Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb instruction set.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Thumb specific DAG Nodes.
//

def ARMtsecall : SDNode<"ARMISD::tSECALL", SDT_ARMcall,
                        [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                         SDNPVariadic]>;

def imm_sr_XFORM: SDNodeXForm<imm, [{
  unsigned Imm = N->getZExtValue();
  return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32);
}]>;
def ThumbSRImmAsmOperand: ImmAsmOperand<1,32> { let Name = "ImmThumbSR"; }
def imm_sr : Operand<i32>, PatLeaf<(imm), [{
  uint64_t Imm = N->getZExtValue();
  return Imm > 0 && Imm <= 32;
}], imm_sr_XFORM> {
  let PrintMethod = "printThumbSRImm";
  let ParserMatchClass = ThumbSRImmAsmOperand;
}

def imm0_7_neg : PatLeaf<(i32 imm), [{
  return (uint32_t)-N->getZExtValue() < 8;
}], imm_neg_XFORM>;

def ThumbModImmNeg1_7AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg1_7"; }
def mod_imm1_7_neg : Operand<i32>, PatLeaf<(imm), [{
    unsigned Value = -(unsigned)N->getZExtValue();
    return 0 < Value && Value < 8;
  }], imm_neg_XFORM> {
  let ParserMatchClass = ThumbModImmNeg1_7AsmOperand;
}

def ThumbModImmNeg8_255AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg8_255"; }
def mod_imm8_255_neg : Operand<i32>, PatLeaf<(imm), [{
    unsigned Value = -(unsigned)N->getZExtValue();
    return 7 < Value && Value < 256;
  }], imm_neg_XFORM> {
  let ParserMatchClass = ThumbModImmNeg8_255AsmOperand;
}


def imm0_255_comp : PatLeaf<(i32 imm), [{
  return ~((uint32_t)N->getZExtValue()) < 256;
}]>;

def imm8_255_neg : PatLeaf<(i32 imm), [{
  unsigned Val = -N->getZExtValue();
  return Val >= 8 && Val < 256;
}], imm_neg_XFORM>;

// Break imm's up into two pieces: an immediate + a left shift. This uses
// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
// to get the val/shift pieces.
def thumb_immshifted : PatLeaf<(imm), [{
  return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
}]>;

def thumb_immshifted_val : SDNodeXForm<imm, [{
  unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
  return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);
}]>;

def thumb_immshifted_shamt : SDNodeXForm<imm, [{
  unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
  return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);
}]>;

def imm256_510 : ImmLeaf<i32, [{
  return Imm >= 256 && Imm < 511;
}]>;

def thumb_imm256_510_addend : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() - 255, SDLoc(N), MVT::i32);
}]>;

// Scaled 4 immediate.
def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
def t_imm0_1020s4 : Operand<i32> {
  let PrintMethod = "printThumbS4ImmOperand";
  let ParserMatchClass = t_imm0_1020s4_asmoperand;
  let OperandType = "OPERAND_IMMEDIATE";
}

def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
def t_imm0_508s4 : Operand<i32> {
  let PrintMethod = "printThumbS4ImmOperand";
  let ParserMatchClass = t_imm0_508s4_asmoperand;
  let OperandType = "OPERAND_IMMEDIATE";
}
// Alias use only, so no printer is necessary.
def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
def t_imm0_508s4_neg : Operand<i32> {
  let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
  let OperandType = "OPERAND_IMMEDIATE";
}

// Define Thumb specific addressing modes.

// unsigned 8-bit, 2-scaled memory offset
class OperandUnsignedOffset_b8s2 : AsmOperandClass {
  let Name = "UnsignedOffset_b8s2";
  let PredicateMethod = "isUnsignedOffset<8, 2>";
}

def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;

// thumb style PC relative operand. signed, 8 bits magnitude,
// two bits shift. can be represented as either [pc, #imm], #imm,
// or relocatable expression...
def ThumbMemPC : AsmOperandClass {
  let Name = "ThumbMemPC";
}

let OperandType = "OPERAND_PCREL" in {
def t_brtarget : Operand<OtherVT> {
  let EncoderMethod = "getThumbBRTargetOpValue";
  let DecoderMethod = "DecodeThumbBROperand";
}

// ADR instruction labels.
def t_adrlabel : Operand<i32> {
  let EncoderMethod = "getThumbAdrLabelOpValue";
  let PrintMethod = "printAdrLabelOperand<2>";
  let ParserMatchClass = UnsignedOffset_b8s2;
}


def thumb_br_target : Operand<OtherVT> {
  let ParserMatchClass = ThumbBranchTarget;
  let EncoderMethod = "getThumbBranchTargetOpValue";
  let OperandType = "OPERAND_PCREL";
}

def thumb_bl_target : Operand<i32> {
  let ParserMatchClass = ThumbBranchTarget;
  let EncoderMethod = "getThumbBLTargetOpValue";
  let DecoderMethod = "DecodeThumbBLTargetOperand";
}

// Target for BLX *from* thumb mode.
def thumb_blx_target : Operand<i32> {
  let ParserMatchClass = ARMBranchTarget;
  let EncoderMethod = "getThumbBLXTargetOpValue";
  let DecoderMethod = "DecodeThumbBLXOffset";
}

def thumb_bcc_target : Operand<OtherVT> {
  let ParserMatchClass = ThumbBranchTarget;
  let EncoderMethod = "getThumbBCCTargetOpValue";
  let DecoderMethod = "DecodeThumbBCCTargetOperand";
}

def thumb_cb_target : Operand<OtherVT> {
  let ParserMatchClass = ThumbBranchTarget;
  let EncoderMethod = "getThumbCBTargetOpValue";
  let DecoderMethod = "DecodeThumbCmpBROperand";
}

// t_addrmode_pc := <label> => pc + imm8 * 4
//
def t_addrmode_pc : MemOperand {
  let EncoderMethod = "getAddrModePCOpValue";
  let DecoderMethod = "DecodeThumbAddrModePC";
  let PrintMethod = "printThumbLdrLabelOperand";
  let ParserMatchClass = ThumbMemPC;
}
}

// t_addrmode_rr := reg + reg
//
def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
def t_addrmode_rr : MemOperand,
                    ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
  let PrintMethod = "printThumbAddrModeRROperand";
  let DecoderMethod = "DecodeThumbAddrModeRR";
  let ParserMatchClass = t_addrmode_rr_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}

// t_addrmode_rr_sext := reg + reg
//
// This is similar to t_addrmode_rr, but uses different heuristics for
// ldrsb/ldrsh.
def t_addrmode_rr_sext : MemOperand,
                    ComplexPattern<i32, 2, "SelectThumbAddrModeRRSext", []> {
  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
  let PrintMethod = "printThumbAddrModeRROperand";
  let DecoderMethod = "DecodeThumbAddrModeRR";
  let ParserMatchClass = t_addrmode_rr_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}

// t_addrmode_rrs := reg + reg
//
// We use separate scaled versions because the Select* functions need
// to explicitly check for a matching constant and return false here so that
// the reg+imm forms will match instead. This is a horrible way to do that,
// as it forces tight coupling between the methods, but it's how selectiondag
// currently works.
def t_addrmode_rrs1 : MemOperand,
                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
  let PrintMethod = "printThumbAddrModeRROperand";
  let DecoderMethod = "DecodeThumbAddrModeRR";
  let ParserMatchClass = t_addrmode_rr_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
def t_addrmode_rrs2 : MemOperand,
                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
  let DecoderMethod = "DecodeThumbAddrModeRR";
  let PrintMethod = "printThumbAddrModeRROperand";
  let ParserMatchClass = t_addrmode_rr_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
def t_addrmode_rrs4 : MemOperand,
                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
  let DecoderMethod = "DecodeThumbAddrModeRR";
  let PrintMethod = "printThumbAddrModeRROperand";
  let ParserMatchClass = t_addrmode_rr_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}

// t_addrmode_is4 := reg + imm5 * 4
//
def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
def t_addrmode_is4 : MemOperand,
                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
  let EncoderMethod = "getAddrModeISOpValue";
  let DecoderMethod = "DecodeThumbAddrModeIS";
  let PrintMethod = "printThumbAddrModeImm5S4Operand";
  let ParserMatchClass = t_addrmode_is4_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}

// t_addrmode_is2 := reg + imm5 * 2
//
def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
def t_addrmode_is2 : MemOperand,
                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
  let EncoderMethod = "getAddrModeISOpValue";
  let DecoderMethod = "DecodeThumbAddrModeIS";
  let PrintMethod = "printThumbAddrModeImm5S2Operand";
  let ParserMatchClass = t_addrmode_is2_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}

// t_addrmode_is1 := reg + imm5
//
def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
def t_addrmode_is1 : MemOperand,
                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
  let EncoderMethod = "getAddrModeISOpValue";
  let DecoderMethod = "DecodeThumbAddrModeIS";
  let PrintMethod = "printThumbAddrModeImm5S1Operand";
  let ParserMatchClass = t_addrmode_is1_asm_operand;
  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}

// t_addrmode_sp := sp + imm8 * 4
//
// FIXME: This really shouldn't have an explicit SP operand at all. It should
// be implicit, just like in the instruction encoding itself.
def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
def t_addrmode_sp : MemOperand,
                    ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
  let EncoderMethod = "getAddrModeThumbSPOpValue";
  let DecoderMethod = "DecodeThumbAddrModeSP";
  let PrintMethod = "printThumbAddrModeSPOperand";
  let ParserMatchClass = t_addrmode_sp_asm_operand;
  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}

// Inspects parent to determine whether an or instruction can be implemented as
// an add (i.e. whether we know overflow won't occur in the add).
def AddLikeOrOp : ComplexPattern<i32, 1, "SelectAddLikeOr", [],
                                 [SDNPWantParent]>;

// Pattern to exclude immediates from matching
def non_imm32 : PatLeaf<(i32 GPR), [{ return !isa<ConstantSDNode>(N); }]>;

//===----------------------------------------------------------------------===//
//  Miscellaneous Instructions.
//

// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def tADJCALLSTACKUP :
  PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
             [(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
            Requires<[IsThumb, IsThumb1Only]>;

def tADJCALLSTACKDOWN :
  PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2), NoItinerary,
             [(ARMcallseq_start imm:$amt, imm:$amt2)]>,
            Requires<[IsThumb, IsThumb1Only]>;
}

class T1SystemEncoding<bits<8> opc>
  : T1Encoding<0b101111> {
  let Inst{9-8} = 0b11;
  let Inst{7-0} = opc;
}

def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm",
                 [(int_arm_hint imm0_15:$imm)]>,
            T1SystemEncoding<0x00>,
            Requires<[IsThumb, HasV6M]> {
  bits<4> imm;
  let Inst{7-4} = imm;
}

// Note: When EmitPriority == 1, the alias will be used for printing
class tHintAlias<string Asm, dag Result, bit EmitPriority = 0> : tInstAlias<Asm, Result, EmitPriority> {
  let Predicates = [IsThumb, HasV6M];
}

def : tHintAlias<"nop$p", (tHINT 0, pred:$p), 1>; // A8.6.110
def : tHintAlias<"yield$p", (tHINT 1, pred:$p), 1>; // A8.6.410
def : tHintAlias<"wfe$p", (tHINT 2, pred:$p), 1>; // A8.6.408
def : tHintAlias<"wfi$p", (tHINT 3, pred:$p), 1>; // A8.6.409
def : tHintAlias<"sev$p", (tHINT 4, pred:$p), 1>; // A8.6.157
def : tInstAlias<"sevl$p", (tHINT 5, pred:$p), 1> {
  let Predicates = [IsThumb2, HasV8];
}

// The imm operand $val can be used by a debugger to store more information
// about the breakpoint.
def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
                []>,
           T1Encoding<0b101111> {
  let Inst{9-8} = 0b10;
  // A8.6.22
  bits<8> val;
  let Inst{7-0} = val;
}
// default immediate for breakpoint mnemonic
def : InstAlias<"bkpt", (tBKPT 0), 0>, Requires<[IsThumb]>;

def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
                []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> {
  let Inst{9-6} = 0b1010;
  bits<6> val;
  let Inst{5-0} = val;
}

def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
                  []>, T1Encoding<0b101101>, Requires<[IsThumb, IsNotMClass]>, Deprecated<HasV8Ops> {
  bits<1> end;
  // A8.6.156
  let Inst{9-5} = 0b10010;
  let Inst{4}   = 1;
  let Inst{3}   = end;
  let Inst{2-0} = 0b000;
}

// Change Processor State is a system instruction -- for disassembly only.
def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
                NoItinerary, "cps$imod $iflags", []>,
           T1Misc<0b0110011> {
  // A8.6.38 & B6.1.1
  bit imod;
  bits<3> iflags;

  let Inst{4}   = imod;
  let Inst{3}   = 0;
  let Inst{2-0} = iflags;
  let DecoderMethod = "DecodeThumbCPS";
}

// For both thumb1 and thumb2.
let isNotDuplicable = 1, isCodeGenOnly = 1 in
def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
                  [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
  // A8.6.6
  bits<3> dst;
  let Inst{6-3} = 0b1111; // Rm = pc
  let Inst{2-0} = dst;
}

// ADD <Rd>, sp, #<imm8>
// FIXME: This should not be marked as having side effects, and it should be
// rematerializable. Clearing the side effect bit causes miscompilations,
// probably because the instruction can be moved around.
def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
                    IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
               T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
  // A6.2 & A8.6.8
  bits<3> dst;
  bits<8> imm;
  let Inst{10-8} = dst;
  let Inst{7-0}  = imm;
  let DecoderMethod = "DecodeThumbAddSpecialReg";
}

// Thumb1 frame lowering is rather fragile, we hope to be able to use
// tADDrSPi, but we may need to insert a sequence that clobbers CPSR.
def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset),
                           NoItinerary, []>,
                Requires<[IsThumb, IsThumb1Only]> {
  let Defs = [CPSR];
}

// ADD sp, sp, #<imm7>
def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
                     IIC_iALUi, "add", "\t$Rdn, $imm", []>,
              T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
  // A6.2.5 & A8.6.8
  bits<7> imm;
  let Inst{6-0} = imm;
  let DecoderMethod = "DecodeThumbAddSPImm";
}

// SUB sp, sp, #<imm7>
// FIXME: The encoding and the ASM string don't match up.
def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
                    IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
              T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
  // A6.2.5 & A8.6.214
  bits<7> imm;
  let Inst{6-0} = imm;
  let DecoderMethod = "DecodeThumbAddSPImm";
}

def : tInstSubst<"add${p} sp, $imm",
                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
def : tInstSubst<"add${p} sp, sp, $imm",
                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;

// Can optionally specify SP as a three operand instruction.
def : tInstAlias<"add${p} sp, sp, $imm",
                 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
def : tInstAlias<"sub${p} sp, sp, $imm",
                 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;

// ADD <Rm>, sp
def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
                   "add", "\t$Rdn, $sp, $Rn", []>,
              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
  // A8.6.9 Encoding T1
  bits<4> Rdn;
  let Inst{7}   = Rdn{3};
  let Inst{6-3} = 0b1101;
  let Inst{2-0} = Rdn{2-0};
  let DecoderMethod = "DecodeThumbAddSPReg";
}

// ADD sp, <Rm>
def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
                  "add", "\t$Rdn, $Rm", []>,
              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
  // A8.6.9 Encoding T2
  bits<4> Rm;
  let Inst{7} = 1;
  let Inst{6-3} = Rm;
  let Inst{2-0} = 0b101;
  let DecoderMethod = "DecodeThumbAddSPReg";
}

//===----------------------------------------------------------------------===//
//  Control Flow Instructions.
//

// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
            T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
    // A6.2.3 & A8.6.25
    bits<4> Rm;
    let Inst{6-3} = Rm;
    let Inst{2-0} = 0b000;
    let Unpredictable{2-0} = 0b111;
  }
  def tBXNS : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bxns${p}\t$Rm", []>,
              Requires<[IsThumb, Has8MSecExt]>,
              T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
    bits<4> Rm;
    let Inst{6-3} = Rm;
    let Inst{2-0} = 0b100;
    let Unpredictable{1-0} = 0b11;
  }
}

let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
  def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
                   [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;

  // alternative return for CMSE entry functions
  def tBXNS_RET : tPseudoInst<(outs), (ins), 2, IIC_Br,
                  [(ARMseretflag)]>, Sched<[WriteBr]>;

  // Alternative return instruction used by vararg functions.
  def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
                   2, IIC_Br, [],
                   (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
}

// All calls clobber the non-callee saved registers. SP is marked as a use to
// prevent stack-pointer assignments that appear immediately before calls from
// potentially appearing dead.
let isCall = 1,
  Defs = [LR], Uses = [SP] in {
  // Also used for Thumb2
  def tBL  : TIx2<0b11110, 0b11, 1,
                  (outs), (ins pred:$p, thumb_bl_target:$func), IIC_Br,
                  "bl${p}\t$func",
                  [(ARMcall tglobaladdr:$func)]>,
             Requires<[IsThumb]>, Sched<[WriteBrL]> {
    bits<24> func;
    let Inst{26} = func{23};
    let Inst{25-16} = func{20-11};
    let Inst{13} = func{22};
    let Inst{11} = func{21};
    let Inst{10-0} = func{10-0};
  }

  // ARMv5T and above, also used for Thumb2
  def tBLXi : TIx2<0b11110, 0b11, 0,
                 (outs), (ins pred:$p, thumb_blx_target:$func), IIC_Br,
                   "blx${p}\t$func", []>,
              Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> {
    bits<24> func;
    let Inst{26} = func{23};
    let Inst{25-16} = func{20-11};
    let Inst{13} = func{22};
    let Inst{11} = func{21};
    let Inst{10-1} = func{10-1};
    let Inst{0} = 0; // func{0} is assumed zero
  }

  // Also used for Thumb2
  def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
                  "blx${p}\t$func",
                  [(ARMcall GPR:$func)]>,
              Requires<[IsThumb, HasV5T]>,
              T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
    bits<4> func;
    let Inst{6-3} = func;
    let Inst{2-0} = 0b000;
  }

  // ARMv8-M Security Extensions
  def tBLXNSr : TI<(outs), (ins pred:$p, GPRnopc:$func), IIC_Br,
                   "blxns${p}\t$func", []>,
                Requires<[IsThumb, Has8MSecExt]>,
                T1Special<{1,1,1,?}>, Sched<[WriteBrL]> {
    bits<4> func;
    let Inst{6-3} = func;
    let Inst{2-0} = 0b100;
    let Unpredictable{1-0} = 0b11;
  }

  def tBLXNS_CALL : PseudoInst<(outs), (ins GPRnopc:$func), IIC_Br,
                    [(ARMtsecall GPRnopc:$func)]>,
                    Requires<[IsThumb, Has8MSecExt]>, Sched<[WriteBr]>;

  // ARMv4T
  def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
                  4, IIC_Br,
                  [(ARMcall_nolink tGPR:$func)]>,
            Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;

  // Also used for Thumb2
  // push lr before the call
  def tBL_PUSHLR : tPseudoInst<(outs), (ins GPRlr:$ra, pred:$p, thumb_bl_target:$func),
                  4, IIC_Br,
                  []>,
             Requires<[IsThumb]>, Sched<[WriteBr]>;
}

let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
  let isPredicable = 1 in
  def tB   : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
                 "b", "\t$target", [(br bb:$target)]>,
             T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
    bits<11> target;
    let Inst{10-0} = target;
    let AsmMatchConverter = "cvtThumbBranches";
 }

  // Far jump
  // Just a pseudo for a tBL instruction. Needed to let regalloc know about
  // the clobber of LR.
  let Defs = [LR] in
  def tBfar : tPseudoExpand<(outs), (ins thumb_bl_target:$target, pred:$p),
                          4, IIC_Br, [],
                          (tBL pred:$p, thumb_bl_target:$target)>,
                          Sched<[WriteBrTbl]>;

  def tBR_JTr : tPseudoInst<(outs),
                      (ins tGPR:$target, i32imm:$jt),
                      0, IIC_Br,
                      [(ARMbrjt tGPR:$target, tjumptable:$jt)]>,
                      Sched<[WriteBrTbl]> {
    let Size = 2;
    let isNotDuplicable = 1;
    list<Predicate> Predicates = [IsThumb, IsThumb1Only];
  }
}

// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
  def tBcc : T1I<(outs), (ins thumb_bcc_target:$target, pred:$p), IIC_Br,
                 "b${p}\t$target",
                 [/*(ARMbrcond bb:$target, imm:$cc)*/]>,
             T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
  bits<4> p;
  bits<8> target;
  let Inst{11-8} = p;
  let Inst{7-0} = target;
  let AsmMatchConverter = "cvtThumbBranches";
}


// Tail calls
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
  // IOS versions.
  let Uses = [SP] in {
    def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
                     4, IIC_Br, [],
                     (tBX GPR:$dst, (ops 14, zero_reg))>,
                     Requires<[IsThumb]>, Sched<[WriteBr]>;
  }
  // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls
  // on MachO), so it's in ARMInstrThumb2.td.
  // Non-MachO version:
  let Uses = [SP] in {
    def tTAILJMPdND : tPseudoExpand<(outs),
                   (ins t_brtarget:$dst, pred:$p),
                   4, IIC_Br, [],
                   (tB t_brtarget:$dst, pred:$p)>,
                 Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>;
  }
}


// A8.6.218 Supervisor Call (Software Interrupt)
// A8.6.16 B: Encoding T1
// If Inst{11-8} == 0b1111 then SEE SVC
let isCall = 1, Uses = [SP] in
def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
                "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
  bits<8> imm;
  let Inst{15-12} = 0b1101;
  let Inst{11-8}  = 0b1111;
  let Inst{7-0}   = imm;
}

// The assembler uses 0xDEFE for a trap instruction.
let isBarrier = 1, isTerminator = 1 in
def tTRAP : TI<(outs), (ins), IIC_Br,
               "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
  let Inst = 0xdefe;
}

//===----------------------------------------------------------------------===//
//  Load Store Instructions.
//

// PC-relative loads need to be matched first as constant pool accesses need to
// always be PC-relative. We do this using AddedComplexity, as the pattern is
// simpler than the patterns of the other load instructions.
let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in
def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
                  "ldr", "\t$Rt, $addr",
                  [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
              T1Encoding<{0,1,0,0,1,?}>, Sched<[WriteLd]> {
  // A6.2 & A8.6.59
  bits<3> Rt;
  bits<8> addr;
  let Inst{10-8} = Rt;
  let Inst{7-0}  = addr;
}

// SP-relative loads should be matched before standard immediate-offset loads as
// it means we avoid having to move SP to another register.
let canFoldAsLoad = 1 in
def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
                    "ldr", "\t$Rt, $addr",
                    [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
              T1LdStSP<{1,?,?}>, Sched<[WriteLd]> {
  bits<3> Rt;
  bits<8> addr;
  let Inst{10-8} = Rt;
  let Inst{7-0} = addr;
}

// Loads: reg/reg and reg/imm5
let canFoldAsLoad = 1, isReMaterializable = 1 in
multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
                              Operand AddrMode_r, Operand AddrMode_i,
                              AddrMode am, InstrItinClass itin_r,
                              InstrItinClass itin_i, string asm,
                              PatFrag opnode> {
  // Immediate-offset loads should be matched before register-offset loads as
  // when the offset is a constant it's simpler to first check if it fits in the
  // immediate offset field then fall back to register-offset if it doesn't.
  def i : // reg/imm5
    T1pILdStEncodeImm<imm_opc, 1 /* Load */,
                      (outs tGPR:$Rt), (ins AddrMode_i:$addr),
                      am, itin_i, asm, "\t$Rt, $addr",
                      [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
  // Register-offset loads are matched last.
  def r : // reg/reg
    T1pILdStEncode<reg_opc,
                   (outs tGPR:$Rt), (ins AddrMode_r:$addr),
                   am, itin_r, asm, "\t$Rt, $addr",
                   [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
}
// Stores: reg/reg and reg/imm5
multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
                              Operand AddrMode_r, Operand AddrMode_i,
                              AddrMode am, InstrItinClass itin_r,
                              InstrItinClass itin_i, string asm,
                              PatFrag opnode> {
  def i : // reg/imm5
    T1pILdStEncodeImm<imm_opc, 0 /* Store */,
                      (outs), (ins tGPR:$Rt, AddrMode_i:$addr),
                      am, itin_i, asm, "\t$Rt, $addr",
                      [(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
  def r : // reg/reg
    T1pILdStEncode<reg_opc,
                   (outs), (ins tGPR:$Rt, AddrMode_r:$addr),
                   am, itin_r, asm, "\t$Rt, $addr",
                   [(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
}

// A8.6.57 & A8.6.60
defm tLDR  : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr,
                                t_addrmode_is4, AddrModeT1_4,
                                IIC_iLoad_r, IIC_iLoad_i, "ldr",
                                load>, Sched<[WriteLd]>;

// A8.6.64 & A8.6.61
defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr,
                                t_addrmode_is1, AddrModeT1_1,
                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
                                zextloadi8>, Sched<[WriteLd]>;

// A8.6.76 & A8.6.73
defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr,
                                t_addrmode_is2, AddrModeT1_2,
                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
                                zextloadi16>, Sched<[WriteLd]>;

let AddedComplexity = 10 in
def tLDRSB :                    // A8.6.80
  T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr),
                 AddrModeT1_1, IIC_iLoad_bh_r,
                 "ldrsb", "\t$Rt, $addr",
                 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>;

let AddedComplexity = 10 in
def tLDRSH :                    // A8.6.84
  T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr),
                 AddrModeT1_2, IIC_iLoad_bh_r,
                 "ldrsh", "\t$Rt, $addr",
                 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>;


def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
                    "str", "\t$Rt, $addr",
                    [(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
              T1LdStSP<{0,?,?}>, Sched<[WriteST]> {
  bits<3> Rt;
  bits<8> addr;
  let Inst{10-8} = Rt;
  let Inst{7-0} = addr;
}

// A8.6.194 & A8.6.192
defm tSTR  : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr,
                                t_addrmode_is4, AddrModeT1_4,
                                IIC_iStore_r, IIC_iStore_i, "str",
                                store>, Sched<[WriteST]>;

// A8.6.197 & A8.6.195
defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr,
                                t_addrmode_is1, AddrModeT1_1,
                                IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
                                truncstorei8>, Sched<[WriteST]>;

// A8.6.207 & A8.6.205
defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr,
                               t_addrmode_is2, AddrModeT1_2,
                               IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
                               truncstorei16>, Sched<[WriteST]>;


//===----------------------------------------------------------------------===//
//  Load / store multiple Instructions.
//

// These require base address to be written back or one of the loaded regs.
let hasSideEffects = 0 in {

let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
        IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
  bits<3> Rn;
  bits<8> regs;
  let Inst{10-8} = Rn;
  let Inst{7-0}  = regs;
}

// Writeback version is just a pseudo, as there's no encoding difference.
// Writeback happens iff the base register is not in the destination register
// list.
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
def tLDMIA_UPD :
    InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
                 "$Rn = $wb", IIC_iLoad_mu>,
    PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
  let Size = 2;
  let OutOperandList = (outs tGPR:$wb);
  let InOperandList = (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops);
  let Pattern = [];
  let isCodeGenOnly = 1;
  let isPseudo = 1;
  list<Predicate> Predicates = [IsThumb];
}

// There is no non-writeback version of STM for Thumb.
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
def tSTMIA_UPD : Thumb1I<(outs tGPR:$wb),
                         (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
                         AddrModeNone, 2, IIC_iStore_mu,
                         "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
                     T1Encoding<{1,1,0,0,0,?}> {
  bits<3> Rn;
  bits<8> regs;
  let Inst{10-8} = Rn;
  let Inst{7-0}  = regs;
}

} // hasSideEffects

def : InstAlias<"ldm${p} $Rn!, $regs",
                (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs), 0>,
        Requires<[IsThumb, IsThumb1Only]>;

let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1,
    variadicOpsAreDefs = 1 in
def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
               IIC_iPop,
               "pop${p}\t$regs", []>,
           T1Misc<{1,1,0,?,?,?,?}>, Sched<[WriteLd]> {
  bits<16> regs;
  let Inst{8}   = regs{15};
  let Inst{7-0} = regs{7-0};
}

let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
                IIC_iStore_m,
                "push${p}\t$regs", []>,
            T1Misc<{0,1,0,?,?,?,?}>, Sched<[WriteST]> {
  bits<16> regs;
  let Inst{8}   = regs{14};
  let Inst{7-0} = regs{7-0};
}

//===----------------------------------------------------------------------===//
//  Arithmetic Instructions.
//

// Helper classes for encoding T1pI patterns:
class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
                   string opc, string asm, list<dag> pattern>
    : T1pI<oops, iops, itin, opc, asm, pattern>,
      T1DataProcessing<opA> {
  bits<3> Rm;
  bits<3> Rn;
  let Inst{5-3} = Rm;
  let Inst{2-0} = Rn;
}
class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
                     string opc, string asm, list<dag> pattern>
    : T1pI<oops, iops, itin, opc, asm, pattern>,
      T1Misc<opA> {
  bits<3> Rm;
  bits<3> Rd;
  let Inst{5-3} = Rm;
  let Inst{2-0} = Rd;
}

// Helper classes for encoding T1sI patterns:
class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
                   string opc, string asm, list<dag> pattern>
    : T1sI<oops, iops, itin, opc, asm, pattern>,
      T1DataProcessing<opA> {
  bits<3> Rd;
  bits<3> Rn;
  let Inst{5-3} = Rn;
  let Inst{2-0} = Rd;
}
class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
                    string opc, string asm, list<dag> pattern>
    : T1sI<oops, iops, itin, opc, asm, pattern>,
      T1General<opA> {
  bits<3> Rm;
  bits<3> Rn;
  bits<3> Rd;
  let Inst{8-6} = Rm;
  let Inst{5-3} = Rn;
  let Inst{2-0} = Rd;
}
class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
                       string opc, string asm, list<dag> pattern>
    : T1sI<oops, iops, itin, opc, asm, pattern>,
      T1General<opA> {
  bits<3> Rd;
  bits<3> Rm;
  let Inst{5-3} = Rm;
  let Inst{2-0} = Rd;
}

// Helper classes for encoding T1sIt patterns:
class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
                    string opc, string asm, list<dag> pattern>
    : T1sIt<oops, iops, itin, opc, asm, pattern>,
      T1DataProcessing<opA> {
  bits<3> Rdn;
  bits<3> Rm;
  let Inst{5-3} = Rm;
  let Inst{2-0} = Rdn;
}
class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
                        string opc, string asm, list<dag> pattern>
    : T1sIt<oops, iops, itin, opc, asm, pattern>,
      T1General<opA> {
  bits<3> Rdn;
  bits<8> imm8;
  let Inst{10-8} = Rdn;
  let Inst{7-0}  = imm8;
}

let isAdd = 1 in {
  // Add with carry register
  let isCommutable = 1, Uses = [CPSR] in
  def tADC :                      // A8.6.2
    T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
                  "adc", "\t$Rdn, $Rm",
                  []>, Sched<[WriteALU]>;

  // Add immediate
  def tADDi3 :                    // A8.6.4 T1
    T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
                     IIC_iALUi,
                     "add", "\t$Rd, $Rm, $imm3",
                     [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
                     Sched<[WriteALU]> {
    bits<3> imm3;
    let Inst{8-6} = imm3;
  }

  def tADDi8 :                    // A8.6.4 T2
    T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
                      (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
                      "add", "\t$Rdn, $imm8",
                      [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
                      Sched<[WriteALU]>;

  // Add register
  let isCommutable = 1 in
  def tADDrr :                    // A8.6.6 T1
    T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
                  IIC_iALUr,
                  "add", "\t$Rd, $Rn, $Rm",
                  [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

  /// Similar to the above except these set the 's' bit so the
  /// instruction modifies the CPSR register.
  ///
  /// These opcodes will be converted to the real non-S opcodes by
  /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand.
  let hasPostISelHook = 1, Defs = [CPSR] in {
    let isCommutable = 1, Uses = [CPSR] in
    def tADCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                            2, IIC_iALUr,
                            [(set tGPR:$Rdn, CPSR, (ARMadde tGPR:$Rn, tGPR:$Rm,
                                                            CPSR))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;

    def tADDSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
                              2, IIC_iALUi,
                              [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rm,
                                                             imm0_7:$imm3))]>,
                  Requires<[IsThumb1Only]>,
                  Sched<[WriteALU]>;

    def tADDSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8),
                              2, IIC_iALUi,
                              [(set tGPR:$Rdn, CPSR, (ARMaddc tGPR:$Rn,
                                                      imm8_255:$imm8))]>,
                  Requires<[IsThumb1Only]>,
                  Sched<[WriteALU]>;

    let isCommutable = 1 in
    def tADDSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
                              2, IIC_iALUr,
                              [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rn,
                                                             tGPR:$Rm))]>,
                  Requires<[IsThumb1Only]>,
                  Sched<[WriteALU]>;
  }

  let hasSideEffects = 0 in
  def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
                       "add", "\t$Rdn, $Rm", []>,
                 T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
    // A8.6.6 T2
    bits<4> Rdn;
    bits<4> Rm;
    let Inst{7}   = Rdn{3};
    let Inst{6-3} = Rm;
    let Inst{2-0} = Rdn{2-0};
  }
}

// Thumb has more flexible short encodings for ADD than ORR, so use those where
// possible.
def : T1Pat<(or AddLikeOrOp:$Rn, imm0_7:$imm), (tADDi3 $Rn, imm0_7:$imm)>;

def : T1Pat<(or AddLikeOrOp:$Rn, imm8_255:$imm), (tADDi8 $Rn, imm8_255:$imm)>;

def : T1Pat<(or AddLikeOrOp:$Rn, tGPR:$Rm), (tADDrr $Rn, $Rm)>;


def : tInstAlias <"add${s}${p} $Rdn, $Rm",
                 (tADDrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>;

def : tInstSubst<"sub${s}${p} $rd, $rn, $imm",
                 (tADDi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>;
def : tInstSubst<"sub${s}${p} $rdn, $imm",
                 (tADDi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>;


// AND register
let isCommutable = 1 in
def tAND :                      // A8.6.12
  T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iBITr,
                "and", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// ASR immediate
def tASRri :                    // A8.6.14
  T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
                   IIC_iMOVsi,
                   "asr", "\t$Rd, $Rm, $imm5",
                   [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
                   Sched<[WriteALU]> {
  bits<5> imm5;
  let Inst{10-6} = imm5;
}

// ASR register
def tASRrr :                    // A8.6.15
  T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iMOVsr,
                "asr", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// BIC register
def tBIC :                      // A8.6.20
  T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iBITr,
                "bic", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
                Sched<[WriteALU]>;

// CMN register
let isCompare = 1, Defs = [CPSR] in {
//FIXME: Disable CMN, as CCodes are backwards from compare expectations
//       Compare-to-zero still works out, just not the relationals
//def tCMN :                     // A8.6.33
//  T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
//               IIC_iCMPr,
//               "cmn", "\t$lhs, $rhs",
//               [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;

def tCMNz :                     // A8.6.33
  T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
               IIC_iCMPr,
               "cmn", "\t$Rn, $Rm",
               [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;

} // isCompare = 1, Defs = [CPSR]

// CMP immediate
let isCompare = 1, Defs = [CPSR] in {
def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
                  "cmp", "\t$Rn, $imm8",
                  [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
             T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
  // A8.6.35
  bits<3> Rn;
  bits<8> imm8;
  let Inst{10-8} = Rn;
  let Inst{7-0}  = imm8;
}

// CMP register
def tCMPr :                     // A8.6.36 T1
  T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
               IIC_iCMPr,
               "cmp", "\t$Rn, $Rm",
               [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;

def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
                   "cmp", "\t$Rn, $Rm", []>,
              T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
  // A8.6.36 T2
  bits<4> Rm;
  bits<4> Rn;
  let Inst{7}   = Rn{3};
  let Inst{6-3} = Rm;
  let Inst{2-0} = Rn{2-0};
}
} // isCompare = 1, Defs = [CPSR]


// XOR register
let isCommutable = 1 in
def tEOR :                      // A8.6.45
  T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iBITr,
                "eor", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// LSL immediate
def tLSLri :                    // A8.6.88
  T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
                   IIC_iMOVsi,
                   "lsl", "\t$Rd, $Rm, $imm5",
                   [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
                   Sched<[WriteALU]> {
  bits<5> imm5;
  let Inst{10-6} = imm5;
}

// LSL register
def tLSLrr :                    // A8.6.89
  T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iMOVsr,
                "lsl", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// LSR immediate
def tLSRri :                    // A8.6.90
  T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
                   IIC_iMOVsi,
                   "lsr", "\t$Rd, $Rm, $imm5",
                   [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
                   Sched<[WriteALU]> {
  bits<5> imm5;
  let Inst{10-6} = imm5;
}

// LSR register
def tLSRrr :                    // A8.6.91
  T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iMOVsr,
                "lsr", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// Move register
let isMoveImm = 1 in
def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
                  "mov", "\t$Rd, $imm8",
                  [(set tGPR:$Rd, imm0_255:$imm8)]>,
             T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
  // A8.6.96
  bits<3> Rd;
  bits<8> imm8;
  let Inst{10-8} = Rd;
  let Inst{7-0}  = imm8;
}
// Because we have an explicit tMOVSr below, we need an alias to handle
// the immediate "movs" form here. Blech.
def : tInstAlias <"movs $Rdn, $imm",
                 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;

// A7-73: MOV(2) - mov setting flag.

let hasSideEffects = 0, isMoveReg = 1 in {
def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
                      2, IIC_iMOVr,
                      "mov", "\t$Rd, $Rm", "", []>,
                  T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
  // A8.6.97
  bits<4> Rd;
  bits<4> Rm;
  let Inst{7}   = Rd{3};
  let Inst{6-3} = Rm;
  let Inst{2-0} = Rd{2-0};
}
let Defs = [CPSR] in
def tMOVSr      : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
                      "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
  // A8.6.97
  bits<3> Rd;
  bits<3> Rm;
  let Inst{15-6} = 0b0000000000;
  let Inst{5-3}  = Rm;
  let Inst{2-0}  = Rd;
}
} // hasSideEffects

// Multiply register
let isCommutable = 1 in
def tMUL :                      // A8.6.105 T1
  Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
           IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
           [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
      T1DataProcessing<0b1101>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
  bits<3> Rd;
  bits<3> Rn;
  let Inst{5-3} = Rn;
  let Inst{2-0} = Rd;
  let AsmMatchConverter = "cvtThumbMultiply";
}

def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
                                               pred:$p)>;

// Move inverse register
def tMVN :                      // A8.6.107
  T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
               "mvn", "\t$Rd, $Rn",
               [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;

// Bitwise or register
let isCommutable = 1 in
def tORR :                      // A8.6.114
  T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iBITr,
                "orr", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;

// Swaps
def tREV :                      // A8.6.134
  T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "rev", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;

def tREV16 :                    // A8.6.135
  T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "rev16", "\t$Rd, $Rm",
             [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
                Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;

def tREVSH :                    // A8.6.136
  T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "revsh", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;

// Rotate right register
def tROR :                      // A8.6.139
  T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iMOVsr,
                "ror", "\t$Rdn, $Rm",
                [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
                Sched<[WriteALU]>;

// Negate register
def tRSB :                      // A8.6.141
  T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
               IIC_iALUi,
               "rsb", "\t$Rd, $Rn, #0",
               [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;

// Subtract with carry register
let Uses = [CPSR] in
def tSBC :                      // A8.6.151
  T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iALUr,
                "sbc", "\t$Rdn, $Rm",
                []>,
                Sched<[WriteALU]>;

// Subtract immediate
def tSUBi3 :                    // A8.6.210 T1
  T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
                   IIC_iALUi,
                   "sub", "\t$Rd, $Rm, $imm3",
                   [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
                   Sched<[WriteALU]> {
  bits<3> imm3;
  let Inst{8-6} = imm3;
}

def tSUBi8 :                    // A8.6.210 T2
  T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
                    (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
                    "sub", "\t$Rdn, $imm8",
                    [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
                    Sched<[WriteALU]>;

def : tInstSubst<"add${s}${p} $rd, $rn, $imm",
                 (tSUBi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>;


def : tInstSubst<"add${s}${p} $rdn, $imm",
                 (tSUBi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>;


// Subtract register
def tSUBrr :                    // A8.6.212
  T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
                IIC_iALUr,
                "sub", "\t$Rd, $Rn, $Rm",
                [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
                Sched<[WriteALU]>;

def : tInstAlias <"sub${s}${p} $Rdn, $Rm",
                 (tSUBrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>;

/// Similar to the above except these set the 's' bit so the
/// instruction modifies the CPSR register.
///
/// These opcodes will be converted to the real non-S opcodes by
/// AdjustInstrPostInstrSelection after giving then an optional CPSR operand.
let hasPostISelHook = 1, Defs = [CPSR] in {
  let Uses = [CPSR] in
  def tSBCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
                          2, IIC_iALUr,
                          [(set tGPR:$Rdn, CPSR, (ARMsube tGPR:$Rn, tGPR:$Rm,
                                                          CPSR))]>,
              Requires<[IsThumb1Only]>,
              Sched<[WriteALU]>;

  def tSUBSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
                            2, IIC_iALUi,
                            [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rm,
                                                           imm0_7:$imm3))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;

  def tSUBSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8),
                            2, IIC_iALUi,
                            [(set tGPR:$Rdn, CPSR, (ARMsubc tGPR:$Rn,
                                                            imm8_255:$imm8))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;

  def tSUBSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
                            2, IIC_iALUr,
                            [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rn,
                                                           tGPR:$Rm))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;

  def tRSBS   : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn),
                            2, IIC_iALUr,
                            [(set tGPR:$Rd, CPSR, (ARMsubc 0, tGPR:$Rn))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;

  def tLSLSri : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, imm0_31:$imm5),
                            2, IIC_iALUr,
                            [(set tGPR:$Rd, CPSR, (ARMlsls tGPR:$Rn, imm0_31:$imm5))]>,
                Requires<[IsThumb1Only]>,
                Sched<[WriteALU]>;
}


def : T1Pat<(ARMsubs tGPR:$Rn, tGPR:$Rm), (tSUBSrr $Rn, $Rm)>;
def : T1Pat<(ARMsubs tGPR:$Rn, imm0_7:$imm3), (tSUBSi3 $Rn, imm0_7:$imm3)>;
def : T1Pat<(ARMsubs tGPR:$Rn, imm0_255:$imm8), (tSUBSi8 $Rn, imm0_255:$imm8)>;


// Sign-extend byte
def tSXTB :                     // A8.6.222
  T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "sxtb", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
                 Sched<[WriteALU]>;

// Sign-extend short
def tSXTH :                     // A8.6.224
  T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "sxth", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
                 Sched<[WriteALU]>;

// Test
let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
def tTST :                      // A8.6.230
  T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
               "tst", "\t$Rn, $Rm",
               [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
               Sched<[WriteALU]>;

// A8.8.247  UDF - Undefined (Encoding T1)
def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8",
              [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 {
  bits<8> imm8;
  let Inst{15-12} = 0b1101;
  let Inst{11-8} = 0b1110;
  let Inst{7-0} = imm8;
}

def : Pat<(debugtrap), (tBKPT 0)>, Requires<[IsThumb, HasV5T]>;
def : Pat<(debugtrap), (tUDF 254)>, Requires<[IsThumb, NoV5T]>;

def t__brkdiv0 : TI<(outs), (ins), IIC_Br, "__brkdiv0",
                    [(int_arm_undefined 249)]>, Encoding16,
    Requires<[IsThumb, IsWindows]> {
  let Inst = 0xdef9;
  let isTerminator = 1;
}

// Zero-extend byte
def tUXTB :                     // A8.6.262
  T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "uxtb", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
                 Sched<[WriteALU]>;

// Zero-extend short
def tUXTH :                     // A8.6.264
  T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
                 IIC_iUNAr,
                 "uxth", "\t$Rd, $Rm",
                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;

// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
// Expanded after instruction selection into a branch sequence.
let usesCustomInserter = 1 in  // Expanded after instruction selection.
  def tMOVCCr_pseudo :
  PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p),
             NoItinerary,
             [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>;

// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.

def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
               IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
               T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
  bits<3> Rd;
  bits<8> addr;
  let Inst{10-8} = Rd;
  let Inst{7-0} = addr;
  let DecoderMethod = "DecodeThumbAddSpecialReg";
}

let hasSideEffects = 0, isReMaterializable = 1 in
def tLEApcrel   : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
                              2, IIC_iALUi, []>, Sched<[WriteALU]>;

let hasSideEffects = 1 in
def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
                              (ins i32imm:$label, pred:$p),
                              2, IIC_iALUi, []>, Sched<[WriteALU]>;

// Thumb-1 doesn't have the TBB or TBH instructions, but we can synthesize them
// and make use of the same compressed jump table format as Thumb-2.
let Size = 2, isBranch = 1, isTerminator = 1, isBarrier = 1,
    isIndirectBranch = 1, isNotDuplicable = 1 in {
def tTBB_JT : tPseudoInst<(outs),
        (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0,
         IIC_Br, []>, Sched<[WriteBr]>;

def tTBH_JT : tPseudoInst<(outs),
        (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0,
         IIC_Br, []>,  Sched<[WriteBr]>;
}

//===----------------------------------------------------------------------===//
// TLS Instructions
//

// __aeabi_read_tp preserves the registers r1-r3.
// This is a pseudo inst so that we can get the encoding right,
// complete with fixup for the aeabi_read_tp function.
let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
                          [(set R0, ARMthread_pointer)]>,
                          Sched<[WriteBr]>;

//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
//

// eh_sjlj_setjmp() is an instruction sequence to store the return address and
// save #0 in R0 for the non-longjmp case.  Since by its nature we may be coming
// from some other function to get here, and we're using the stack frame for the
// containing function to save/restore registers, we can't keep anything live in
// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
// tromped upon when we get here from a longjmp(). We force everything out of
// registers except for our own input by listing the relevant registers in
// Defs. By doing so, we also cause the prologue/epilogue code to actively
// preserve all of the callee-saved registers, which is exactly what we want.
// $val is a scratch register for our use.
let Defs = [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7, R12, CPSR ],
    hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in
def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
                                  AddrModeNone, 0, NoItinerary, "","",
                          [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;

// FIXME: Non-IOS version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
    Defs = [ R7, LR, SP ] in
def tInt_eh_sjlj_longjmp : XI<(outs), (ins tGPR:$src, tGPR:$scratch),
                              AddrModeNone, 0, IndexModeNone,
                              Pseudo, NoItinerary, "", "",
                              [(ARMeh_sjlj_longjmp tGPR:$src, tGPR:$scratch)]>,
                             Requires<[IsThumb,IsNotWindows]>;

// (Windows is Thumb2-only)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
    Defs = [ R11, LR, SP ] in
def tInt_WIN_eh_sjlj_longjmp
  : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, 0, IndexModeNone,
       Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
    Requires<[IsThumb,IsWindows]>;

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//

// Comparisons
def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
            (tCMPi8  tGPR:$Rn, imm0_255:$imm8)>;
def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
            (tCMPr   tGPR:$Rn, tGPR:$Rm)>;

// Bswap 16 with load/store
def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)),
            (tREV16 (tLDRHi t_addrmode_is2:$addr))>;
def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)),
            (tREV16 (tLDRHr t_addrmode_rr:$addr))>;
def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
                           t_addrmode_is2:$addr),
            (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>;
def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
                           t_addrmode_rr:$addr),
            (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>;

// ConstantPool
def : T1Pat<(ARMWrapper  tconstpool  :$dst), (tLEApcrel tconstpool  :$dst)>;

// GlobalAddress
def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr),
                                  IIC_iLoadiALU,
                                  [(set tGPR:$dst,
                                        (ARMWrapperPIC tglobaladdr:$addr))]>,
                       Requires<[IsThumb, DontUseMovtInPic]>;

def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src),
                                IIC_iLoad_i,
                                [(set tGPR:$dst,
                                      (ARMWrapper tglobaladdr:$src))]>,
                     Requires<[IsThumb, DontUseMovt]>;

// TLS globals
def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
          (tLDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
      Requires<[IsThumb, DontUseMovtInPic]>;
def : Pat<(ARMWrapper tglobaltlsaddr:$addr),
          (tLDRLIT_ga_abs tglobaltlsaddr:$addr)>,
      Requires<[IsThumb, DontUseMovt]>;


// JumpTable
def : T1Pat<(ARMWrapperJT tjumptable:$dst),
            (tLEApcrelJT tjumptable:$dst)>;

// Direct calls
def : T1Pat<(ARMcall texternalsym:$func), (tBL texternalsym:$func)>,
      Requires<[IsThumb]>;

// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
            (tLDRBi t_addrmode_is1:$addr)>;
def : T1Pat<(zextloadi1 t_addrmode_rr:$addr),
            (tLDRBr t_addrmode_rr:$addr)>;

// extload from the stack -> word load from the stack, as it avoids having to
// materialize the base in a separate register. This only works when a word
// load puts the byte/halfword value in the same place in the register that the
// byte/halfword load would, i.e. when little-endian.
def : T1Pat<(extloadi1  t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
      Requires<[IsThumb, IsThumb1Only, IsLE]>;
def : T1Pat<(extloadi8  t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
      Requires<[IsThumb, IsThumb1Only, IsLE]>;
def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
      Requires<[IsThumb, IsThumb1Only, IsLE]>;

// extload -> zextload
def : T1Pat<(extloadi1  t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
def : T1Pat<(extloadi1  t_addrmode_rr:$addr),  (tLDRBr t_addrmode_rr:$addr)>;
def : T1Pat<(extloadi8  t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
def : T1Pat<(extloadi8  t_addrmode_rr:$addr),  (tLDRBr t_addrmode_rr:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_rr:$addr),  (tLDRHr t_addrmode_rr:$addr)>;

// post-inc loads and stores

// post-inc LDR -> LDM r0!, {r1}. The way operands are layed out in LDMs is
// different to how ISel expects them for a post-inc load, so use a pseudo
// and expand it just after ISel.
let usesCustomInserter = 1, mayLoad =1,
    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in
 def tLDR_postidx: tPseudoInst<(outs tGPR:$Rt, tGPR:$Rn_wb),
                               (ins tGPR:$Rn, pred:$p),
                               4, IIC_iStore_ru,
                               []>;

// post-inc STR -> STM r0!, {r1}. The layout of this (because it doesn't def
// multiple registers) is the same in ISel as MachineInstr, so there's no need
// for a pseudo.
def : T1Pat<(post_store tGPR:$Rt, tGPR:$Rn, 4),
            (tSTMIA_UPD tGPR:$Rn, tGPR:$Rt)>;

// If it's impossible to use [r,r] address mode for sextload, select to
// ldr{b|h} + sxt{b|h} instead.
def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
            (tSXTB (tLDRBi t_addrmode_is1:$addr))>,
      Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi8 t_addrmode_rr:$addr),
            (tSXTB (tLDRBr t_addrmode_rr:$addr))>,
      Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
            (tSXTH (tLDRHi t_addrmode_is2:$addr))>,
      Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_rr:$addr),
            (tSXTH (tLDRHr t_addrmode_rr:$addr))>,
      Requires<[IsThumb, IsThumb1Only, HasV6]>;

def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
            (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
def : T1Pat<(sextloadi8 t_addrmode_rr:$addr),
            (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>;
def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
            (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
def : T1Pat<(sextloadi16 t_addrmode_rr:$addr),
            (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>;

def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
             (tLDRBi t_addrmode_is1:$src)>;
def : T1Pat<(atomic_load_8 t_addrmode_rr:$src),
             (tLDRBr t_addrmode_rr:$src)>;
def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
             (tLDRHi t_addrmode_is2:$src)>;
def : T1Pat<(atomic_load_16 t_addrmode_rr:$src),
             (tLDRHr t_addrmode_rr:$src)>;
def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
             (tLDRi t_addrmode_is4:$src)>;
def : T1Pat<(atomic_load_32 t_addrmode_rr:$src),
             (tLDRr t_addrmode_rr:$src)>;
def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
             (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
def : T1Pat<(atomic_store_8 t_addrmode_rr:$ptr, tGPR:$val),
             (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>;
def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
             (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
def : T1Pat<(atomic_store_16 t_addrmode_rr:$ptr, tGPR:$val),
             (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>;
def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
             (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
def : T1Pat<(atomic_store_32 t_addrmode_rr:$ptr, tGPR:$val),
             (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>;

// Large immediate handling.

// Two piece imms.
def : T1Pat<(i32 thumb_immshifted:$src),
            (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
                    (thumb_immshifted_shamt imm:$src))>;

def : T1Pat<(i32 imm0_255_comp:$src),
            (tMVN (tMOVi8 (imm_not_XFORM imm:$src)))>;

def : T1Pat<(i32 imm256_510:$src),
            (tADDi8 (tMOVi8 255),
                    (thumb_imm256_510_addend imm:$src))>;

// Pseudo instruction that combines ldr from constpool and add pc. This should
// be expanded into two instructions late to allow if-conversion and
// scheduling.
let isReMaterializable = 1 in
def tLDRpci_pic : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr, pclabel:$cp),
                             NoItinerary,
               [(set tGPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
                                           imm:$cp))]>,
               Requires<[IsThumb, IsThumb1Only]>;

// Pseudo-instruction for merged POP and return.
// FIXME: remove when we have a way to marking a MI with these properties.
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
    hasExtraDefRegAllocReq = 1 in
def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
                           2, IIC_iPop_Br, [],
                           (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;

// Indirect branch using "mov pc, $Rm"
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
                  2, IIC_Br, [(brind GPR:$Rm)],
                  (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
}


// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
// encoding is available on ARMv6K, but we don't differentiate that finely.
def : InstAlias<"nop", (tMOVr R8, R8, 14, 0), 0>, Requires<[IsThumb, IsThumb1Only]>;


// "neg" is and alias for "rsb rd, rn, #0"
def : tInstAlias<"neg${s}${p} $Rd, $Rm",
                 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;


// Implied destination operand forms for shifts.
def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
             (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
             (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
def : tInstAlias<"asr${s}${p} $Rdm, $imm",
             (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;

// Pseudo instruction ldr Rt, =immediate
def tLDRConstPool
  : tAsmPseudo<"ldr${p} $Rt, $immediate",
               (ins tGPR:$Rt, const_pool_asm_imm:$immediate, pred:$p)>;