling model.
  if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
    // FMOVXDr or FMOVWSr.
    return 5;
  if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
    // FMOVDXr or FMOVSWr.
    return 4;

  return RegisterBankInfo::copyCost(A, B, Size);
}

const RegisterBank &
AArch64RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
                                                LLT) const {
  switch (RC.getID()) {
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR16_loRegClassID:
  case AArch64::FPR32_with_hsub_in_FPR16_loRegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR64_loRegClassID:
  case AArch64::FPR128RegClassID:
  case AArch64::FPR128_loRegClassID:
  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return getRegBank(AArch64::FPRRegBankID);
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32sponlyRegClassID:
  case AArch64::GPR32argRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64commonRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64sponlyRegClassID:
  case AArch64::GPR64argRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64noipRegClassID:
  case AArch64::GPR64common_and_GPR64noipRegClassID:
  case AArch64::GPR64noip_and_tcGPR64RegClassID:
  case AArch64::tcGPR64RegClassID:
  case AArch64::WSeqPairsClassRegClassID:
  case AArch64::XSeqPairsClassRegClassID:
    return getRegBank(AArch64::GPRRegBankID);
  case AArch64::CCRRegClassID:
    return getRegBank(AArch64::CCRegBankID);
  default:
    llvm_unreachable("Register class not supported");
  }
}

RegisterBankInfo::InstructionMappings
AArch64RegisterBankInfo::getInstrAlternativeMappings(
    const MachineInstr &MI) const {
  const MachineFunction &MF = *MI.getParent()->getParent();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (MI.getOpcode()) {
  case TargetOpcode::G_OR: {
    // 32 and 64-bit or can be mapped on either FPR or
    // GPR for the same cost.
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 3)
      break;
    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
        /*NumOperands*/ 3);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
        /*NumOperands*/ 3);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_BITCAST: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    AltMappings.push_back(&GPRToFPRMapping);
    AltMappings.push_back(&FPRToGPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_LOAD: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstGPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstFPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  default:
    break;
  }
  return RegisterBankInfo::getInstrAlternativeMappings(MI);
}

void AArch64RegisterBankInfo::applyMappingImpl(
    const OperandsMapper &OpdMapper) const {
  switch (OpdMapper.getMI().getOpcode()) {
  case TargetOpcode::G_OR:
  case TargetOpcode::G_BITCAST:
  case TargetOpcode::G_LOAD:
    // Those ID must match getInstrAlternativeMappings.
    assert((OpdMapper.getInstrMapping().getID() >= 1 &&
            OpdMapper.getInstrMapping().getID() <= 4) &&
           "Don't know how to handle that ID");
    return applyDefaultMapping(OpdMapper);
  default:
    llvm_unreachable("Don't know how to handle that operation");
  }
}

/// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode,
/// having only floating-point operands.
static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {
  switch (Opc) {
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FMA:
  case TargetOpcode::G_FDIV:
  case TargetOpcode::G_FCONSTANT:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC:
  case TargetOpcode::G_FCEIL:
  case TargetOpcode::G_FFLOOR:
  case TargetOpcode::G_FNEARBYINT:
  case TargetOpcode::G_FNEG:
  case TargetOpcode::G_FCOS:
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FLOG10:
  case TargetOpcode::G_FLOG:
  case TargetOpcode::G_FLOG2:
  case TargetOpcode::G_FSQRT:
  case TargetOpcode::G_FABS:
  case TargetOpcode::G_FEXP:
  case TargetOpcode::G_FRINT:
  case TargetOpcode::G_INTRINSIC_TRUNC:
  case TargetOpcode::G_INTRINSIC_ROUND:
    return true;
  }
  return false;
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
    const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();
  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  unsigned NumOperands = MI.getNumOperands();
  assert(NumOperands <= 3 &&
         "This code is for instructions with 3 or less operands");

  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  unsigned Size = Ty.getSizeInBits();
  bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc);

  PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR;

#ifndef NDEBUG
  // Make sure all the operands are using similar size and type.
  // Should probably be checked by the machine verifier.
  // This code won't catch cases where the number of lanes is
  // different between the operands.
  // If we want to go to that level of details, it is probably
  // best to check that the types are the same, period.
  // Currently, we just check that the register banks are the same
  // for each types.
  for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
    LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
    assert(
        AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(
            RBIdx, OpTy.getSizeInBits()) ==
            AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) &&
        "Operand has incompatible size");
    bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
    (void)OpIsFPR;
    assert(IsFPR == OpIsFPR && "Operand has incompatible type");
  }
#endif // End NDEBUG.

  return getInstructionMapping(DefaultMappingID, 1,
                               getValueMapping(RBIdx, Size), NumOperands);
}

bool AArch64RegisterBankInfo::hasFPConstraints(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  unsigned Op = MI.getOpcode();

  // Do we have an explicit floating point instruction?
  if (isPreISelGenericFloatingPointOpcode(Op))
    return true;

  // No. Check if we have a copy-like instruction. If we do, then we could
  // still be fed by floating point instructions.
  if (Op != TargetOpcode::COPY && !MI.isPHI())
    return false;

  // MI is copy-like. Return true if it outputs an FPR.
  return getRegBank(MI.getOperand(0).getReg(), MRI, TRI) ==
         &AArch64::FPRRegBank;
}

bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
                                         const MachineRegisterInfo &MRI,
                                         const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
  case TargetOpcode::G_FCMP:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

bool AArch64RegisterBankInfo::onlyDefinesFP(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case AArch64::G_DUP:
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();

  // Try the default logic for non-generic instructions that are either copies
  // or already have some operands assigned to banks.
  if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
      Opc == TargetOpcode::G_PHI) {
    const RegisterBankInfo::InstructionMapping &Mapping =
        getInstrMappingImpl(MI);
    if (Mapping.isValid())
      return Mapping;
  }

  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();

  switch (Opc) {
    // G_{F|S|U}REM are not listed because they are not legal.
    // Arithmetic ops.
  case TargetOpcode::G_ADD:
  case TargetOpcode::G_SUB:
  case TargetOpcode::G_PTR_ADD:
  case TargetOpcode::G_MUL:
  case TargetOpcode::G_SDIV:
  case TargetOpcode::G_UDIV:
    // Bitwise ops.
  case TargetOpcode::G_AND:
  case TargetOpcode::G_OR:
  case TargetOpcode::G_XOR:
    // Floating point ops.
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FDIV:
    return getSameKindOfOperandsMapping(MI);
  case TargetOpcode::G_FPEXT: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    return getInstructionMapping(
        DefaultMappingID, /*Cost*/ 1,
        getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
        /*NumOperands*/ 2);
  }
    // Shifts.
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_ASHR: {
    LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
      return getInstructionMapping(DefaultMappingID, 1,
                                   &ValMappings[Shift64Imm], 3);
    return getSameKindOfOperandsMapping(MI);
  }
  case TargetOpcode::COPY: {
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = MI.getOperand(1).getReg();
    // Check if one of the register is not a generic register.
    if ((Register::isPhysicalRegister(DstReg) ||
         !MRI.getType(DstReg).isValid()) ||
        (Register::isPhysicalRegister(SrcReg) ||
         !MRI.getType(SrcReg).isValid())) {
      const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
      const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
      if (!DstRB)
        DstRB = SrcRB;
      else if (!SrcRB)
        SrcRB = DstRB;
      // If both RB are null that means both registers are generic.
      // We shouldn't be here.
      assert(DstRB && SrcRB && "Both RegBank were nullptr");
      unsigned Size = getSizeInBits(DstReg, MRI, TRI);
      return getInstructionMapping(
          DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
          getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
          // We only care about the mapping of the destination.
          /*NumOperands*/ 1);
    }
    // Both registers are generic, use G_BITCAST.
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    unsigned Size = DstTy.getSizeInBits();
    bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
    bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
    const RegisterBank &DstRB =
        DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    const RegisterBank &SrcRB =
        SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    return getInstructionMapping(
        DefaultMappingID, copyCost(DstRB, SrcRB, Size),
        getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
        // We only care about the mapping of the destination for COPY.
        /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
  }
  default:
    break;
  }

  unsigned NumOperands = MI.getNumOperands();

  // Track the size and bank of each register.  We don't do partial mappings.
  SmallVector<unsigned, 4> OpSize(NumOperands);
  SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    auto &MO = MI.getOperand(Idx);
    if (!MO.isReg() || !MO.getReg())
      continue;

    LLT Ty = MRI.getType(MO.getReg());
    OpSize[Idx] = Ty.getSizeInBits();

    // As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs.
    // For floating-point instructions, scalars go in FPRs.
    if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc) ||
        Ty.getSizeInBits() > 64)
      OpRegBankIdx[Idx] = PMI_FirstFPR;
    else
      OpRegBankIdx[Idx] = PMI_FirstGPR;
  }

  unsigned Cost = 1;
  // Some of the floating-point instructions have mixed GPR and FPR operands:
  // fine-tune the computed mapping.
  switch (Opc) {
  case AArch64::G_DUP: {
    Register ScalarReg = MI.getOperand(1).getReg();
    auto ScalarDef = MRI.getVRegDef(ScalarReg);
    if (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
        onlyDefinesFP(*ScalarDef, MRI, TRI))
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
    else
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
    break;
  }
  case TargetOpcode::G_TRUNC: {
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
    break;
  }
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
    break;
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_FCMP:
    OpRegBankIdx = {PMI_FirstGPR,
                    /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_BITCAST:
    // This is going to be a cross register bank copy and this is expensive.
    if (OpRegBankIdx[0] != OpRegBankIdx[1])
      Cost = copyCost(
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
          OpSize[0]);
    break;
  case TargetOpcode::G_LOAD:
    // Loading in vector unit is slightly more expensive.
    // This is actually only true for the LD1R and co instructions,
    // but anyway for the fast mode this number does not matter and
    // for the greedy mode the cost of the cross bank copy will
    // offset this number.
    // FIXME: Should be derived from the scheduling model.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      Cost = 2;
    else
      // Check if that load feeds fp instructions.
      // In that case, we want the default mapping to be on FPR
      // instead of blind map every scalar to GPR.
      for (const MachineInstr &UseMI :
           MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
        // If we have at least one direct use in a FP instruction,
        // assume this was a floating point load in the IR.
        // If it was not, we would have had a bitcast before
        // reaching that instruction.
        if (onlyUsesFP(UseMI, MRI, TRI)) {
          OpRegBankIdx[0] = PMI_FirstFPR;
          break;
        }
      }
    break;
  case TargetOpcode::G_STORE:
    // Check if that store is fed by fp instructions.
    if (OpRegBankIdx[0] == PMI_FirstGPR) {
      Register VReg = MI.getOperand(0).getReg();
      if (!VReg)
        break;
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (onlyDefinesFP(*DefMI, MRI, TRI))
        OpRegBankIdx[0] = PMI_FirstFPR;
      break;
    }
    break;
  case TargetOpcode::G_SELECT: {
    // If the destination is FPR, preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    // If we're taking in vectors, we have no choice but to put everything on
    // FPRs, except for the condition. The condition must always be on a GPR.
    LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
    if (SrcTy.isVector()) {
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};
      break;
    }

    // Try to minimize the number of copies. If we have more floating point
    // constrained values than not, then we'll put everything on FPR. Otherwise,
    // everything has to be on GPR.
    unsigned NumFP = 0;

    // Check if the uses of the result always produce floating point values.
    //
    // For example:
    //
    // %z = G_SELECT %cond %x %y
    // fpr = G_FOO %z ...
    if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
               [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
      ++NumFP;

    // Check if the defs of the source values always produce floating point
    // values.
    //
    // For example:
    //
    // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
    // %z = G_SELECT %cond %x %y
    //
    // Also check whether or not the sources have already been decided to be
    // FPR. Keep track of this.
    //
    // This doesn't check the condition, since it's just whatever is in NZCV.
    // This isn't passed explicitly in a register to fcsel/csel.
    for (unsigned Idx = 2; Idx < 4; ++Idx) {
      Register VReg = MI.getOperand(Idx).getReg();
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
          onlyDefinesFP(*DefMI, MRI, TRI))
        ++NumFP;
    }

    // If we have more FP constraints than not, then move everything over to
    // FPR.
    if (NumFP >= 2)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    // If the first operand belongs to a FPR register bank, then make sure that
    // we preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
    // UNMERGE into scalars from a vector should always use FPR.
    // Likewise if any of the uses are FP instructions.
    if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
        any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
               [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
      // Set the register bank of every operand to FPR.
      for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
           Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    // Destination and source need to be FPRs.
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // Index needs to be a GPR.
    OpRegBankIdx[2] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // The element may be either a GPR or FPR. Preserve that behaviour.
    if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
      OpRegBankIdx[2] = PMI_FirstFPR;
    else
      OpRegBankIdx[2] = PMI_FirstGPR;

    // Index needs to be a GPR.
    OpRegBankIdx[3] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_EXTRACT: {
    // For s128 sources we have to use fpr.
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (SrcTy.getSizeInBits() == 128) {
      OpRegBankIdx[0] = PMI_FirstFPR;
      OpRegBankIdx[1] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR:
    // If the first source operand belongs to a FPR register bank, then make
    // sure that we preserve that.
    if (OpRegBankIdx[1] != PMI_FirstGPR)
      break;
    Register VReg = MI.getOperand(1).getReg();
    if (!VReg)
      break;

    // Get the instruction that defined the source operand reg, and check if
    // it's a floating point operation. Or, if it's a type like s16 which
    // doesn't have a exact size gpr register class.
    MachineInstr *DefMI = MRI.getVRegDef(VReg);
    unsigned DefOpc = DefMI->getOpcode();
    const LLT SrcTy = MRI.getType(VReg);
    if (isPreISelGenericFloatingPointOpcode(DefOpc) ||
        SrcTy.getSizeInBits() < 32) {
      // Have a floating point op.
      // Make sure every operand gets mapped to a FPR register class.
      unsigned NumOperands = MI.getNumOperands();
      for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }

  // Finally construct the computed mapping.
  SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
      auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
      if (!Mapping->isValid())
        return getInvalidInstructionMapping();

      OpdsMapping[Idx] = Mapping;
    }
  }

  return getInstructionMapping(DefaultMappingID, Cost,
                               getOperandsMapping(OpdsMapping), NumOperands);
}