Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
//===- MipsInstructionSelector.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// Mips.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/MipsInstPrinter.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterBankInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/IR/IntrinsicsMips.h"

#define DEBUG_TYPE "mips-isel"

using namespace llvm;

namespace {

#define GET_GLOBALISEL_PREDICATE_BITSET
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET

class MipsInstructionSelector : public InstructionSelector {
public:
  MipsInstructionSelector(const MipsTargetMachine &TM, const MipsSubtarget &STI,
                          const MipsRegisterBankInfo &RBI);

  bool select(MachineInstr &I) override;
  static const char *getName() { return DEBUG_TYPE; }

private:
  bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
  bool isRegInGprb(Register Reg, MachineRegisterInfo &MRI) const;
  bool isRegInFprb(Register Reg, MachineRegisterInfo &MRI) const;
  bool materialize32BitImm(Register DestReg, APInt Imm,
                           MachineIRBuilder &B) const;
  bool selectCopy(MachineInstr &I, MachineRegisterInfo &MRI) const;
  const TargetRegisterClass *
  getRegClassForTypeOnBank(Register Reg, MachineRegisterInfo &MRI) const;
  unsigned selectLoadStoreOpCode(MachineInstr &I,
                                 MachineRegisterInfo &MRI) const;
  bool buildUnalignedStore(MachineInstr &I, unsigned Opc,
                           MachineOperand &BaseAddr, unsigned Offset,
                           MachineMemOperand *MMO) const;
  bool buildUnalignedLoad(MachineInstr &I, unsigned Opc, Register Dest,
                          MachineOperand &BaseAddr, unsigned Offset,
                          Register TiedDest, MachineMemOperand *MMO) const;

  const MipsTargetMachine &TM;
  const MipsSubtarget &STI;
  const MipsInstrInfo &TII;
  const MipsRegisterInfo &TRI;
  const MipsRegisterBankInfo &RBI;

#define GET_GLOBALISEL_PREDICATES_DECL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL

#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};

} // end anonymous namespace

#define GET_GLOBALISEL_IMPL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL

MipsInstructionSelector::MipsInstructionSelector(
    const MipsTargetMachine &TM, const MipsSubtarget &STI,
    const MipsRegisterBankInfo &RBI)
    : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
      TRI(*STI.getRegisterInfo()), RBI(RBI),

#define GET_GLOBALISEL_PREDICATES_INIT
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}

bool MipsInstructionSelector::isRegInGprb(Register Reg,
                                          MachineRegisterInfo &MRI) const {
  return RBI.getRegBank(Reg, MRI, TRI)->getID() == Mips::GPRBRegBankID;
}

bool MipsInstructionSelector::isRegInFprb(Register Reg,
                                          MachineRegisterInfo &MRI) const {
  return RBI.getRegBank(Reg, MRI, TRI)->getID() == Mips::FPRBRegBankID;
}

bool MipsInstructionSelector::selectCopy(MachineInstr &I,
                                         MachineRegisterInfo &MRI) const {
  Register DstReg = I.getOperand(0).getReg();
  if (Register::isPhysicalRegister(DstReg))
    return true;

  const TargetRegisterClass *RC = getRegClassForTypeOnBank(DstReg, MRI);
  if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) {
    LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
                      << " operand\n");
    return false;
  }
  return true;
}

const TargetRegisterClass *MipsInstructionSelector::getRegClassForTypeOnBank(
    Register Reg, MachineRegisterInfo &MRI) const {
  const LLT Ty = MRI.getType(Reg);
  const unsigned TySize = Ty.getSizeInBits();

  if (isRegInGprb(Reg, MRI)) {
    assert((Ty.isScalar() || Ty.isPointer()) && TySize == 32 &&
           "Register class not available for LLT, register bank combination");
    return &Mips::GPR32RegClass;
  }

  if (isRegInFprb(Reg, MRI)) {
    if (Ty.isScalar()) {
      assert((TySize == 32 || TySize == 64) &&
             "Register class not available for LLT, register bank combination");
      if (TySize == 32)
        return &Mips::FGR32RegClass;
      return STI.isFP64bit() ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
    }
  }

  llvm_unreachable("Unsupported register bank.");
}

bool MipsInstructionSelector::materialize32BitImm(Register DestReg, APInt Imm,
                                                  MachineIRBuilder &B) const {
  assert(Imm.getBitWidth() == 32 && "Unsupported immediate size.");
  // Ori zero extends immediate. Used for values with zeros in high 16 bits.
  if (Imm.getHiBits(16).isNullValue()) {
    MachineInstr *Inst =
        B.buildInstr(Mips::ORi, {DestReg}, {Register(Mips::ZERO)})
            .addImm(Imm.getLoBits(16).getLimitedValue());
    return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
  }
  // Lui places immediate in high 16 bits and sets low 16 bits to zero.
  if (Imm.getLoBits(16).isNullValue()) {
    MachineInstr *Inst = B.buildInstr(Mips::LUi, {DestReg}, {})
                             .addImm(Imm.getHiBits(16).getLimitedValue());
    return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
  }
  // ADDiu sign extends immediate. Used for values with 1s in high 17 bits.
  if (Imm.isSignedIntN(16)) {
    MachineInstr *Inst =
        B.buildInstr(Mips::ADDiu, {DestReg}, {Register(Mips::ZERO)})
            .addImm(Imm.getLoBits(16).getLimitedValue());
    return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
  }
  // Values that cannot be materialized with single immediate instruction.
  Register LUiReg = B.getMRI()->createVirtualRegister(&Mips::GPR32RegClass);
  MachineInstr *LUi = B.buildInstr(Mips::LUi, {LUiReg}, {})
                          .addImm(Imm.getHiBits(16).getLimitedValue());
  MachineInstr *ORi = B.buildInstr(Mips::ORi, {DestReg}, {LUiReg})
                          .addImm(Imm.getLoBits(16).getLimitedValue());
  if (!constrainSelectedInstRegOperands(*LUi, TII, TRI, RBI))
    return false;
  if (!constrainSelectedInstRegOperands(*ORi, TII, TRI, RBI))
    return false;
  return true;
}

/// When I.getOpcode() is returned, we failed to select MIPS instruction opcode.
unsigned
MipsInstructionSelector::selectLoadStoreOpCode(MachineInstr &I,
                                               MachineRegisterInfo &MRI) const {
  const Register ValueReg = I.getOperand(0).getReg();
  const LLT Ty = MRI.getType(ValueReg);
  const unsigned TySize = Ty.getSizeInBits();
  const unsigned MemSizeInBytes = (*I.memoperands_begin())->getSize();
  unsigned Opc = I.getOpcode();
  const bool isStore = Opc == TargetOpcode::G_STORE;

  if (isRegInGprb(ValueReg, MRI)) {
    assert(((Ty.isScalar() && TySize == 32) ||
            (Ty.isPointer() && TySize == 32 && MemSizeInBytes == 4)) &&
           "Unsupported register bank, LLT, MemSizeInBytes combination");
    (void)TySize;
    if (isStore)
      switch (MemSizeInBytes) {
      case 4:
        return Mips::SW;
      case 2:
        return Mips::SH;
      case 1:
        return Mips::SB;
      default:
        return Opc;
      }
    else
      // Unspecified extending load is selected into zeroExtending load.
      switch (MemSizeInBytes) {
      case 4:
        return Mips::LW;
      case 2:
        return Opc == TargetOpcode::G_SEXTLOAD ? Mips::LH : Mips::LHu;
      case 1:
        return Opc == TargetOpcode::G_SEXTLOAD ? Mips::LB : Mips::LBu;
      default:
        return Opc;
      }
  }

  if (isRegInFprb(ValueReg, MRI)) {
    if (Ty.isScalar()) {
      assert(((TySize == 32 && MemSizeInBytes == 4) ||
              (TySize == 64 && MemSizeInBytes == 8)) &&
             "Unsupported register bank, LLT, MemSizeInBytes combination");

      if (MemSizeInBytes == 4)
        return isStore ? Mips::SWC1 : Mips::LWC1;

      if (STI.isFP64bit())
        return isStore ? Mips::SDC164 : Mips::LDC164;
      return isStore ? Mips::SDC1 : Mips::LDC1;
    }

    if (Ty.isVector()) {
      assert(STI.hasMSA() && "Vector instructions require target with MSA.");
      assert((TySize == 128 && MemSizeInBytes == 16) &&
             "Unsupported register bank, LLT, MemSizeInBytes combination");
      switch (Ty.getElementType().getSizeInBits()) {
      case 8:
        return isStore ? Mips::ST_B : Mips::LD_B;
      case 16:
        return isStore ? Mips::ST_H : Mips::LD_H;
      case 32:
        return isStore ? Mips::ST_W : Mips::LD_W;
      case 64:
        return isStore ? Mips::ST_D : Mips::LD_D;
      default:
        return Opc;
      }
    }
  }

  return Opc;
}

bool MipsInstructionSelector::buildUnalignedStore(
    MachineInstr &I, unsigned Opc, MachineOperand &BaseAddr, unsigned Offset,
    MachineMemOperand *MMO) const {
  MachineInstr *NewInst =
      BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opc))
          .add(I.getOperand(0))
          .add(BaseAddr)
          .addImm(Offset)
          .addMemOperand(MMO);
  if (!constrainSelectedInstRegOperands(*NewInst, TII, TRI, RBI))
    return false;
  return true;
}

bool MipsInstructionSelector::buildUnalignedLoad(
    MachineInstr &I, unsigned Opc, Register Dest, MachineOperand &BaseAddr,
    unsigned Offset, Register TiedDest, MachineMemOperand *MMO) const {
  MachineInstr *NewInst =
      BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opc))
          .addDef(Dest)
          .add(BaseAddr)
          .addImm(Offset)
          .addUse(TiedDest)
          .addMemOperand(*I.memoperands_begin());
  if (!constrainSelectedInstRegOperands(*NewInst, TII, TRI, RBI))
    return false;
  return true;
}

bool MipsInstructionSelector::select(MachineInstr &I) {

  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  if (!isPreISelGenericOpcode(I.getOpcode())) {
    if (I.isCopy())
      return selectCopy(I, MRI);

    return true;
  }

  if (I.getOpcode() == Mips::G_MUL &&
      isRegInGprb(I.getOperand(0).getReg(), MRI)) {
    MachineInstr *Mul = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::MUL))
                            .add(I.getOperand(0))
                            .add(I.getOperand(1))
                            .add(I.getOperand(2));
    if (!constrainSelectedInstRegOperands(*Mul, TII, TRI, RBI))
      return false;
    Mul->getOperand(3).setIsDead(true);
    Mul->getOperand(4).setIsDead(true);

    I.eraseFromParent();
    return true;
  }

  if (selectImpl(I, *CoverageInfo))
    return true;

  MachineInstr *MI = nullptr;
  using namespace TargetOpcode;

  switch (I.getOpcode()) {
  case G_UMULH: {
    Register PseudoMULTuReg = MRI.createVirtualRegister(&Mips::ACC64RegClass);
    MachineInstr *PseudoMULTu, *PseudoMove;

    PseudoMULTu = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoMULTu))
                      .addDef(PseudoMULTuReg)
                      .add(I.getOperand(1))
                      .add(I.getOperand(2));
    if (!constrainSelectedInstRegOperands(*PseudoMULTu, TII, TRI, RBI))
      return false;

    PseudoMove = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoMFHI))
                     .addDef(I.getOperand(0).getReg())
                     .addUse(PseudoMULTuReg);
    if (!constrainSelectedInstRegOperands(*PseudoMove, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_PTR_ADD: {
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDu))
             .add(I.getOperand(0))
             .add(I.getOperand(1))
             .add(I.getOperand(2));
    break;
  }
  case G_INTTOPTR:
  case G_PTRTOINT: {
    I.setDesc(TII.get(COPY));
    return selectCopy(I, MRI);
  }
  case G_FRAME_INDEX: {
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
             .add(I.getOperand(0))
             .add(I.getOperand(1))
             .addImm(0);
    break;
  }
  case G_BRCOND: {
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::BNE))
             .add(I.getOperand(0))
             .addUse(Mips::ZERO)
             .add(I.getOperand(1));
    break;
  }
  case G_BRJT: {
    unsigned EntrySize =
        MF.getJumpTableInfo()->getEntrySize(MF.getDataLayout());
    assert(isPowerOf2_32(EntrySize) &&
           "Non-power-of-two jump-table entry size not supported.");

    Register JTIndex = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    MachineInstr *SLL = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::SLL))
                            .addDef(JTIndex)
                            .addUse(I.getOperand(2).getReg())
                            .addImm(Log2_32(EntrySize));
    if (!constrainSelectedInstRegOperands(*SLL, TII, TRI, RBI))
      return false;

    Register DestAddress = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    MachineInstr *ADDu = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDu))
                             .addDef(DestAddress)
                             .addUse(I.getOperand(0).getReg())
                             .addUse(JTIndex);
    if (!constrainSelectedInstRegOperands(*ADDu, TII, TRI, RBI))
      return false;

    Register Dest = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    MachineInstr *LW =
        BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LW))
            .addDef(Dest)
            .addUse(DestAddress)
            .addJumpTableIndex(I.getOperand(1).getIndex(), MipsII::MO_ABS_LO)
            .addMemOperand(MF.getMachineMemOperand(
                MachinePointerInfo(), MachineMemOperand::MOLoad, 4, Align(4)));
    if (!constrainSelectedInstRegOperands(*LW, TII, TRI, RBI))
      return false;

    if (MF.getTarget().isPositionIndependent()) {
      Register DestTmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      LW->getOperand(0).setReg(DestTmp);
      MachineInstr *ADDu = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDu))
                               .addDef(Dest)
                               .addUse(DestTmp)
                               .addUse(MF.getInfo<MipsFunctionInfo>()
                                           ->getGlobalBaseRegForGlobalISel(MF));
      if (!constrainSelectedInstRegOperands(*ADDu, TII, TRI, RBI))
        return false;
    }

    MachineInstr *Branch =
        BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoIndirectBranch))
            .addUse(Dest);
    if (!constrainSelectedInstRegOperands(*Branch, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_BRINDIRECT: {
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoIndirectBranch))
             .add(I.getOperand(0));
    break;
  }
  case G_PHI: {
    const Register DestReg = I.getOperand(0).getReg();

    const TargetRegisterClass *DefRC = nullptr;
    if (Register::isPhysicalRegister(DestReg))
      DefRC = TRI.getRegClass(DestReg);
    else
      DefRC = getRegClassForTypeOnBank(DestReg, MRI);

    I.setDesc(TII.get(TargetOpcode::PHI));
    return RBI.constrainGenericRegister(DestReg, *DefRC, MRI);
  }
  case G_STORE:
  case G_LOAD:
  case G_ZEXTLOAD:
  case G_SEXTLOAD: {
    auto MMO = *I.memoperands_begin();
    MachineOperand BaseAddr = I.getOperand(1);
    int64_t SignedOffset = 0;
    // Try to fold load/store + G_PTR_ADD + G_CONSTANT
    // %SignedOffset:(s32) = G_CONSTANT i32 16_bit_signed_immediate
    // %Addr:(p0) = G_PTR_ADD %BaseAddr, %SignedOffset
    // %LoadResult/%StoreSrc = load/store %Addr(p0)
    // into:
    // %LoadResult/%StoreSrc = NewOpc %BaseAddr(p0), 16_bit_signed_immediate

    MachineInstr *Addr = MRI.getVRegDef(I.getOperand(1).getReg());
    if (Addr->getOpcode() == G_PTR_ADD) {
      MachineInstr *Offset = MRI.getVRegDef(Addr->getOperand(2).getReg());
      if (Offset->getOpcode() == G_CONSTANT) {
        APInt OffsetValue = Offset->getOperand(1).getCImm()->getValue();
        if (OffsetValue.isSignedIntN(16)) {
          BaseAddr = Addr->getOperand(1);
          SignedOffset = OffsetValue.getSExtValue();
        }
      }
    }

    // Unaligned memory access
    if (MMO->getAlign() < MMO->getSize() &&
        !STI.systemSupportsUnalignedAccess()) {
      if (MMO->getSize() != 4 || !isRegInGprb(I.getOperand(0).getReg(), MRI))
        return false;

      if (I.getOpcode() == G_STORE) {
        if (!buildUnalignedStore(I, Mips::SWL, BaseAddr, SignedOffset + 3, MMO))
          return false;
        if (!buildUnalignedStore(I, Mips::SWR, BaseAddr, SignedOffset, MMO))
          return false;
        I.eraseFromParent();
        return true;
      }

      if (I.getOpcode() == G_LOAD) {
        Register ImplDef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
        BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::IMPLICIT_DEF))
            .addDef(ImplDef);
        Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
        if (!buildUnalignedLoad(I, Mips::LWL, Tmp, BaseAddr, SignedOffset + 3,
                                ImplDef, MMO))
          return false;
        if (!buildUnalignedLoad(I, Mips::LWR, I.getOperand(0).getReg(),
                                BaseAddr, SignedOffset, Tmp, MMO))
          return false;
        I.eraseFromParent();
        return true;
      }

      return false;
    }

    const unsigned NewOpc = selectLoadStoreOpCode(I, MRI);
    if (NewOpc == I.getOpcode())
      return false;

    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(NewOpc))
             .add(I.getOperand(0))
             .add(BaseAddr)
             .addImm(SignedOffset)
             .addMemOperand(MMO);
    break;
  }
  case G_UDIV:
  case G_UREM:
  case G_SDIV:
  case G_SREM: {
    Register HILOReg = MRI.createVirtualRegister(&Mips::ACC64RegClass);
    bool IsSigned = I.getOpcode() == G_SREM || I.getOpcode() == G_SDIV;
    bool IsDiv = I.getOpcode() == G_UDIV || I.getOpcode() == G_SDIV;

    MachineInstr *PseudoDIV, *PseudoMove;
    PseudoDIV = BuildMI(MBB, I, I.getDebugLoc(),
                        TII.get(IsSigned ? Mips::PseudoSDIV : Mips::PseudoUDIV))
                    .addDef(HILOReg)
                    .add(I.getOperand(1))
                    .add(I.getOperand(2));
    if (!constrainSelectedInstRegOperands(*PseudoDIV, TII, TRI, RBI))
      return false;

    PseudoMove = BuildMI(MBB, I, I.getDebugLoc(),
                         TII.get(IsDiv ? Mips::PseudoMFLO : Mips::PseudoMFHI))
                     .addDef(I.getOperand(0).getReg())
                     .addUse(HILOReg);
    if (!constrainSelectedInstRegOperands(*PseudoMove, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_SELECT: {
    // Handle operands with pointer type.
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::MOVN_I_I))
             .add(I.getOperand(0))
             .add(I.getOperand(2))
             .add(I.getOperand(1))
             .add(I.getOperand(3));
    break;
  }
  case G_UNMERGE_VALUES: {
    if (I.getNumOperands() != 3)
      return false;
    Register Src = I.getOperand(2).getReg();
    Register Lo = I.getOperand(0).getReg();
    Register Hi = I.getOperand(1).getReg();
    if (!isRegInFprb(Src, MRI) ||
        !(isRegInGprb(Lo, MRI) && isRegInGprb(Hi, MRI)))
      return false;

    unsigned Opcode =
        STI.isFP64bit() ? Mips::ExtractElementF64_64 : Mips::ExtractElementF64;

    MachineInstr *ExtractLo = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode))
                                  .addDef(Lo)
                                  .addUse(Src)
                                  .addImm(0);
    if (!constrainSelectedInstRegOperands(*ExtractLo, TII, TRI, RBI))
      return false;

    MachineInstr *ExtractHi = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode))
                                  .addDef(Hi)
                                  .addUse(Src)
                                  .addImm(1);
    if (!constrainSelectedInstRegOperands(*ExtractHi, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_IMPLICIT_DEF: {
    Register Dst = I.getOperand(0).getReg();
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::IMPLICIT_DEF))
             .addDef(Dst);

    // Set class based on register bank, there can be fpr and gpr implicit def.
    MRI.setRegClass(Dst, getRegClassForTypeOnBank(Dst, MRI));
    break;
  }
  case G_CONSTANT: {
    MachineIRBuilder B(I);
    if (!materialize32BitImm(I.getOperand(0).getReg(),
                             I.getOperand(1).getCImm()->getValue(), B))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_FCONSTANT: {
    const APFloat &FPimm = I.getOperand(1).getFPImm()->getValueAPF();
    APInt APImm = FPimm.bitcastToAPInt();
    unsigned Size = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();

    if (Size == 32) {
      Register GPRReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      MachineIRBuilder B(I);
      if (!materialize32BitImm(GPRReg, APImm, B))
        return false;

      MachineInstrBuilder MTC1 =
          B.buildInstr(Mips::MTC1, {I.getOperand(0).getReg()}, {GPRReg});
      if (!MTC1.constrainAllUses(TII, TRI, RBI))
        return false;
    }
    if (Size == 64) {
      Register GPRRegHigh = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      Register GPRRegLow = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      MachineIRBuilder B(I);
      if (!materialize32BitImm(GPRRegHigh, APImm.getHiBits(32).trunc(32), B))
        return false;
      if (!materialize32BitImm(GPRRegLow, APImm.getLoBits(32).trunc(32), B))
        return false;

      MachineInstrBuilder PairF64 = B.buildInstr(
          STI.isFP64bit() ? Mips::BuildPairF64_64 : Mips::BuildPairF64,
          {I.getOperand(0).getReg()}, {GPRRegLow, GPRRegHigh});
      if (!PairF64.constrainAllUses(TII, TRI, RBI))
        return false;
    }

    I.eraseFromParent();
    return true;
  }
  case G_FABS: {
    unsigned Size = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
    unsigned FABSOpcode =
        Size == 32 ? Mips::FABS_S
                   : STI.isFP64bit() ? Mips::FABS_D64 : Mips::FABS_D32;
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(FABSOpcode))
             .add(I.getOperand(0))
             .add(I.getOperand(1));
    break;
  }
  case G_FPTOSI: {
    unsigned FromSize = MRI.getType(I.getOperand(1).getReg()).getSizeInBits();
    unsigned ToSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
    (void)ToSize;
    assert((ToSize == 32) && "Unsupported integer size for G_FPTOSI");
    assert((FromSize == 32 || FromSize == 64) &&
           "Unsupported floating point size for G_FPTOSI");

    unsigned Opcode;
    if (FromSize == 32)
      Opcode = Mips::TRUNC_W_S;
    else
      Opcode = STI.isFP64bit() ? Mips::TRUNC_W_D64 : Mips::TRUNC_W_D32;
    Register ResultInFPR = MRI.createVirtualRegister(&Mips::FGR32RegClass);
    MachineInstr *Trunc = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode))
                .addDef(ResultInFPR)
                .addUse(I.getOperand(1).getReg());
    if (!constrainSelectedInstRegOperands(*Trunc, TII, TRI, RBI))
      return false;

    MachineInstr *Move = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::MFC1))
                             .addDef(I.getOperand(0).getReg())
                             .addUse(ResultInFPR);
    if (!constrainSelectedInstRegOperands(*Move, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_GLOBAL_VALUE: {
    const llvm::GlobalValue *GVal = I.getOperand(1).getGlobal();
    if (MF.getTarget().isPositionIndependent()) {
      MachineInstr *LWGOT = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LW))
                                .addDef(I.getOperand(0).getReg())
                                .addReg(MF.getInfo<MipsFunctionInfo>()
                                            ->getGlobalBaseRegForGlobalISel(MF))
                                .addGlobalAddress(GVal);
      // Global Values that don't have local linkage are handled differently
      // when they are part of call sequence. MipsCallLowering::lowerCall
      // creates G_GLOBAL_VALUE instruction as part of call sequence and adds
      // MO_GOT_CALL flag when Callee doesn't have local linkage.
      if (I.getOperand(1).getTargetFlags() == MipsII::MO_GOT_CALL)
        LWGOT->getOperand(2).setTargetFlags(MipsII::MO_GOT_CALL);
      else
        LWGOT->getOperand(2).setTargetFlags(MipsII::MO_GOT);
      LWGOT->addMemOperand(
          MF, MF.getMachineMemOperand(MachinePointerInfo::getGOT(MF),
                                      MachineMemOperand::MOLoad, 4, Align(4)));
      if (!constrainSelectedInstRegOperands(*LWGOT, TII, TRI, RBI))
        return false;

      if (GVal->hasLocalLinkage()) {
        Register LWGOTDef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
        LWGOT->getOperand(0).setReg(LWGOTDef);

        MachineInstr *ADDiu =
            BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
                .addDef(I.getOperand(0).getReg())
                .addReg(LWGOTDef)
                .addGlobalAddress(GVal);
        ADDiu->getOperand(2).setTargetFlags(MipsII::MO_ABS_LO);
        if (!constrainSelectedInstRegOperands(*ADDiu, TII, TRI, RBI))
          return false;
      }
    } else {
      Register LUiReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);

      MachineInstr *LUi = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LUi))
                              .addDef(LUiReg)
                              .addGlobalAddress(GVal);
      LUi->getOperand(1).setTargetFlags(MipsII::MO_ABS_HI);
      if (!constrainSelectedInstRegOperands(*LUi, TII, TRI, RBI))
        return false;

      MachineInstr *ADDiu =
          BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
              .addDef(I.getOperand(0).getReg())
              .addUse(LUiReg)
              .addGlobalAddress(GVal);
      ADDiu->getOperand(2).setTargetFlags(MipsII::MO_ABS_LO);
      if (!constrainSelectedInstRegOperands(*ADDiu, TII, TRI, RBI))
        return false;
    }
    I.eraseFromParent();
    return true;
  }
  case G_JUMP_TABLE: {
    if (MF.getTarget().isPositionIndependent()) {
      MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LW))
               .addDef(I.getOperand(0).getReg())
               .addReg(MF.getInfo<MipsFunctionInfo>()
                           ->getGlobalBaseRegForGlobalISel(MF))
               .addJumpTableIndex(I.getOperand(1).getIndex(), MipsII::MO_GOT)
               .addMemOperand(MF.getMachineMemOperand(
                   MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad, 4,
                   Align(4)));
    } else {
      MI =
          BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LUi))
              .addDef(I.getOperand(0).getReg())
              .addJumpTableIndex(I.getOperand(1).getIndex(), MipsII::MO_ABS_HI);
    }
    break;
  }
  case G_ICMP: {
    struct Instr {
      unsigned Opcode;
      Register Def, LHS, RHS;
      Instr(unsigned Opcode, Register Def, Register LHS, Register RHS)
          : Opcode(Opcode), Def(Def), LHS(LHS), RHS(RHS){};

      bool hasImm() const {
        if (Opcode == Mips::SLTiu || Opcode == Mips::XORi)
          return true;
        return false;
      }
    };

    SmallVector<struct Instr, 2> Instructions;
    Register ICMPReg = I.getOperand(0).getReg();
    Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register LHS = I.getOperand(2).getReg();
    Register RHS = I.getOperand(3).getReg();
    CmpInst::Predicate Cond =
        static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());

    switch (Cond) {
    case CmpInst::ICMP_EQ: // LHS == RHS -> (LHS ^ RHS) < 1
      Instructions.emplace_back(Mips::XOR, Temp, LHS, RHS);
      Instructions.emplace_back(Mips::SLTiu, ICMPReg, Temp, 1);
      break;
    case CmpInst::ICMP_NE: // LHS != RHS -> 0 < (LHS ^ RHS)
      Instructions.emplace_back(Mips::XOR, Temp, LHS, RHS);
      Instructions.emplace_back(Mips::SLTu, ICMPReg, Mips::ZERO, Temp);
      break;
    case CmpInst::ICMP_UGT: // LHS >  RHS -> RHS < LHS
      Instructions.emplace_back(Mips::SLTu, ICMPReg, RHS, LHS);
      break;
    case CmpInst::ICMP_UGE: // LHS >= RHS -> !(LHS < RHS)
      Instructions.emplace_back(Mips::SLTu, Temp, LHS, RHS);
      Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
      break;
    case CmpInst::ICMP_ULT: // LHS <  RHS -> LHS < RHS
      Instructions.emplace_back(Mips::SLTu, ICMPReg, LHS, RHS);
      break;
    case CmpInst::ICMP_ULE: // LHS <= RHS -> !(RHS < LHS)
      Instructions.emplace_back(Mips::SLTu, Temp, RHS, LHS);
      Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
      break;
    case CmpInst::ICMP_SGT: // LHS >  RHS -> RHS < LHS
      Instructions.emplace_back(Mips::SLT, ICMPReg, RHS, LHS);
      break;
    case CmpInst::ICMP_SGE: // LHS >= RHS -> !(LHS < RHS)
      Instructions.emplace_back(Mips::SLT, Temp, LHS, RHS);
      Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
      break;
    case CmpInst::ICMP_SLT: // LHS <  RHS -> LHS < RHS
      Instructions.emplace_back(Mips::SLT, ICMPReg, LHS, RHS);
      break;
    case CmpInst::ICMP_SLE: // LHS <= RHS -> !(RHS < LHS)
      Instructions.emplace_back(Mips::SLT, Temp, RHS, LHS);
      Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
      break;
    default:
      return false;
    }

    MachineIRBuilder B(I);
    for (const struct Instr &Instruction : Instructions) {
      MachineInstrBuilder MIB = B.buildInstr(
          Instruction.Opcode, {Instruction.Def}, {Instruction.LHS});

      if (Instruction.hasImm())
        MIB.addImm(Instruction.RHS);
      else
        MIB.addUse(Instruction.RHS);

      if (!MIB.constrainAllUses(TII, TRI, RBI))
        return false;
    }

    I.eraseFromParent();
    return true;
  }
  case G_FCMP: {
    unsigned MipsFCMPCondCode;
    bool isLogicallyNegated;
    switch (CmpInst::Predicate Cond = static_cast<CmpInst::Predicate>(
                I.getOperand(1).getPredicate())) {
    case CmpInst::FCMP_UNO: // Unordered
    case CmpInst::FCMP_ORD: // Ordered (OR)
      MipsFCMPCondCode = Mips::FCOND_UN;
      isLogicallyNegated = Cond != CmpInst::FCMP_UNO;
      break;
    case CmpInst::FCMP_OEQ: // Equal
    case CmpInst::FCMP_UNE: // Not Equal (NEQ)
      MipsFCMPCondCode = Mips::FCOND_OEQ;
      isLogicallyNegated = Cond != CmpInst::FCMP_OEQ;
      break;
    case CmpInst::FCMP_UEQ: // Unordered or Equal
    case CmpInst::FCMP_ONE: // Ordered or Greater Than or Less Than (OGL)
      MipsFCMPCondCode = Mips::FCOND_UEQ;
      isLogicallyNegated = Cond != CmpInst::FCMP_UEQ;
      break;
    case CmpInst::FCMP_OLT: // Ordered or Less Than
    case CmpInst::FCMP_UGE: // Unordered or Greater Than or Equal (UGE)
      MipsFCMPCondCode = Mips::FCOND_OLT;
      isLogicallyNegated = Cond != CmpInst::FCMP_OLT;
      break;
    case CmpInst::FCMP_ULT: // Unordered or Less Than
    case CmpInst::FCMP_OGE: // Ordered or Greater Than or Equal (OGE)
      MipsFCMPCondCode = Mips::FCOND_ULT;
      isLogicallyNegated = Cond != CmpInst::FCMP_ULT;
      break;
    case CmpInst::FCMP_OLE: // Ordered or Less Than or Equal
    case CmpInst::FCMP_UGT: // Unordered or Greater Than (UGT)
      MipsFCMPCondCode = Mips::FCOND_OLE;
      isLogicallyNegated = Cond != CmpInst::FCMP_OLE;
      break;
    case CmpInst::FCMP_ULE: // Unordered or Less Than or Equal
    case CmpInst::FCMP_OGT: // Ordered or Greater Than (OGT)
      MipsFCMPCondCode = Mips::FCOND_ULE;
      isLogicallyNegated = Cond != CmpInst::FCMP_ULE;
      break;
    default:
      return false;
    }

    // Default compare result in gpr register will be `true`.
    // We will move `false` (MIPS::Zero) to gpr result when fcmp gives false
    // using MOVF_I. When orignal predicate (Cond) is logically negated
    // MipsFCMPCondCode, result is inverted i.e. MOVT_I is used.
    unsigned MoveOpcode = isLogicallyNegated ? Mips::MOVT_I : Mips::MOVF_I;

    Register TrueInReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
        .addDef(TrueInReg)
        .addUse(Mips::ZERO)
        .addImm(1);

    unsigned Size = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
    unsigned FCMPOpcode =
        Size == 32 ? Mips::FCMP_S32
                   : STI.isFP64bit() ? Mips::FCMP_D64 : Mips::FCMP_D32;
    MachineInstr *FCMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(FCMPOpcode))
                             .addUse(I.getOperand(2).getReg())
                             .addUse(I.getOperand(3).getReg())
                             .addImm(MipsFCMPCondCode);
    if (!constrainSelectedInstRegOperands(*FCMP, TII, TRI, RBI))
      return false;

    MachineInstr *Move = BuildMI(MBB, I, I.getDebugLoc(), TII.get(MoveOpcode))
                             .addDef(I.getOperand(0).getReg())
                             .addUse(Mips::ZERO)
                             .addUse(Mips::FCC0)
                             .addUse(TrueInReg);
    if (!constrainSelectedInstRegOperands(*Move, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  case G_FENCE: {
    MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::SYNC)).addImm(0);
    break;
  }
  case G_VASTART: {
    MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
    int FI = FuncInfo->getVarArgsFrameIndex();

    Register LeaReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    MachineInstr *LEA_ADDiu =
        BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LEA_ADDiu))
            .addDef(LeaReg)
            .addFrameIndex(FI)
            .addImm(0);
    if (!constrainSelectedInstRegOperands(*LEA_ADDiu, TII, TRI, RBI))
      return false;

    MachineInstr *Store = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::SW))
                              .addUse(LeaReg)
                              .addUse(I.getOperand(0).getReg())
                              .addImm(0);
    if (!constrainSelectedInstRegOperands(*Store, TII, TRI, RBI))
      return false;

    I.eraseFromParent();
    return true;
  }
  default:
    return false;
  }

  I.eraseFromParent();
  return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}

namespace llvm {
InstructionSelector *createMipsInstructionSelector(const MipsTargetMachine &TM,
                                                   MipsSubtarget &Subtarget,
                                                   MipsRegisterBankInfo &RBI) {
  return new MipsInstructionSelector(TM, Subtarget, RBI);
}
} // end namespace llvm