Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
//===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a simple VLIW packetizer using DFA. The packetizer works on
// machine basic blocks. For each instruction I in BB, the packetizer consults
// the DFA to see if machine resources are available to execute I. If so, the
// packetizer checks if I depends on any instruction J in the current packet.
// If no dependency is found, I is added to current packet and machine resource
// is marked as taken. If any dependency is found, a target API call is made to
// prune the dependence.
//
//===----------------------------------------------------------------------===//

#include "HexagonVLIWPacketizer.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "packets"

static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
  cl::ZeroOrMore, cl::init(false),
  cl::desc("Disable Hexagon packetizer pass"));

static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
                                cl::ZeroOrMore, cl::init(true),
                                cl::desc("Allow slot1 store and slot0 load"));

static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
  cl::ZeroOrMore, cl::Hidden, cl::init(true),
  cl::desc("Allow non-solo packetization of volatile memory references"));

static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));

static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
  cl::init(false), cl::Hidden, cl::ZeroOrMore,
  cl::desc("Disable vector double new-value-stores"));

extern cl::opt<bool> ScheduleInlineAsm;

namespace llvm {

FunctionPass *createHexagonPacketizer(bool Minimal);
void initializeHexagonPacketizerPass(PassRegistry&);

} // end namespace llvm

namespace {

  class HexagonPacketizer : public MachineFunctionPass {
  public:
    static char ID;

    HexagonPacketizer(bool Min = false)
      : MachineFunctionPass(ID), Minimal(Min) {}

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    StringRef getPassName() const override { return "Hexagon Packetizer"; }
    bool runOnMachineFunction(MachineFunction &Fn) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;
    const bool Minimal = false;
  };

} // end anonymous namespace

char HexagonPacketizer::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
                      "Hexagon Packetizer", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
                    "Hexagon Packetizer", false, false)

HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
      MachineLoopInfo &MLI, AAResults *AA,
      const MachineBranchProbabilityInfo *MBPI, bool Minimal)
    : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
      Minimal(Minimal) {
  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
  addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
  addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
}

// Check if FirstI modifies a register that SecondI reads.
static bool hasWriteToReadDep(const MachineInstr &FirstI,
                              const MachineInstr &SecondI,
                              const TargetRegisterInfo *TRI) {
  for (auto &MO : FirstI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (SecondI.readsRegister(R, TRI))
      return true;
  }
  return false;
}


static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
      MachineBasicBlock::iterator BundleIt, bool Before) {
  MachineBasicBlock::instr_iterator InsertPt;
  if (Before)
    InsertPt = BundleIt.getInstrIterator();
  else
    InsertPt = std::next(BundleIt).getInstrIterator();

  MachineBasicBlock &B = *MI.getParent();
  // The instruction should at least be bundled with the preceding instruction
  // (there will always be one, i.e. BUNDLE, if nothing else).
  assert(MI.isBundledWithPred());
  if (MI.isBundledWithSucc()) {
    MI.clearFlag(MachineInstr::BundledSucc);
    MI.clearFlag(MachineInstr::BundledPred);
  } else {
    // If it's not bundled with the successor (i.e. it is the last one
    // in the bundle), then we can simply unbundle it from the predecessor,
    // which will take care of updating the predecessor's flag.
    MI.unbundleFromPred();
  }
  B.splice(InsertPt, &B, MI.getIterator());

  // Get the size of the bundle without asserting.
  MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
  MachineBasicBlock::const_instr_iterator E = B.instr_end();
  unsigned Size = 0;
  for (++I; I != E && I->isBundledWithPred(); ++I)
    ++Size;

  // If there are still two or more instructions, then there is nothing
  // else to be done.
  if (Size > 1)
    return BundleIt;

  // Otherwise, extract the single instruction out and delete the bundle.
  MachineBasicBlock::iterator NextIt = std::next(BundleIt);
  MachineInstr &SingleI = *BundleIt->getNextNode();
  SingleI.unbundleFromPred();
  assert(!SingleI.isBundledWithSucc());
  BundleIt->eraseFromParent();
  return NextIt;
}

bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  HII = HST.getInstrInfo();
  HRI = HST.getRegisterInfo();
  auto &MLI = getAnalysis<MachineLoopInfo>();
  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  if (EnableGenAllInsnClass)
    HII->genAllInsnTimingClasses(MF);

  // Instantiate the packetizer.
  bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
                 skipFunction(MF.getFunction());
  HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);

  // DFA state table should not be empty.
  assert(Packetizer.getResourceTracker() && "Empty DFA table!");

  // Loop over all basic blocks and remove KILL pseudo-instructions
  // These instructions confuse the dependence analysis. Consider:
  // D0 = ...   (Insn 0)
  // R0 = KILL R0, D0 (Insn 1)
  // R0 = ... (Insn 2)
  // Here, Insn 1 will result in the dependence graph not emitting an output
  // dependence between Insn 0 and Insn 2. This can lead to incorrect
  // packetization
  for (MachineBasicBlock &MB : MF) {
    auto End = MB.end();
    auto MI = MB.begin();
    while (MI != End) {
      auto NextI = std::next(MI);
      if (MI->isKill()) {
        MB.erase(MI);
        End = MB.end();
      }
      MI = NextI;
    }
  }

  // TinyCore with Duplexes: Translate to big-instructions.
  if (HST.isTinyCoreWithDuplex())
    HII->translateInstrsForDup(MF, true);

  // Loop over all of the basic blocks.
  for (auto &MB : MF) {
    auto Begin = MB.begin(), End = MB.end();
    while (Begin != End) {
      // Find the first non-boundary starting from the end of the last
      // scheduling region.
      MachineBasicBlock::iterator RB = Begin;
      while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
        ++RB;
      // Find the first boundary starting from the beginning of the new
      // region.
      MachineBasicBlock::iterator RE = RB;
      while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
        ++RE;
      // Add the scheduling boundary if it's not block end.
      if (RE != End)
        ++RE;
      // If RB == End, then RE == End.
      if (RB != End)
        Packetizer.PacketizeMIs(&MB, RB, RE);

      Begin = RE;
    }
  }

  // TinyCore with Duplexes: Translate to tiny-instructions.
  if (HST.isTinyCoreWithDuplex())
    HII->translateInstrsForDup(MF, false);

  Packetizer.unpacketizeSoloInstrs(MF);
  return true;
}

// Reserve resources for a constant extender. Trigger an assertion if the
// reservation fails.
void HexagonPacketizerList::reserveResourcesForConstExt() {
  if (!tryAllocateResourcesForConstExt(true))
    llvm_unreachable("Resources not available");
}

bool HexagonPacketizerList::canReserveResourcesForConstExt() {
  return tryAllocateResourcesForConstExt(false);
}

// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
// return true, otherwise, return false.
bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
  auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
  bool Avail = ResourceTracker->canReserveResources(*ExtMI);
  if (Reserve && Avail)
    ResourceTracker->reserveResources(*ExtMI);
  MF.DeleteMachineInstr(ExtMI);
  return Avail;
}

bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
      SDep::Kind DepType, unsigned DepReg) {
  // Check for LR dependence.
  if (DepReg == HRI->getRARegister())
    return true;

  if (HII->isDeallocRet(MI))
    if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
      return true;

  // Call-like instructions can be packetized with preceding instructions
  // that define registers implicitly used or modified by the call. Explicit
  // uses are still prohibited, as in the case of indirect calls:
  //   r0 = ...
  //   J2_jumpr r0
  if (DepType == SDep::Data) {
    for (const MachineOperand &MO : MI.operands())
      if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
        return true;
  }

  return false;
}

static bool isRegDependence(const SDep::Kind DepType) {
  return DepType == SDep::Data || DepType == SDep::Anti ||
         DepType == SDep::Output;
}

static bool isDirectJump(const MachineInstr &MI) {
  return MI.getOpcode() == Hexagon::J2_jump;
}

static bool isSchedBarrier(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case Hexagon::Y2_barrier:
    return true;
  }
  return false;
}

static bool isControlFlow(const MachineInstr &MI) {
  return MI.getDesc().isTerminator() || MI.getDesc().isCall();
}

/// Returns true if the instruction modifies a callee-saved register.
static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
                                     const TargetRegisterInfo *TRI) {
  const MachineFunction &MF = *MI.getParent()->getParent();
  for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
    if (MI.modifiesRegister(*CSR, TRI))
      return true;
  return false;
}

// Returns true if an instruction can be promoted to .new predicate or
// new-value store.
bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
      const TargetRegisterClass *NewRC) {
  // Vector stores can be predicated, and can be new-value stores, but
  // they cannot be predicated on a .new predicate value.
  if (NewRC == &Hexagon::PredRegsRegClass) {
    if (HII->isHVXVec(MI) && MI.mayStore())
      return false;
    return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
  }
  // If the class is not PredRegs, it could only apply to new-value stores.
  return HII->mayBeNewStore(MI);
}

// Promote an instructiont to its .cur form.
// At this time, we have already made a call to canPromoteToDotCur and made
// sure that it can *indeed* be promoted.
bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert(DepType == SDep::Data);
  int CurOpcode = HII->getDotCurOp(MI);
  MI.setDesc(HII->get(CurOpcode));
  return true;
}

void HexagonPacketizerList::cleanUpDotCur() {
  MachineInstr *MI = nullptr;
  for (auto BI : CurrentPacketMIs) {
    LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
    if (HII->isDotCurInst(*BI)) {
      MI = BI;
      continue;
    }
    if (MI) {
      for (auto &MO : BI->operands())
        if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
          return;
    }
  }
  if (!MI)
    return;
  // We did not find a use of the CUR, so de-cur it.
  MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
  LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
}

// Check to see if an instruction can be dot cur.
bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass *RC) {
  if (!HII->isHVXVec(MI))
    return false;
  if (!HII->isHVXVec(*MII))
    return false;

  // Already a dot new instruction.
  if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
    return false;

  if (!HII->mayBeCurLoad(MI))
    return false;

  // The "cur value" cannot come from inline asm.
  if (PacketSU->getInstr()->isInlineAsm())
    return false;

  // Make sure candidate instruction uses cur.
  LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
             dbgs() << "in packet\n";);
  MachineInstr &MJ = *MII;
  LLVM_DEBUG({
    dbgs() << "Checking CUR against ";
    MJ.dump();
  });
  Register DestReg = MI.getOperand(0).getReg();
  bool FoundMatch = false;
  for (auto &MO : MJ.operands())
    if (MO.isReg() && MO.getReg() == DestReg)
      FoundMatch = true;
  if (!FoundMatch)
    return false;

  // Check for existing uses of a vector register within the packet which
  // would be affected by converting a vector load into .cur formt.
  for (auto BI : CurrentPacketMIs) {
    LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
    if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
      return false;
  }

  LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
  // We can convert the opcode into a .cur.
  return true;
}

// Promote an instruction to its .new form. At this time, we have already
// made a call to canPromoteToDotNew and made sure that it can *indeed* be
// promoted.
bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert(DepType == SDep::Data);
  int NewOpcode;
  if (RC == &Hexagon::PredRegsRegClass)
    NewOpcode = HII->getDotNewPredOp(MI, MBPI);
  else
    NewOpcode = HII->getDotNewOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}

bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
  int NewOpcode = HII->getDotOldOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}

bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
  if (HII->isValidOffset(Opc, NewOff, HRI)) {
    Off.setImm(NewOff);
    return true;
  }
  return false;
}

void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
}

/// Return true if we can update the offset in MI so that MI and MJ
/// can be packetized together.
bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &MI = *SUI->getInstr();
  MachineInstr &MJ = *SUJ->getInstr();

  unsigned BPI, OPI;
  if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
    return false;
  unsigned BPJ, OPJ;
  if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
    return false;
  Register Reg = MI.getOperand(BPI).getReg();
  if (Reg != MJ.getOperand(BPJ).getReg())
    return false;
  // Make sure that the dependences do not restrict adding MI to the packet.
  // That is, ignore anti dependences, and make sure the only data dependence
  // involves the specific register.
  for (const auto &PI : SUI->Preds)
    if (PI.getKind() != SDep::Anti &&
        (PI.getKind() != SDep::Data || PI.getReg() != Reg))
      return false;
  int Incr;
  if (!HII->getIncrementValue(MJ, Incr))
    return false;

  int64_t Offset = MI.getOperand(OPI).getImm();
  if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
    return false;

  MI.getOperand(OPI).setImm(Offset + Incr);
  ChangedOffset = Offset;
  return true;
}

/// Undo the changed offset. This is needed if the instruction cannot be
/// added to the current packet due to a different instruction.
void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
  unsigned BP, OP;
  if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
    llvm_unreachable("Unable to find base and offset operands.");
  MI.getOperand(OP).setImm(ChangedOffset);
}

enum PredicateKind {
  PK_False,
  PK_True,
  PK_Unknown
};

/// Returns true if an instruction is predicated on p0 and false if it's
/// predicated on !p0.
static PredicateKind getPredicateSense(const MachineInstr &MI,
                                       const HexagonInstrInfo *HII) {
  if (!HII->isPredicated(MI))
    return PK_Unknown;
  if (HII->isPredicatedTrue(MI))
    return PK_True;
  return PK_False;
}

static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
      const HexagonInstrInfo *HII) {
  assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
#ifndef NDEBUG
  // Post Increment means duplicates. Use dense map to find duplicates in the
  // list. Caution: Densemap initializes with the minimum of 64 buckets,
  // whereas there are at most 5 operands in the post increment.
  DenseSet<unsigned> DefRegsSet;
  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isDef())
      DefRegsSet.insert(MO.getReg());

  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
      return MO;
#else
  if (MI.mayLoad()) {
    const MachineOperand &Op1 = MI.getOperand(1);
    // The 2nd operand is always the post increment operand in load.
    assert(Op1.isReg() && "Post increment operand has be to a register.");
    return Op1;
  }
  if (MI.getDesc().mayStore()) {
    const MachineOperand &Op0 = MI.getOperand(0);
    // The 1st operand is always the post increment operand in store.
    assert(Op0.isReg() && "Post increment operand has be to a register.");
    return Op0;
  }
#endif
  // we should never come here.
  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
}

// Get the value being stored.
static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
  // value being stored is always the last operand.
  return MI.getOperand(MI.getNumOperands()-1);
}

static bool isLoadAbsSet(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::L4_loadrd_ap:
    case Hexagon::L4_loadrb_ap:
    case Hexagon::L4_loadrh_ap:
    case Hexagon::L4_loadrub_ap:
    case Hexagon::L4_loadruh_ap:
    case Hexagon::L4_loadri_ap:
      return true;
  }
  return false;
}

static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
  assert(isLoadAbsSet(MI));
  return MI.getOperand(1);
}

// Can be new value store?
// Following restrictions are to be respected in convert a store into
// a new value store.
// 1. If an instruction uses auto-increment, its address register cannot
//    be a new-value register. Arch Spec 5.4.2.1
// 2. If an instruction uses absolute-set addressing mode, its address
//    register cannot be a new-value register. Arch Spec 5.4.2.1.
// 3. If an instruction produces a 64-bit result, its registers cannot be used
//    as new-value registers. Arch Spec 5.4.2.2.
// 4. If the instruction that sets the new-value register is conditional, then
//    the instruction that uses the new-value register must also be conditional,
//    and both must always have their predicates evaluate identically.
//    Arch Spec 5.4.2.3.
// 5. There is an implied restriction that a packet cannot have another store,
//    if there is a new value store in the packet. Corollary: if there is
//    already a store in a packet, there can not be a new value store.
//    Arch Spec: 3.4.4.2
bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
      const MachineInstr &PacketMI, unsigned DepReg) {
  // Make sure we are looking at the store, that can be promoted.
  if (!HII->mayBeNewStore(MI))
    return false;

  // Make sure there is dependency and can be new value'd.
  const MachineOperand &Val = getStoreValueOperand(MI);
  if (Val.isReg() && Val.getReg() != DepReg)
    return false;

  const MCInstrDesc& MCID = PacketMI.getDesc();

  // First operand is always the result.
  const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
  // Double regs can not feed into new value store: PRM section: 5.4.2.2.
  if (PacketRC == &Hexagon::DoubleRegsRegClass)
    return false;

  // New-value stores are of class NV (slot 0), dual stores require class ST
  // in slot 0 (PRM 5.5).
  for (auto I : CurrentPacketMIs) {
    SUnit *PacketSU = MIToSUnit.find(I)->second;
    if (PacketSU->getInstr()->mayStore())
      return false;
  }

  // Make sure it's NOT the post increment register that we are going to
  // new value.
  if (HII->isPostIncrement(MI) &&
      getPostIncrementOperand(MI, HII).getReg() == DepReg) {
    return false;
  }

  if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
      getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
    // If source is post_inc, or absolute-set addressing, it can not feed
    // into new value store
    //   r3 = memw(r2++#4)
    //   memw(r30 + #-1404) = r2.new -> can not be new value store
    // arch spec section: 5.4.2.1.
    return false;
  }

  if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
    return false;

  // If the source that feeds the store is predicated, new value store must
  // also be predicated.
  if (HII->isPredicated(PacketMI)) {
    if (!HII->isPredicated(MI))
      return false;

    // Check to make sure that they both will have their predicates
    // evaluate identically.
    unsigned predRegNumSrc = 0;
    unsigned predRegNumDst = 0;
    const TargetRegisterClass* predRegClass = nullptr;

    // Get predicate register used in the source instruction.
    for (auto &MO : PacketMI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumSrc = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
        "predicate register not found in a predicated PacketMI instruction");

    // Get predicate register used in new-value store instruction.
    for (auto &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumDst = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
           "predicate register not found in a predicated MI instruction");

    // New-value register producer and user (store) need to satisfy these
    // constraints:
    // 1) Both instructions should be predicated on the same register.
    // 2) If producer of the new-value register is .new predicated then store
    // should also be .new predicated and if producer is not .new predicated
    // then store should not be .new predicated.
    // 3) Both new-value register producer and user should have same predicate
    // sense, i.e, either both should be negated or both should be non-negated.
    if (predRegNumDst != predRegNumSrc ||
        HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
        getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
      return false;
  }

  // Make sure that other than the new-value register no other store instruction
  // register has been modified in the same packet. Predicate registers can be
  // modified by they should not be modified between the producer and the store
  // instruction as it will make them both conditional on different values.
  // We already know this to be true for all the instructions before and
  // including PacketMI. Howerver, we need to perform the check for the
  // remaining instructions in the packet.

  unsigned StartCheck = 0;

  for (auto I : CurrentPacketMIs) {
    SUnit *TempSU = MIToSUnit.find(I)->second;
    MachineInstr &TempMI = *TempSU->getInstr();

    // Following condition is true for all the instructions until PacketMI is
    // reached (StartCheck is set to 0 before the for loop).
    // StartCheck flag is 1 for all the instructions after PacketMI.
    if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
      continue;                              // encountering PacketMI.

    StartCheck = 1;
    if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
      continue;

    for (auto &MO : MI.operands())
      if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
        return false;
  }

  // Make sure that for non-POST_INC stores:
  // 1. The only use of reg is DepReg and no other registers.
  //    This handles base+index registers.
  //    The following store can not be dot new.
  //    Eg.   r0 = add(r0, #3)
  //          memw(r1+r0<<#2) = r0
  if (!HII->isPostIncrement(MI)) {
    for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
      const MachineOperand &MO = MI.getOperand(opNum);
      if (MO.isReg() && MO.getReg() == DepReg)
        return false;
    }
  }

  // If data definition is because of implicit definition of the register,
  // do not newify the store. Eg.
  // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
  // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
  for (auto &MO : PacketMI.operands()) {
    if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return false;
    if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
      continue;
    Register R = MO.getReg();
    if (R == DepReg || HRI->isSuperRegister(DepReg, R))
      return false;
  }

  // Handle imp-use of super reg case. There is a target independent side
  // change that should prevent this situation but I am handling it for
  // just-in-case. For example, we cannot newify R2 in the following case:
  // %r3 = A2_tfrsi 0;
  // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
  for (auto &MO : MI.operands()) {
    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
      return false;
  }

  // Can be dot new store.
  return true;
}

// Can this MI to promoted to either new value store or new value jump.
bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg,
      MachineBasicBlock::iterator &MII) {
  if (!HII->mayBeNewStore(MI))
    return false;

  // Check to see the store can be new value'ed.
  MachineInstr &PacketMI = *PacketSU->getInstr();
  if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
    return true;

  // Check to see the compare/jump can be new value'ed.
  // This is done as a pass on its own. Don't need to check it here.
  return false;
}

static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
      unsigned DepReg) {
  for (auto &MO : I.operands()) {
    if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return true;
    if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
      continue;
    if (CheckDef == MO.isDef())
      return true;
  }
  return false;
}

// Check to see if an instruction can be dot new.
bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  // Already a dot new instruction.
  if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
    return false;

  if (!isNewifiable(MI, RC))
    return false;

  const MachineInstr &PI = *PacketSU->getInstr();

  // The "new value" cannot come from inline asm.
  if (PI.isInlineAsm())
    return false;

  // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
  // sense.
  if (PI.isImplicitDef())
    return false;

  // If dependency is trough an implicitly defined register, we should not
  // newify the use.
  if (isImplicitDependency(PI, true, DepReg) ||
      isImplicitDependency(MI, false, DepReg))
    return false;

  const MCInstrDesc& MCID = PI.getDesc();
  const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
  if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
    return false;

  // predicate .new
  if (RC == &Hexagon::PredRegsRegClass)
    return HII->predCanBeUsedAsDotNew(PI, DepReg);

  if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
    return false;

  // Create a dot new machine instruction to see if resources can be
  // allocated. If not, bail out now.
  int NewOpcode = HII->getDotNewOp(MI);
  const MCInstrDesc &D = HII->get(NewOpcode);
  MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
  bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
  MF.DeleteMachineInstr(NewMI);
  if (!ResourcesAvailable)
    return false;

  // New Value Store only. New Value Jump generated as a separate pass.
  if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
    return false;

  return true;
}

// Go through the packet instructions and search for an anti dependency between
// them and DepReg from MI. Consider this case:
// Trying to add
// a) %r1 = TFRI_cdNotPt %p3, 2
// to this packet:
// {
//   b) %p0 = C2_or killed %p3, killed %p0
//   c) %p3 = C2_tfrrp %r23
//   d) %r1 = C2_cmovenewit %p3, 4
//  }
// The P3 from a) and d) will be complements after
// a)'s P3 is converted to .new form
// Anti-dep between c) and b) is irrelevant for this case
bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
                                                        unsigned DepReg) {
  SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;

  for (auto I : CurrentPacketMIs) {
    // We only care for dependencies to predicated instructions
    if (!HII->isPredicated(*I))
      continue;

    // Scheduling Unit for current insn in the packet
    SUnit *PacketSU = MIToSUnit.find(I)->second;

    // Look at dependencies between current members of the packet and
    // predicate defining instruction MI. Make sure that dependency is
    // on the exact register we care about.
    if (PacketSU->isSucc(PacketSUDep)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto &Dep = PacketSU->Succs[i];
        if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
            Dep.getReg() == DepReg)
          return true;
      }
    }
  }

  return false;
}

/// Gets the predicate register of a predicated instruction.
static unsigned getPredicatedRegister(MachineInstr &MI,
                                      const HexagonInstrInfo *QII) {
  /// We use the following rule: The first predicate register that is a use is
  /// the predicate register of a predicated instruction.
  assert(QII->isPredicated(MI) && "Must be predicated instruction");

  for (auto &Op : MI.operands()) {
    if (Op.isReg() && Op.getReg() && Op.isUse() &&
        Hexagon::PredRegsRegClass.contains(Op.getReg()))
      return Op.getReg();
  }

  llvm_unreachable("Unknown instruction operand layout");
  return 0;
}

// Given two predicated instructions, this function detects whether
// the predicates are complements.
bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
                                                     MachineInstr &MI2) {
  // If we don't know the predicate sense of the instructions bail out early, we
  // need it later.
  if (getPredicateSense(MI1, HII) == PK_Unknown ||
      getPredicateSense(MI2, HII) == PK_Unknown)
    return false;

  // Scheduling unit for candidate.
  SUnit *SU = MIToSUnit[&MI1];

  // One corner case deals with the following scenario:
  // Trying to add
  // a) %r24 = A2_tfrt %p0, %r25
  // to this packet:
  // {
  //   b) %r25 = A2_tfrf %p0, %r24
  //   c) %p0 = C2_cmpeqi %r26, 1
  // }
  //
  // On general check a) and b) are complements, but presence of c) will
  // convert a) to .new form, and then it is not a complement.
  // We attempt to detect it by analyzing existing dependencies in the packet.

  // Analyze relationships between all existing members of the packet.
  // Look for Anti dependecy on the same predicate reg as used in the
  // candidate.
  for (auto I : CurrentPacketMIs) {
    // Scheduling Unit for current insn in the packet.
    SUnit *PacketSU = MIToSUnit.find(I)->second;

    // If this instruction in the packet is succeeded by the candidate...
    if (PacketSU->isSucc(SU)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto Dep = PacketSU->Succs[i];
        // The corner case exist when there is true data dependency between
        // candidate and one of current packet members, this dep is on
        // predicate reg, and there already exist anti dep on the same pred in
        // the packet.
        if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
            Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
          // Here I know that I is predicate setting instruction with true
          // data dep to candidate on the register we care about - c) in the
          // above example. Now I need to see if there is an anti dependency
          // from c) to any other instruction in the same packet on the pred
          // reg of interest.
          if (restrictingDepExistInPacket(*I, Dep.getReg()))
            return false;
        }
      }
    }
  }

  // If the above case does not apply, check regular complement condition.
  // Check that the predicate register is the same and that the predicate
  // sense is different We also need to differentiate .old vs. .new: !p0
  // is not complementary to p0.new.
  unsigned PReg1 = getPredicatedRegister(MI1, HII);
  unsigned PReg2 = getPredicatedRegister(MI2, HII);
  return PReg1 == PReg2 &&
         Hexagon::PredRegsRegClass.contains(PReg1) &&
         Hexagon::PredRegsRegClass.contains(PReg2) &&
         getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
         HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
}

// Initialize packetizer flags.
void HexagonPacketizerList::initPacketizerState() {
  Dependence = false;
  PromotedToDotNew = false;
  GlueToNewValueJump = false;
  GlueAllocframeStore = false;
  FoundSequentialDependence = false;
  ChangedOffset = INT64_MAX;
}

// Ignore bundling of pseudo instructions.
bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
                                                    const MachineBasicBlock *) {
  if (MI.isDebugInstr())
    return true;

  if (MI.isCFIInstruction())
    return false;

  // We must print out inline assembly.
  if (MI.isInlineAsm())
    return false;

  if (MI.isImplicitDef())
    return false;

  // We check if MI has any functional units mapped to it. If it doesn't,
  // we ignore the instruction.
  const MCInstrDesc& TID = MI.getDesc();
  auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
  return !IS->getUnits();
}

bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
  // Ensure any bundles created by gather packetize remain separate.
  if (MI.isBundle())
    return true;

  if (MI.isEHLabel() || MI.isCFIInstruction())
    return true;

  // Consider inline asm to not be a solo instruction by default.
  // Inline asm will be put in a packet temporarily, but then it will be
  // removed, and placed outside of the packet (before or after, depending
  // on dependencies).  This is to reduce the impact of inline asm as a
  // "packet splitting" instruction.
  if (MI.isInlineAsm() && !ScheduleInlineAsm)
    return true;

  if (isSchedBarrier(MI))
    return true;

  if (HII->isSolo(MI))
    return true;

  if (MI.getOpcode() == Hexagon::A2_nop)
    return true;

  return false;
}

// Quick check if instructions MI and MJ cannot coexist in the same packet.
// Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
// For full test call this function twice:
//   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
// Doing the test only one way saves the amount of code in this function,
// since every test would need to be repeated with the MI and MJ reversed.
static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
      const HexagonInstrInfo &HII) {
  const MachineFunction *MF = MI.getParent()->getParent();
  if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
      HII.isHVXMemWithAIndirect(MI, MJ))
    return true;

  // An inline asm cannot be together with a branch, because we may not be
  // able to remove the asm out after packetizing (i.e. if the asm must be
  // moved past the bundle).  Similarly, two asms cannot be together to avoid
  // complications when determining their relative order outside of a bundle.
  if (MI.isInlineAsm())
    return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
           MJ.isCall() || MJ.isTerminator();

  // New-value stores cannot coexist with any other stores.
  if (HII.isNewValueStore(MI) && MJ.mayStore())
    return true;

  switch (MI.getOpcode()) {
  case Hexagon::S2_storew_locked:
  case Hexagon::S4_stored_locked:
  case Hexagon::L2_loadw_locked:
  case Hexagon::L4_loadd_locked:
  case Hexagon::Y2_dccleana:
  case Hexagon::Y2_dccleaninva:
  case Hexagon::Y2_dcinva:
  case Hexagon::Y2_dczeroa:
  case Hexagon::Y4_l2fetch:
  case Hexagon::Y5_l2fetch: {
    // These instructions can only be grouped with ALU32 or non-floating-point
    // XTYPE instructions.  Since there is no convenient way of identifying fp
    // XTYPE instructions, only allow grouping with ALU32 for now.
    unsigned TJ = HII.getType(MJ);
    if (TJ != HexagonII::TypeALU32_2op &&
        TJ != HexagonII::TypeALU32_3op &&
        TJ != HexagonII::TypeALU32_ADDI)
      return true;
    break;
  }
  default:
    break;
  }

  // "False" really means that the quick check failed to determine if
  // I and J cannot coexist.
  return false;
}

// Full, symmetric check.
bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
      const MachineInstr &MJ) {
  return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
}

void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
  for (auto &B : MF) {
    MachineBasicBlock::iterator BundleIt;
    MachineBasicBlock::instr_iterator NextI;
    for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
      NextI = std::next(I);
      MachineInstr &MI = *I;
      if (MI.isBundle())
        BundleIt = I;
      if (!MI.isInsideBundle())
        continue;

      // Decide on where to insert the instruction that we are pulling out.
      // Debug instructions always go before the bundle, but the placement of
      // INLINE_ASM depends on potential dependencies.  By default, try to
      // put it before the bundle, but if the asm writes to a register that
      // other instructions in the bundle read, then we need to place it
      // after the bundle (to preserve the bundle semantics).
      bool InsertBeforeBundle;
      if (MI.isInlineAsm())
        InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
      else if (MI.isDebugValue())
        InsertBeforeBundle = true;
      else
        continue;

      BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
    }
  }
}

// Check if a given instruction is of class "system".
static bool isSystemInstr(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::Y2_barrier:
    case Hexagon::Y2_dcfetchbo:
    case Hexagon::Y4_l2fetch:
    case Hexagon::Y5_l2fetch:
      return true;
  }
  return false;
}

bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
                                              const MachineInstr &J) {
  // The dependence graph may not include edges between dead definitions,
  // so without extra checks, we could end up packetizing two instruction
  // defining the same (dead) register.
  if (I.isCall() || J.isCall())
    return false;
  if (HII->isPredicated(I) || HII->isPredicated(J))
    return false;

  BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
  for (auto &MO : I.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    DeadDefs[MO.getReg()] = true;
  }

  for (auto &MO : J.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    Register R = MO.getReg();
    if (R != Hexagon::USR_OVF && DeadDefs[R])
      return true;
  }
  return false;
}

bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // A save callee-save register function call can only be in a packet
  // with instructions that don't write to the callee-save registers.
  if ((HII->isSaveCalleeSavedRegsCall(I) &&
       doesModifyCalleeSavedReg(J, HRI)) ||
      (HII->isSaveCalleeSavedRegsCall(J) &&
       doesModifyCalleeSavedReg(I, HRI)))
    return true;

  // Two control flow instructions cannot go in the same packet.
  if (isControlFlow(I) && isControlFlow(J))
    return true;

  // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
  // contain a speculative indirect jump,
  // a new-value compare jump or a dealloc_return.
  auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
    if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
      return true;
    if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
      return true;
    return false;
  };

  if (HII->isLoopN(I) && isBadForLoopN(J))
    return true;
  if (HII->isLoopN(J) && isBadForLoopN(I))
    return true;

  // dealloc_return cannot appear in the same packet as a conditional or
  // unconditional jump.
  return HII->isDeallocRet(I) &&
         (J.isBranch() || J.isCall() || J.isBarrier());
}

bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // Adding I to a packet that has J.

  // Regmasks are not reflected in the scheduling dependency graph, so
  // we need to check them manually. This code assumes that regmasks only
  // occur on calls, and the problematic case is when we add an instruction
  // defining a register R to a packet that has a call that clobbers R via
  // a regmask. Those cannot be packetized together, because the call will
  // be executed last. That's also a reson why it is ok to add a call
  // clobbering R to a packet that defines R.

  // Look for regmasks in J.
  for (const MachineOperand &OpJ : J.operands()) {
    if (!OpJ.isRegMask())
      continue;
    assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
    for (const MachineOperand &OpI : I.operands()) {
      if (OpI.isReg()) {
        if (OpJ.clobbersPhysReg(OpI.getReg()))
          return true;
      } else if (OpI.isRegMask()) {
        // Both are regmasks. Assume that they intersect.
        return true;
      }
    }
  }
  return false;
}

bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
                                                   const MachineInstr &J) {
  bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
  bool StoreI = I.mayStore(), StoreJ = J.mayStore();
  if ((SysI && StoreJ) || (SysJ && StoreI))
    return true;

  if (StoreI && StoreJ) {
    if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
      return true;
  } else {
    // A memop cannot be in the same packet with another memop or a store.
    // Two stores can be together, but here I and J cannot both be stores.
    bool MopStI = HII->isMemOp(I) || StoreI;
    bool MopStJ = HII->isMemOp(J) || StoreJ;
    if (MopStI && MopStJ)
      return true;
  }

  return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
}

// SUI is the current instruction that is out side of the current packet.
// SUJ is the current instruction inside the current packet against which that
// SUI will be packetized.
bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();

  // Clear IgnoreDepMIs when Packet starts.
  if (CurrentPacketMIs.size() == 1)
    IgnoreDepMIs.clear();

  MachineBasicBlock::iterator II = I.getIterator();

  // Solo instructions cannot go in the packet.
  assert(!isSoloInstruction(I) && "Unexpected solo instr!");

  if (cannotCoexist(I, J))
    return false;

  Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
  if (Dependence)
    return false;

  // Regmasks are not accounted for in the scheduling graph, so we need
  // to explicitly check for dependencies caused by them. They should only
  // appear on calls, so it's not too pessimistic to reject all regmask
  // dependencies.
  Dependence = hasRegMaskDependence(I, J);
  if (Dependence)
    return false;

  // Dual-store does not allow second store, if the first store is not
  // in SLOT0. New value store, new value jump, dealloc_return and memop
  // always take SLOT0. Arch spec 3.4.4.2.
  Dependence = hasDualStoreDependence(I, J);
  if (Dependence)
    return false;

  // If an instruction feeds new value jump, glue it.
  MachineBasicBlock::iterator NextMII = I.getIterator();
  ++NextMII;
  if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
    MachineInstr &NextMI = *NextMII;

    bool secondRegMatch = false;
    const MachineOperand &NOp0 = NextMI.getOperand(0);
    const MachineOperand &NOp1 = NextMI.getOperand(1);

    if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
      secondRegMatch = true;

    for (MachineInstr *PI : CurrentPacketMIs) {
      // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
      if (PI->isCall()) {
        Dependence = true;
        break;
      }
      // Validate:
      // 1. Packet does not have a store in it.
      // 2. If the first operand of the nvj is newified, and the second
      //    operand is also a reg, it (second reg) is not defined in
      //    the same packet.
      // 3. If the second operand of the nvj is newified, (which means
      //    first operand is also a reg), first reg is not defined in
      //    the same packet.
      if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
          HII->isLoopN(*PI)) {
        Dependence = true;
        break;
      }
      // Check #2/#3.
      const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
      if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
        Dependence = true;
        break;
      }
    }

    GlueToNewValueJump = true;
    if (Dependence)
      return false;
  }

  // There no dependency between a prolog instruction and its successor.
  if (!SUJ->isSucc(SUI))
    return true;

  for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
    if (FoundSequentialDependence)
      break;

    if (SUJ->Succs[i].getSUnit() != SUI)
      continue;

    SDep::Kind DepType = SUJ->Succs[i].getKind();
    // For direct calls:
    // Ignore register dependences for call instructions for packetization
    // purposes except for those due to r31 and predicate registers.
    //
    // For indirect calls:
    // Same as direct calls + check for true dependences to the register
    // used in the indirect call.
    //
    // We completely ignore Order dependences for call instructions.
    //
    // For returns:
    // Ignore register dependences for return instructions like jumpr,
    // dealloc return unless we have dependencies on the explicit uses
    // of the registers used by jumpr (like r31) or dealloc return
    // (like r29 or r30).
    unsigned DepReg = 0;
    const TargetRegisterClass *RC = nullptr;
    if (DepType == SDep::Data) {
      DepReg = SUJ->Succs[i].getReg();
      RC = HRI->getMinimalPhysRegClass(DepReg);
    }

    if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
      if (!isRegDependence(DepType))
        continue;
      if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
        continue;
    }

    if (DepType == SDep::Data) {
      if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
        if (promoteToDotCur(J, DepType, II, RC))
          continue;
    }

    // Data dpendence ok if we have load.cur.
    if (DepType == SDep::Data && HII->isDotCurInst(J)) {
      if (HII->isHVXVec(I))
        continue;
    }

    // For instructions that can be promoted to dot-new, try to promote.
    if (DepType == SDep::Data) {
      if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
        if (promoteToDotNew(I, DepType, II, RC)) {
          PromotedToDotNew = true;
          if (cannotCoexist(I, J))
            FoundSequentialDependence = true;
          continue;
        }
      }
      if (HII->isNewValueJump(I))
        continue;
    }

    // For predicated instructions, if the predicates are complements then
    // there can be no dependence.
    if (HII->isPredicated(I) && HII->isPredicated(J) &&
        arePredicatesComplements(I, J)) {
      // Not always safe to do this translation.
      // DAG Builder attempts to reduce dependence edges using transitive
      // nature of dependencies. Here is an example:
      //
      // r0 = tfr_pt ... (1)
      // r0 = tfr_pf ... (2)
      // r0 = tfr_pt ... (3)
      //
      // There will be an output dependence between (1)->(2) and (2)->(3).
      // However, there is no dependence edge between (1)->(3). This results
      // in all 3 instructions going in the same packet. We ignore dependce
      // only once to avoid this situation.
      auto Itr = find(IgnoreDepMIs, &J);
      if (Itr != IgnoreDepMIs.end()) {
        Dependence = true;
        return false;
      }
      IgnoreDepMIs.push_back(&I);
      continue;
    }

    // Ignore Order dependences between unconditional direct branches
    // and non-control-flow instructions.
    if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
        DepType == SDep::Order)
      continue;

    // Ignore all dependences for jumps except for true and output
    // dependences.
    if (I.isConditionalBranch() && DepType != SDep::Data &&
        DepType != SDep::Output)
      continue;

    if (DepType == SDep::Output) {
      FoundSequentialDependence = true;
      break;
    }

    // For Order dependences:
    // 1. Volatile loads/stores can be packetized together, unless other
    //    rules prevent is.
    // 2. Store followed by a load is not allowed.
    // 3. Store followed by a store is valid.
    // 4. Load followed by any memory operation is allowed.
    if (DepType == SDep::Order) {
      if (!PacketizeVolatiles) {
        bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
        if (OrdRefs) {
          FoundSequentialDependence = true;
          break;
        }
      }
      // J is first, I is second.
      bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
      bool LoadI = I.mayLoad(), StoreI = I.mayStore();
      bool NVStoreJ = HII->isNewValueStore(J);
      bool NVStoreI = HII->isNewValueStore(I);
      bool IsVecJ = HII->isHVXVec(J);
      bool IsVecI = HII->isHVXVec(I);

      if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
          ((LoadJ && StoreI && !NVStoreI) ||
           (StoreJ && LoadI && !NVStoreJ)) &&
          (J.getOpcode() != Hexagon::S2_allocframe &&
           I.getOpcode() != Hexagon::S2_allocframe) &&
          (J.getOpcode() != Hexagon::L2_deallocframe &&
           I.getOpcode() != Hexagon::L2_deallocframe) &&
          (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
        setmemShufDisabled(true);
      else
        if (StoreJ && LoadI && alias(J, I)) {
          FoundSequentialDependence = true;
          break;
        }

      if (!StoreJ)
        if (!LoadJ || (!LoadI && !StoreI)) {
          // If J is neither load nor store, assume a dependency.
          // If J is a load, but I is neither, also assume a dependency.
          FoundSequentialDependence = true;
          break;
        }
      // Store followed by store: not OK on V2.
      // Store followed by load: not OK on all.
      // Load followed by store: OK on all.
      // Load followed by load: OK on all.
      continue;
    }

    // Special case for ALLOCFRAME: even though there is dependency
    // between ALLOCFRAME and subsequent store, allow it to be packetized
    // in a same packet. This implies that the store is using the caller's
    // SP. Hence, offset needs to be updated accordingly.
    if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
      unsigned Opc = I.getOpcode();
      switch (Opc) {
        case Hexagon::S2_storerd_io:
        case Hexagon::S2_storeri_io:
        case Hexagon::S2_storerh_io:
        case Hexagon::S2_storerb_io:
          if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
            // Since this store is to be glued with allocframe in the same
            // packet, it will use SP of the previous stack frame, i.e.
            // caller's SP. Therefore, we need to recalculate offset
            // according to this change.
            GlueAllocframeStore = useCallersSP(I);
            if (GlueAllocframeStore)
              continue;
          }
          break;
        default:
          break;
      }
    }

    // There are certain anti-dependencies that cannot be ignored.
    // Specifically:
    //   J2_call ... implicit-def %r0   ; SUJ
    //   R0 = ...                   ; SUI
    // Those cannot be packetized together, since the call will observe
    // the effect of the assignment to R0.
    if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
      // Check if I defines any volatile register. We should also check
      // registers that the call may read, but these happen to be a
      // subset of the volatile register set.
      for (const MachineOperand &Op : I.operands()) {
        if (Op.isReg() && Op.isDef()) {
          Register R = Op.getReg();
          if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
            continue;
        } else if (!Op.isRegMask()) {
          // If I has a regmask assume dependency.
          continue;
        }
        FoundSequentialDependence = true;
        break;
      }
    }

    // Skip over remaining anti-dependences. Two instructions that are
    // anti-dependent can share a packet, since in most such cases all
    // operands are read before any modifications take place.
    // The exceptions are branch and call instructions, since they are
    // executed after all other instructions have completed (at least
    // conceptually).
    if (DepType != SDep::Anti) {
      FoundSequentialDependence = true;
      break;
    }
  }

  if (FoundSequentialDependence) {
    Dependence = true;
    return false;
  }

  return true;
}

bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();

  bool Coexist = !cannotCoexist(I, J);

  if (Coexist && !Dependence)
    return true;

  // Check if the instruction was promoted to a dot-new. If so, demote it
  // back into a dot-old.
  if (PromotedToDotNew)
    demoteToDotOld(I);

  cleanUpDotCur();
  // Check if the instruction (must be a store) was glued with an allocframe
  // instruction. If so, restore its offset to its original value, i.e. use
  // current SP instead of caller's SP.
  if (GlueAllocframeStore) {
    useCalleesSP(I);
    GlueAllocframeStore = false;
  }

  if (ChangedOffset != INT64_MAX)
    undoChangedOffset(I);

  if (GlueToNewValueJump) {
    // Putting I and J together would prevent the new-value jump from being
    // packetized with the producer. In that case I and J must be separated.
    GlueToNewValueJump = false;
    return false;
  }

  if (!Coexist)
    return false;

  if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
    FoundSequentialDependence = false;
    Dependence = false;
    return true;
  }

  return false;
}


bool HexagonPacketizerList::foundLSInPacket() {
  bool FoundLoad = false;
  bool FoundStore = false;

  for (auto MJ : CurrentPacketMIs) {
    unsigned Opc = MJ->getOpcode();
    if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
      continue;
    if (HII->isMemOp(*MJ))
      continue;
    if (MJ->mayLoad())
      FoundLoad = true;
    if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
      FoundStore = true;
  }
  return FoundLoad && FoundStore;
}


MachineBasicBlock::iterator
HexagonPacketizerList::addToPacket(MachineInstr &MI) {
  MachineBasicBlock::iterator MII = MI.getIterator();
  MachineBasicBlock *MBB = MI.getParent();

  if (CurrentPacketMIs.empty())
    PacketStalls = false;
  PacketStalls |= producesStall(MI);

  if (MI.isImplicitDef()) {
    // Add to the packet to allow subsequent instructions to be checked
    // properly.
    CurrentPacketMIs.push_back(&MI);
    return MII;
  }
  assert(ResourceTracker->canReserveResources(MI));

  bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
  bool Good = true;

  if (GlueToNewValueJump) {
    MachineInstr &NvjMI = *++MII;
    // We need to put both instructions in the same packet: MI and NvjMI.
    // Either of them can require a constant extender. Try to add both to
    // the current packet, and if that fails, end the packet and start a
    // new one.
    ResourceTracker->reserveResources(MI);
    if (ExtMI)
      Good = tryAllocateResourcesForConstExt(true);

    bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
    if (Good) {
      if (ResourceTracker->canReserveResources(NvjMI))
        ResourceTracker->reserveResources(NvjMI);
      else
        Good = false;
    }
    if (Good && ExtNvjMI)
      Good = tryAllocateResourcesForConstExt(true);

    if (!Good) {
      endPacket(MBB, MI);
      assert(ResourceTracker->canReserveResources(MI));
      ResourceTracker->reserveResources(MI);
      if (ExtMI) {
        assert(canReserveResourcesForConstExt());
        tryAllocateResourcesForConstExt(true);
      }
      assert(ResourceTracker->canReserveResources(NvjMI));
      ResourceTracker->reserveResources(NvjMI);
      if (ExtNvjMI) {
        assert(canReserveResourcesForConstExt());
        reserveResourcesForConstExt();
      }
    }
    CurrentPacketMIs.push_back(&MI);
    CurrentPacketMIs.push_back(&NvjMI);
    return MII;
  }

  ResourceTracker->reserveResources(MI);
  if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
    endPacket(MBB, MI);
    if (PromotedToDotNew)
      demoteToDotOld(MI);
    if (GlueAllocframeStore) {
      useCalleesSP(MI);
      GlueAllocframeStore = false;
    }
    ResourceTracker->reserveResources(MI);
    reserveResourcesForConstExt();
  }

  CurrentPacketMIs.push_back(&MI);
  return MII;
}

void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator EndMI) {
  // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
  LLVM_DEBUG({
    if (!CurrentPacketMIs.empty()) {
      dbgs() << "Finalizing packet:\n";
      unsigned Idx = 0;
      for (MachineInstr *MI : CurrentPacketMIs) {
        unsigned R = ResourceTracker->getUsedResources(Idx++);
        dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
      }
    }
  });

  bool memShufDisabled = getmemShufDisabled();
  if (memShufDisabled && !foundLSInPacket()) {
    setmemShufDisabled(false);
    LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
  }
  memShufDisabled = getmemShufDisabled();

  OldPacketMIs.clear();
  for (MachineInstr *MI : CurrentPacketMIs) {
    MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
    for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
      OldPacketMIs.push_back(&I);
  }
  CurrentPacketMIs.clear();

  if (OldPacketMIs.size() > 1) {
    MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
    MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
    finalizeBundle(*MBB, FirstMI, LastMI);
    auto BundleMII = std::prev(FirstMI);
    if (memShufDisabled)
      HII->setBundleNoShuf(BundleMII);

    setmemShufDisabled(false);
  }

  PacketHasDuplex = false;
  PacketHasSLOT0OnlyInsn = false;
  ResourceTracker->clearResources();
  LLVM_DEBUG(dbgs() << "End packet\n");
}

bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
  if (Minimal)
    return false;

  // Constrainst for not packetizing this MI with existing instructions in a
  // packet.
  //	MI is a store instruction.
  //	CurrentPacketMIs has a SLOT0 only instruction with constraint
  //    A_RESTRICT_NOSLOT1_STORE/isRestrictNoSlot1Store.
  if (MI.mayStore() && isPureSlot0InsnWithNoSlot1Store(MI))
    return false;

  if (producesStall(MI))
    return false;

  // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
  // with any other instruction in the existing packet.
  auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
  // Constraint 1: Only one duplex allowed per packet.
  // Constraint 2: Consider duplex checks only if there is atleast one
  // instruction in a packet.
  // Constraint 3: If one of the existing instructions in the packet has a
  // SLOT0 only instruction that can not be duplexed, do not attempt to form
  // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
  // duplex)
  if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
      !PacketHasDuplex) {
    // Check for SLOT0 only non-duplexable instruction in packet.
    for (auto &MJ : CurrentPacketMIs)
      PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
    // Get the Big Core Opcode (dup_*).
    int Opcode = HII->getDuplexOpcode(MI, false);
    if (Opcode >= 0) {
      // We now have an instruction that can be duplexed.
      for (auto &MJ : CurrentPacketMIs) {
        if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
          PacketHasDuplex = true;
          return true;
        }
      }
      // If it can not be duplexed, check if there is a valid transition in DFA
      // with the original opcode.
      MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
      MIRef.setDesc(HII->get(Opcode));
      return ResourceTracker->canReserveResources(MIRef);
    }
  }

  return true;
}

bool HexagonPacketizerList::isPureSlot0InsnWithNoSlot1Store(
    const MachineInstr &MI) {
  bool noSlot1Store = false;
  bool isSlot0Only = false;
  for (auto J : CurrentPacketMIs) {
    noSlot1Store |= HII->isRestrictNoSlot1Store(*J);
    isSlot0Only |= HII->isPureSlot0(*J);
  }

  return (noSlot1Store && isSlot0Only);
}

// V60 forward scheduling.
bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
  // If the packet already stalls, then ignore the stall from a subsequent
  // instruction in the same packet.
  if (PacketStalls)
    return false;

  // Check whether the previous packet is in a different loop. If this is the
  // case, there is little point in trying to avoid a stall because that would
  // favor the rare case (loop entry) over the common case (loop iteration).
  //
  // TODO: We should really be able to check all the incoming edges if this is
  // the first packet in a basic block, so we can avoid stalls from the loop
  // backedge.
  if (!OldPacketMIs.empty()) {
    auto *OldBB = OldPacketMIs.front()->getParent();
    auto *ThisBB = I.getParent();
    if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
      return false;
  }

  SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];

  // If the latency is 0 and there is a data dependence between this
  // instruction and any instruction in the current packet, we disregard any
  // potential stalls due to the instructions in the previous packet. Most of
  // the instruction pairs that can go together in the same packet have 0
  // latency between them. The exceptions are
  // 1. NewValueJumps as they're generated much later and the latencies can't
  // be changed at that point.
  // 2. .cur instructions, if its consumer has a 0 latency successor (such as
  // .new). In this case, the latency between .cur and the consumer stays
  // non-zero even though we can have  both .cur and .new in the same packet.
  // Changing the latency to 0 is not an option as it causes software pipeliner
  // to not pipeline in some cases.

  // For Example:
  // {
  //   I1:  v6.cur = vmem(r0++#1)
  //   I2:  v7 = valign(v6,v4,r2)
  //   I3:  vmem(r5++#1) = v7.new
  // }
  // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.

  for (auto J : CurrentPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ)
        if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
            HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
          return false;
  }

  // Check if the latency is greater than one between this instruction and any
  // instruction in the previous packet.
  for (auto J : OldPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
        return true;
  }

  return false;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
  return new HexagonPacketizer(Minimal);
}