Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//

class InstSystemZ<int size, dag outs, dag ins, string asmstr,
                  list<dag> pattern> : Instruction {
  let Namespace = "SystemZ";

  dag OutOperandList = outs;
  dag InOperandList = ins;
  let Size = size;
  let Pattern = pattern;
  let AsmString = asmstr;

  let hasSideEffects = 0;
  let mayLoad = 0;
  let mayStore = 0;

  // Some instructions come in pairs, one having a 12-bit displacement
  // and the other having a 20-bit displacement.  Both instructions in
  // the pair have the same DispKey and their DispSizes are "12" and "20"
  // respectively.
  string DispKey = "";
  string DispSize = "none";

  // Many register-based <INSN>R instructions have a memory-based <INSN>
  // counterpart.  OpKey uniquely identifies <INSN>R, while OpType is
  // "reg" for <INSN>R and "mem" for <INSN>.
  string OpKey = "";
  string OpType = "none";

  // MemKey identifies a targe reg-mem opcode, while MemType can be either
  // "pseudo" or "target". This is used to map a pseduo memory instruction to
  // its corresponding target opcode. See comment at MemFoldPseudo.
  string MemKey = "";
  string MemType = "none";

  // Many distinct-operands instructions have older 2-operand equivalents.
  // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
  // with NumOpsValue being "2" or "3" as appropriate.
  string NumOpsKey = "";
  string NumOpsValue = "none";

  // True if this instruction is a simple D(X,B) load of a register
  // (with no sign or zero extension).
  bit SimpleBDXLoad = 0;

  // True if this instruction is a simple D(X,B) store of a register
  // (with no truncation).
  bit SimpleBDXStore = 0;

  // True if this instruction has a 20-bit displacement field.
  bit Has20BitOffset = 0;

  // True if addresses in this instruction have an index register.
  bit HasIndex = 0;

  // True if this is a 128-bit pseudo instruction that combines two 64-bit
  // operations.
  bit Is128Bit = 0;

  // The access size of all memory operands in bytes, or 0 if not known.
  bits<5> AccessBytes = 0;

  // If the instruction sets CC to a useful value, this gives the mask
  // of all possible CC results.  The mask has the same form as
  // SystemZ::CCMASK_*.
  bits<4> CCValues = 0;

  // The subset of CCValues that have the same meaning as they would after a
  // comparison of the first operand against zero. "Logical" instructions
  // leave this blank as they set CC in a different way.
  bits<4> CompareZeroCCMask = 0;

  // True if the instruction is conditional and if the CC mask operand
  // comes first (as for BRC, etc.).
  bit CCMaskFirst = 0;

  // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
  bit CCMaskLast = 0;

  // True if the instruction is the "logical" rather than "arithmetic" form,
  // in cases where a distinction exists. Except for logical compares, if the
  // instruction sets this flag along with a non-zero CCValues field, it is
  // assumed to set CC to either CCMASK_LOGICAL_ZERO or
  // CCMASK_LOGICAL_NONZERO.
  bit IsLogical = 0;

  // True if the (add or sub) instruction sets CC like a compare of the
  // result against zero, but only if the 'nsw' flag is set.
  bit CCIfNoSignedWrap = 0;

  let TSFlags{0}     = SimpleBDXLoad;
  let TSFlags{1}     = SimpleBDXStore;
  let TSFlags{2}     = Has20BitOffset;
  let TSFlags{3}     = HasIndex;
  let TSFlags{4}     = Is128Bit;
  let TSFlags{9-5}   = AccessBytes;
  let TSFlags{13-10} = CCValues;
  let TSFlags{17-14} = CompareZeroCCMask;
  let TSFlags{18}    = CCMaskFirst;
  let TSFlags{19}    = CCMaskLast;
  let TSFlags{20}    = IsLogical;
  let TSFlags{21}    = CCIfNoSignedWrap;
}

//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//

// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["DispKey"];
  let ColFields = ["DispSize"];
  let KeyCol = ["20"];
  let ValueCols = [["12"]];
}

// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["DispKey"];
  let ColFields = ["DispSize"];
  let KeyCol = ["12"];
  let ValueCols = [["20"]];
}

// Return the memory form of a register instruction. Note that this may
// return a MemFoldPseudo instruction (see below).
def getMemOpcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["OpKey"];
  let ColFields = ["OpType"];
  let KeyCol = ["reg"];
  let ValueCols = [["mem"]];
}

// Return the target memory instruction for a MemFoldPseudo.
def getTargetMemOpcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["MemKey"];
  let ColFields = ["MemType"];
  let KeyCol = ["pseudo"];
  let ValueCols = [["target"]];
}

// Return the 2-operand form of a 3-operand instruction.
def getTwoOperandOpcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["NumOpsKey"];
  let ColFields = ["NumOpsValue"];
  let KeyCol = ["3"];
  let ValueCols = [["2"]];
}

//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
//   bits<4> Rn   : register input or output for operand n
//   bits<5> Vn   : vector register input or output for operand n
//   bits<m> In   : immediate value of width m for operand n
//   bits<4> BDn  : address operand n, which has a base and a displacement
//   bits<m> XBDn : address operand n, which has an index, a base and a
//                  displacement
//   bits<m> VBDn : address operand n, which has a vector index, a base and a
//                  displacement
//   bits<4> Xn   : index register for address operand n
//   bits<4> Mn   : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual.
// Assembly operands sometimes have a different order; in particular, R3 often
// is often written between operands 1 and 2.
//
//===----------------------------------------------------------------------===//

class InstE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<2, outs, ins, asmstr, pattern> {
  field bits<16> Inst;
  field bits<16> SoftFail = 0;

  let Inst = op;
}

class InstI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<2, outs, ins, asmstr, pattern> {
  field bits<16> Inst;
  field bits<16> SoftFail = 0;

  bits<8> I1;

  let Inst{15-8} = op;
  let Inst{7-0}  = I1;
}

class InstIE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> I1;
  bits<4> I2;

  let Inst{31-16} = op;
  let Inst{15-8}  = 0;
  let Inst{7-4}   = I1;
  let Inst{3-0}   = I2;
}

class InstMII<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> M1;
  bits<12> RI2;
  bits<24> RI3;

  let Inst{47-40} = op;
  let Inst{39-36} = M1;
  let Inst{35-24} = RI2;
  let Inst{23-0}  = RI3;
}

class InstRIa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<16> I2;

  let Inst{31-24} = op{11-4};
  let Inst{23-20} = R1;
  let Inst{19-16} = op{3-0};
  let Inst{15-0}  = I2;
}

class InstRIb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<16> RI2;

  let Inst{31-24} = op{11-4};
  let Inst{23-20} = R1;
  let Inst{19-16} = op{3-0};
  let Inst{15-0}  = RI2;
}

class InstRIc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> M1;
  bits<16> RI2;

  let Inst{31-24} = op{11-4};
  let Inst{23-20} = M1;
  let Inst{19-16} = op{3-0};
  let Inst{15-0}  = RI2;
}

class InstRIEa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<16> I2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = 0;
  let Inst{31-16} = I2;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M3;
  bits<16> RI4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R2;
  let Inst{31-16} = RI4;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<8> I2;
  bits<4> M3;
  bits<16> RI4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = M3;
  let Inst{31-16} = RI4;
  let Inst{15-8}  = I2;
  let Inst{7-0}   = op{7-0};
}

class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> I2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-16} = I2;
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> RI2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-16} = RI2;
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<8> I3;
  bits<8> I4;
  bits<8> I5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R2;
  let Inst{31-24} = I3;
  let Inst{23-16} = I4;
  let Inst{15-8}  = I5;
  let Inst{7-0}   = op{7-0};
}

class InstRIEg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> M3;
  bits<16> I2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = M3;
  let Inst{31-16} = I2;
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRILa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<32> I2;

  let Inst{47-40} = op{11-4};
  let Inst{39-36} = R1;
  let Inst{35-32} = op{3-0};
  let Inst{31-0}  = I2;
}

class InstRILb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<32> RI2;

  let Inst{47-40} = op{11-4};
  let Inst{39-36} = R1;
  let Inst{35-32} = op{3-0};
  let Inst{31-0}  = RI2;
}

class InstRILc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> M1;
  bits<32> RI2;

  let Inst{47-40} = op{11-4};
  let Inst{39-36} = M1;
  let Inst{35-32} = op{3-0};
  let Inst{31-0}  = RI2;
}

class InstRIS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<8> I2;
  bits<4> M3;
  bits<16> BD4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = M3;
  let Inst{31-16} = BD4;
  let Inst{15-8}  = I2;
  let Inst{7-0}   = op{7-0};
}

class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<2, outs, ins, asmstr, pattern> {
  field bits<16> Inst;
  field bits<16> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;

  let Inst{15-8} = op;
  let Inst{7-4}  = R1;
  let Inst{3-0}  = R2;
}

class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<4> R2;

  let Inst{31-16} = op;
  let Inst{15-12} = R1;
  let Inst{11-8}  = 0;
  let Inst{7-4}   = R3;
  let Inst{3-0}   = R2;
}

class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;

  let Inst{31-16} = op;
  let Inst{15-8}  = 0;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRFa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> R3;
  bits<4> M4;

  let Inst{31-16} = op;
  let Inst{15-12} = R3;
  let Inst{11-8}  = M4;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRFb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> R3;
  bits<4> M4;

  let Inst{31-16} = op;
  let Inst{15-12} = R3;
  let Inst{11-8}  = M4;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRFc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M3;

  let Inst{31-16} = op;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRFd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M4;

  let Inst{31-16} = op;
  let Inst{15-12} = 0;
  let Inst{11-8}  = M4;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRFe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M3;
  bits<4> M4;

  let Inst{31-16} = op;
  let Inst{15-12} = M3;
  let Inst{11-8}  = M4;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M3;
  bits<16> BD4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R2;
  let Inst{31-16} = BD4;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRXa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<20> XBD2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-0}  = XBD2;

  let HasIndex = 1;
}

class InstRXb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> M1;
  bits<20> XBD2;

  let Inst{31-24} = op;
  let Inst{23-20} = M1;
  let Inst{19-0}  = XBD2;

  let HasIndex = 1;
}

class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<20> XBD2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-16} = XBD2;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};

  let HasIndex = 1;
}

class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<20> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R3;
  let Inst{35-16} = XBD2;
  let Inst{15-12} = R1;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};

  let HasIndex = 1;
}

class InstRXYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<28> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-8}  = XBD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
  let HasIndex = 1;
}

class InstRXYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> M1;
  bits<28> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = M1;
  let Inst{35-8}  = XBD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
  let HasIndex = 1;
}

class InstRSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> BD2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-16} = R3;
  let Inst{15-0}  = BD2;
}

class InstRSb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> M3;
  bits<16> BD2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-16} = M3;
  let Inst{15-0}  = BD2;
}

class InstRSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> RI2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-16} = R3;
  let Inst{15-0}  = RI2;
}

class InstRSLa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<20> BDL1;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = BDL1{19-16};
  let Inst{35-32} = 0;
  let Inst{31-16} = BDL1{15-0};
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRSLb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<24> BDL2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-16} = BDL2;
  let Inst{15-12} = R1;
  let Inst{11-8}  = M3;
  let Inst{7-0}   = op{7-0};
}

class InstRSYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<24> BD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-8}  = BD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
}

class InstRSYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> M3;
  bits<24> BD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = M3;
  let Inst{31-8}  = BD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
}

class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<16> BD1;
  bits<8> I2;

  let Inst{31-24} = op;
  let Inst{23-16} = I2;
  let Inst{15-0}  = BD1;
}

class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<16> BD1;
  bits<16> I2;

  let Inst{47-32} = op;
  let Inst{31-16} = BD1;
  let Inst{15-0}  = I2;
}

class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<24> BD1;
  bits<8> I2;

  let Inst{47-40} = op{15-8};
  let Inst{39-32} = I2;
  let Inst{31-8}  = BD1;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
}

class InstSMI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> M1;
  bits<16> RI2;
  bits<16> BD3;

  let Inst{47-40} = op;
  let Inst{39-36} = M1;
  let Inst{35-32} = 0;
  let Inst{31-16} = BD3;
  let Inst{15-0}  = RI2;
}

class InstSSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<24> BDL1;
  bits<16> BD2;

  let Inst{47-40} = op;
  let Inst{39-16} = BDL1;
  let Inst{15-0}  = BD2;
}

class InstSSb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<20> BDL1;
  bits<20> BDL2;

  let Inst{47-40} = op;
  let Inst{39-36} = BDL1{19-16};
  let Inst{35-32} = BDL2{19-16};
  let Inst{31-16} = BDL1{15-0};
  let Inst{15-0}  = BDL2{15-0};
}

class InstSSc<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<20> BDL1;
  bits<16> BD2;
  bits<4> I3;

  let Inst{47-40} = op;
  let Inst{39-36} = BDL1{19-16};
  let Inst{35-32} = I3;
  let Inst{31-16} = BDL1{15-0};
  let Inst{15-0}  = BD2;
}

class InstSSd<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<20> RBD1;
  bits<16> BD2;
  bits<4> R3;

  let Inst{47-40} = op;
  let Inst{39-36} = RBD1{19-16};
  let Inst{35-32} = R3;
  let Inst{31-16} = RBD1{15-0};
  let Inst{15-0}  = BD2;
}

class InstSSe<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<16> BD2;
  bits<4> R3;
  bits<16> BD4;

  let Inst{47-40} = op;
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-16} = BD2;
  let Inst{15-0}  = BD4;
}

class InstSSf<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<16> BD1;
  bits<24> BDL2;

  let Inst{47-40} = op;
  let Inst{39-32} = BDL2{23-16};
  let Inst{31-16} = BD1;
  let Inst{15-0}  = BDL2{15-0};
}

class InstSSE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<16> BD1;
  bits<16> BD2;

  let Inst{47-32} = op;
  let Inst{31-16} = BD1;
  let Inst{15-0}  = BD2;
}

class InstSSF<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<16> BD1;
  bits<16> BD2;
  bits<4>  R3;

  let Inst{47-40} = op{11-4};
  let Inst{39-36} = R3;
  let Inst{35-32} = op{3-0};
  let Inst{31-16} = BD1;
  let Inst{15-0}  = BD2;
}

class InstS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<16> BD2;

  let Inst{31-16} = op;
  let Inst{15-0}  = BD2;
}

class InstVRIa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> I2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = 0;
  let Inst{31-16} = I2;
  let Inst{15-12} = M3;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<8> I2;
  bits<8> I3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = 0;
  let Inst{31-24} = I2;
  let Inst{23-16} = I3;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V3;
  bits<16> I2;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V3{3-0};
  let Inst{31-16} = I2;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V3{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRId<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<8> I4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = 0;
  let Inst{23-16} = I4;
  let Inst{15-12} = M5;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<12> I3;
  bits<4> M4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-20} = I3;
  let Inst{19-16} = M5;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<8> I4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = 0;
  let Inst{23-20} = M5;
  let Inst{19-12} = I4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<8> I3;
  bits<8> I4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-24} = I4;
  let Inst{23-20} = M5;
  let Inst{19-12} = I3;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIh<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> I2;
  bits<4> I3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = 0;
  let Inst{31-16} = I2;
  let Inst{15-12} = I3;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRIi<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<4> R2;
  bits<8> I3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = R2;
  let Inst{31-24} = 0;
  let Inst{23-20} = M4;
  let Inst{19-12} = I3;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M4 value provided as explicit operand.  These are passed as m4or.
class InstVRRa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
               bits<4> m4or = 0>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<4> M3;
  bits<4> M4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-24} = 0;
  let Inst{23-20} = M5;
  let Inst{19}    = !if (!eq (m4or{3}, 1), 1, M4{3});
  let Inst{18}    = !if (!eq (m4or{2}, 1), 1, M4{2});
  let Inst{17}    = !if (!eq (m4or{1}, 1), 1, M4{1});
  let Inst{16}    = !if (!eq (m4or{0}, 1), 1, M4{0});
  let Inst{15-12} = M3;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M5 value provided as explicit operand.  These are passed as m5or.
class InstVRRb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
               bits<4> m5or = 0>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<4> M4;
  bits<4> M5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = 0;
  let Inst{23}    = !if (!eq (m5or{3}, 1), 1, M5{3});
  let Inst{22}    = !if (!eq (m5or{2}, 1), 1, M5{2});
  let Inst{21}    = !if (!eq (m5or{1}, 1), 1, M5{1});
  let Inst{20}    = !if (!eq (m5or{0}, 1), 1, M5{0});
  let Inst{19-16} = 0;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRRc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<4> M4;
  bits<4> M5;
  bits<4> M6;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = 0;
  let Inst{23-20} = M6;
  let Inst{19-16} = M5;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = 0;
  let Inst{7-0}   = op{7-0};
}

// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M6 value provided as explicit operand.  These are passed as m6or.
class InstVRRd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
               bits<4> m6or = 0>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<5> V4;
  bits<4> M5;
  bits<4> M6;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = M5;
  let Inst{23}    = !if (!eq (m6or{3}, 1), 1, M6{3});
  let Inst{22}    = !if (!eq (m6or{2}, 1), 1, M6{2});
  let Inst{21}    = !if (!eq (m6or{1}, 1), 1, M6{1});
  let Inst{20}    = !if (!eq (m6or{0}, 1), 1, M6{0});
  let Inst{19-16} = 0;
  let Inst{15-12} = V4{3-0};
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = V4{4};
  let Inst{7-0}   = op{7-0};
}

class InstVRRe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<5> V3;
  bits<5> V4;
  bits<4> M5;
  bits<4> M6;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V2{3-0};
  let Inst{31-28} = V3{3-0};
  let Inst{27-24} = M6;
  let Inst{23-20} = 0;
  let Inst{19-16} = M5;
  let Inst{15-12} = V4{3-0};
  let Inst{11}    = V1{4};
  let Inst{10}    = V2{4};
  let Inst{9}     = V3{4};
  let Inst{8}     = V4{4};
  let Inst{7-0}   = op{7-0};
}

class InstVRRf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<4> R2;
  bits<4> R3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = R2;
  let Inst{31-28} = R3;
  let Inst{27-12} = 0;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRRg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = 0;
  let Inst{35-32} = V1{3-0};
  let Inst{31-12} = 0;
  let Inst{11}    = 0;
  let Inst{10}    = V1{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRRh<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<5> V2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = 0;
  let Inst{35-32} = V1{3-0};
  let Inst{31-28} = V2{3-0};
  let Inst{27-24} = 0;
  let Inst{23-20} = M3;
  let Inst{19-12} = 0;
  let Inst{11}    = 0;
  let Inst{10}    = V1{4};
  let Inst{9}     = V2{4};
  let Inst{8}     = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRRi<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<5> V2;
  bits<4> M3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = V2{3-0};
  let Inst{31-24} = 0;
  let Inst{23-20} = M3;
  let Inst{19-16} = M4;
  let Inst{15-12} = 0;
  let Inst{11}    = 0;
  let Inst{10}    = V2{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRSa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> BD2;
  bits<5> V3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = V3{3-0};
  let Inst{31-16} = BD2;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10}    = V3{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRSb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> BD2;
  bits<4> R3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-32} = R3;
  let Inst{31-16} = BD2;
  let Inst{15-12} = M4;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRSc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<16> BD2;
  bits<5> V3;
  bits<4> M4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = V3{3-0};
  let Inst{31-16} = BD2;
  let Inst{15-12} = M4;
  let Inst{11}    = 0;
  let Inst{10}    = V3{4};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRSd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> BD2;
  bits<4> R3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = 0;
  let Inst{35-32} = R3;
  let Inst{31-16} = BD2;
  let Inst{15-12} = V1{3-0};
  let Inst{11-9}  = 0;
  let Inst{8}     = V1{4};
  let Inst{7-0}   = op{7-0};
}

class InstVRV<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<21> VBD2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-16} = VBD2{19-0};
  let Inst{15-12} = M3;
  let Inst{11}    = V1{4};
  let Inst{10}    = VBD2{20};
  let Inst{9-8}   = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVRX<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<20> XBD2;
  bits<4> M3;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = V1{3-0};
  let Inst{35-16} = XBD2;
  let Inst{15-12} = M3;
  let Inst{11}    = V1{4};
  let Inst{10-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstVSI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<5> V1;
  bits<16> BD2;
  bits<8> I3;

  let Inst{47-40} = op{15-8};
  let Inst{39-32} = I3;
  let Inst{31-16} = BD2;
  let Inst{15-12} = V1{3-0};
  let Inst{11-9}  = 0;
  let Inst{8}     = V1{4};
  let Inst{7-0}   = op{7-0};
}

//===----------------------------------------------------------------------===//
// Instruction classes for .insn directives
//===----------------------------------------------------------------------===//

class DirectiveInsnE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstE<0, outs, ins, asmstr, pattern> {
  bits<16> enc;

  let Inst = enc;
}

class DirectiveInsnRI<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRIa<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-24} = enc{31-24};
  let Inst{19-16} = enc{19-16};
}

class DirectiveInsnRIE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRIEd<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRIL<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRILa<0, outs, ins, asmstr, pattern> {
  bits<48> enc;
  string type;

  let Inst{47-40} = enc{47-40};
  let Inst{35-32} = enc{35-32};
}

class DirectiveInsnRIS<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRIS<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRR<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRR<0, outs, ins, asmstr, pattern> {
  bits<16> enc;

  let Inst{15-8} = enc{15-8};
}

class DirectiveInsnRRE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRRE<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-16} = enc{31-16};
}

class DirectiveInsnRRF<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRRFa<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-16} = enc{31-16};
}

class DirectiveInsnRRS<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRRS<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRS<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRSa<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-24} = enc{31-24};
}

// RSE is like RSY except with a 12 bit displacement (instead of 20).
class DirectiveInsnRSE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRSYa<6, outs, ins, asmstr, pattern> {
  bits <48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{31-16} = BD2{15-0};
  let Inst{15-8}  = 0;
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRSI<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRSI<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-24} = enc{31-24};
}

class DirectiveInsnRSY<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRSYa<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRX<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRXa<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-24} = enc{31-24};
}

class DirectiveInsnRXE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRXE<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let M3 = 0;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRXF<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRXF<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnRXY<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstRXYa<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnS<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstS<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-16} = enc{31-16};
}

class DirectiveInsnSI<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSI<0, outs, ins, asmstr, pattern> {
  bits<32> enc;

  let Inst{31-24} = enc{31-24};
}

class DirectiveInsnSIY<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSIY<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{7-0}   = enc{7-0};
}

class DirectiveInsnSIL<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSIL<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-32} = enc{47-32};
}

class DirectiveInsnSS<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSSd<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
}

class DirectiveInsnSSE<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSSE<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-32} = enc{47-32};
}

class DirectiveInsnSSF<dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSSF<0, outs, ins, asmstr, pattern> {
  bits<48> enc;

  let Inst{47-40} = enc{47-40};
  let Inst{35-32} = enc{35-32};
}

//===----------------------------------------------------------------------===//
// Variants of instructions with condition mask
//===----------------------------------------------------------------------===//
//
// For instructions using a condition mask (e.g. conditional branches,
// compare-and-branch instructions, or conditional move instructions),
// we generally need to create multiple instruction patterns:
//
// - One used for code generation, which encodes the condition mask as an
//   MI operand, but writes out an extended mnemonic for better readability.
// - One pattern for the base form of the instruction with an explicit
//   condition mask (encoded as a plain integer MI operand).
// - Specific patterns for each extended mnemonic, where the condition mask
//   is implied by the pattern name and not otherwise encoded at all.
//
// We need the latter primarily for the assembler and disassembler, since the
// assembler parser is not able to decode part of an instruction mnemonic
// into an operand.  Thus we provide separate patterns for each mnemonic.
//
// Note that in some cases there are two different mnemonics for the same
// condition mask.  In this case we cannot have both instructions available
// to the disassembler at the same time since the encodings are not distinct.
// Therefore the alternate forms are marked isAsmParserOnly.
//
// We don't make one of the two names an alias of the other because
// we need the custom parsing routines to select the correct register class.
//
// This section provides helpers for generating the specific forms.
//
//===----------------------------------------------------------------------===//

// A class to describe a variant of an instruction with condition mask.
class CondVariant<bits<4> ccmaskin, string suffixin, bit alternatein> {
  // The fixed condition mask to use.
  bits<4> ccmask = ccmaskin;

  // The suffix to use for the extended assembler mnemonic.
  string suffix = suffixin;

  // Whether this is an alternate that needs to be marked isAsmParserOnly.
  bit alternate = alternatein;
}

// Condition mask 15 means "always true", which is used to define
// unconditional branches as a variant of conditional branches.
def CondAlways : CondVariant<15, "", 0>;

// Condition masks for general instructions that can set all 4 bits.
def CondVariantO   : CondVariant<1,  "o",   0>;
def CondVariantH   : CondVariant<2,  "h",   0>;
def CondVariantP   : CondVariant<2,  "p",   1>;
def CondVariantNLE : CondVariant<3,  "nle", 0>;
def CondVariantL   : CondVariant<4,  "l",   0>;
def CondVariantM   : CondVariant<4,  "m",   1>;
def CondVariantNHE : CondVariant<5,  "nhe", 0>;
def CondVariantLH  : CondVariant<6,  "lh",  0>;
def CondVariantNE  : CondVariant<7,  "ne",  0>;
def CondVariantNZ  : CondVariant<7,  "nz",  1>;
def CondVariantE   : CondVariant<8,  "e",   0>;
def CondVariantZ   : CondVariant<8,  "z",   1>;
def CondVariantNLH : CondVariant<9,  "nlh", 0>;
def CondVariantHE  : CondVariant<10, "he",  0>;
def CondVariantNL  : CondVariant<11, "nl",  0>;
def CondVariantNM  : CondVariant<11, "nm",  1>;
def CondVariantLE  : CondVariant<12, "le",  0>;
def CondVariantNH  : CondVariant<13, "nh",  0>;
def CondVariantNP  : CondVariant<13, "np",  1>;
def CondVariantNO  : CondVariant<14, "no",  0>;

// A helper class to look up one of the above by name.
class CV<string name>
  : CondVariant<!cast<CondVariant>("CondVariant"#name).ccmask,
                !cast<CondVariant>("CondVariant"#name).suffix,
                !cast<CondVariant>("CondVariant"#name).alternate>;

// Condition masks for integer instructions (e.g. compare-and-branch).
// This is like the list above, except that condition 3 is not possible
// and that the low bit of the mask is therefore always 0.  This means
// that each condition has two names.  Conditions "o" and "no" are not used.
def IntCondVariantH   : CondVariant<2,  "h",   0>;
def IntCondVariantNLE : CondVariant<2,  "nle", 1>;
def IntCondVariantL   : CondVariant<4,  "l",   0>;
def IntCondVariantNHE : CondVariant<4,  "nhe", 1>;
def IntCondVariantLH  : CondVariant<6,  "lh",  0>;
def IntCondVariantNE  : CondVariant<6,  "ne",  1>;
def IntCondVariantE   : CondVariant<8,  "e",   0>;
def IntCondVariantNLH : CondVariant<8,  "nlh", 1>;
def IntCondVariantHE  : CondVariant<10, "he",  0>;
def IntCondVariantNL  : CondVariant<10, "nl",  1>;
def IntCondVariantLE  : CondVariant<12, "le",  0>;
def IntCondVariantNH  : CondVariant<12, "nh",  1>;

// A helper class to look up one of the above by name.
class ICV<string name>
  : CondVariant<!cast<CondVariant>("IntCondVariant"#name).ccmask,
                !cast<CondVariant>("IntCondVariant"#name).suffix,
                !cast<CondVariant>("IntCondVariant"#name).alternate>;

//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form [Cond]<Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs.  "Cond" is used if the instruction is conditional,
// in which case the 4-bit condition-code mask is added as a final operand.
// <Category> can be one of:
//
//   Inherent:
//     One register output operand and no input operands.
//
//   InherentDual:
//     Two register output operands and no input operands.
//
//   StoreInherent:
//     One address operand.  The instruction stores to the address.
//
//   SideEffectInherent:
//     No input or output operands, but causes some side effect.
//
//   Branch:
//     One branch target.  The instruction branches to the target.
//
//   Call:
//     One output operand and one branch target.  The instruction stores
//     the return address to the output operand and branches to the target.
//
//   CmpBranch:
//     Two input operands and one optional branch target.  The instruction
//     compares the two input operands and branches or traps on the result.
//
//   BranchUnary:
//     One register output operand, one register input operand and one branch
//     target.  The instructions stores a modified form of the source register
//     in the destination register and branches on the result.
//
//   BranchBinary:
//     One register output operand, two register input operands and one branch
//     target. The instructions stores a modified form of one of the source
//     registers in the destination register and branches on the result.
//
//   LoadMultiple:
//     One address input operand and two explicit output operands.
//     The instruction loads a range of registers from the address,
//     with the explicit operands giving the first and last register
//     to load.  Other loaded registers are added as implicit definitions.
//
//   StoreMultiple:
//     Two explicit input register operands and an address operand.
//     The instruction stores a range of registers to the address,
//     with the explicit operands giving the first and last register
//     to store.  Other stored registers are added as implicit uses.
//
//   StoreLength:
//     One value operand, one length operand and one address operand.
//     The instruction stores the value operand to the address but
//     doesn't write more than the number of bytes specified by the
//     length operand.
//
//   LoadAddress:
//     One register output operand and one address operand.
//
//   SideEffectAddress:
//     One address operand.  No output operands, but causes some side effect.
//
//   Unary:
//     One register output operand and one input operand.
//
//   Store:
//     One address operand and one other input operand.  The instruction
//     stores to the address.
//
//   SideEffectUnary:
//     One input operand.  No output operands, but causes some side effect.
//
//   Binary:
//     One register output operand and two input operands.
//
//   StoreBinary:
//     One address operand and two other input operands.  The instruction
//     stores to the address.
//
//   SideEffectBinary:
//     Two input operands.  No output operands, but causes some side effect.
//
//   Compare:
//     Two input operands and an implicit CC output operand.
//
//   Test:
//     One or two input operands and an implicit CC output operand.  If
//     present, the second input operand is an "address" operand used as
//     a test class mask.
//
//   Ternary:
//     One register output operand and three input operands.
//
//   SideEffectTernary:
//     Three input operands.  No output operands, but causes some side effect.
//
//   Quaternary:
//     One register output operand and four input operands.
//
//   LoadAndOp:
//     One output operand and two input operands, one of which is an address.
//     The instruction both reads from and writes to the address.
//
//   CmpSwap:
//     One output operand and three input operands, one of which is an address.
//     The instruction both reads from and writes to the address.
//
//   RotateSelect:
//     One output operand and five input operands.  The first two operands
//     are registers and the other three are immediates.
//
//   Prefetch:
//     One 4-bit immediate operand and one address operand.  The immediate
//     operand is 1 for a load prefetch and 2 for a store prefetch.
//
//   BranchPreload:
//     One 4-bit immediate operand and two address operands.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y.  The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//

class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
                  SDPatternOperator operator>
  : InstRRE<opcode, (outs cls:$R1), (ins),
            mnemonic#"\t$R1",
            [(set cls:$R1, (operator))]> {
  let R2 = 0;
}

class InherentDualRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRRE<opcode, (outs cls:$R1, cls:$R2), (ins),
            mnemonic#"\t$R1, $R2", []>;

class InherentVRIa<string mnemonic, bits<16> opcode, bits<16> value>
  : InstVRIa<opcode, (outs VR128:$V1), (ins), mnemonic#"\t$V1", []> {
  let I2 = value;
  let M3 = 0;
}

class StoreInherentS<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator, bits<5> bytes>
  : InstS<opcode, (outs), (ins bdaddr12only:$BD2),
          mnemonic#"\t$BD2", [(operator bdaddr12only:$BD2)]> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class SideEffectInherentE<string mnemonic, bits<16>opcode>
  : InstE<opcode, (outs), (ins), mnemonic, []>;

class SideEffectInherentS<string mnemonic, bits<16> opcode,
                          SDPatternOperator operator>
  : InstS<opcode, (outs), (ins), mnemonic, [(operator)]> {
  let BD2 = 0;
}

class SideEffectInherentRRE<string mnemonic, bits<16> opcode>
  : InstRRE<opcode, (outs), (ins), mnemonic, []> {
  let R1 = 0;
  let R2 = 0;
}

// Allow an optional TLS marker symbol to generate TLS call relocations.
class CallRI<string mnemonic, bits<12> opcode>
  : InstRIb<opcode, (outs), (ins GR64:$R1, brtarget16tls:$RI2),
            mnemonic#"\t$R1, $RI2", []>;

// Allow an optional TLS marker symbol to generate TLS call relocations.
class CallRIL<string mnemonic, bits<12> opcode>
  : InstRILb<opcode, (outs), (ins GR64:$R1, brtarget32tls:$RI2),
             mnemonic#"\t$R1, $RI2", []>;

class CallRR<string mnemonic, bits<8> opcode>
  : InstRR<opcode, (outs), (ins GR64:$R1, ADDR64:$R2),
           mnemonic#"\t$R1, $R2", []>;

class CallRX<string mnemonic, bits<8> opcode>
  : InstRXa<opcode, (outs), (ins GR64:$R1, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2", []>;

class CondBranchRI<string mnemonic, bits<12> opcode,
                   SDPatternOperator operator = null_frag>
  : InstRIc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget16:$RI2),
            !subst("#", "${M1}", mnemonic)#"\t$RI2",
            [(operator cond4:$valid, cond4:$M1, bb:$RI2)]> {
  let CCMaskFirst = 1;
}

class AsmCondBranchRI<string mnemonic, bits<12> opcode>
  : InstRIc<opcode, (outs), (ins imm32zx4:$M1, brtarget16:$RI2),
            mnemonic#"\t$M1, $RI2", []>;

class FixedCondBranchRI<CondVariant V, string mnemonic, bits<12> opcode,
                        SDPatternOperator operator = null_frag>
  : InstRIc<opcode, (outs), (ins brtarget16:$RI2),
            !subst("#", V.suffix, mnemonic)#"\t$RI2", [(operator bb:$RI2)]> {
  let isAsmParserOnly = V.alternate;
  let M1 = V.ccmask;
}

class CondBranchRIL<string mnemonic, bits<12> opcode>
  : InstRILc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget32:$RI2),
             !subst("#", "${M1}", mnemonic)#"\t$RI2", []> {
  let CCMaskFirst = 1;
}

class AsmCondBranchRIL<string mnemonic, bits<12> opcode>
  : InstRILc<opcode, (outs), (ins imm32zx4:$M1, brtarget32:$RI2),
             mnemonic#"\t$M1, $RI2", []>;

class FixedCondBranchRIL<CondVariant V, string mnemonic, bits<12> opcode>
  : InstRILc<opcode, (outs), (ins brtarget32:$RI2),
             !subst("#", V.suffix, mnemonic)#"\t$RI2", []> {
  let isAsmParserOnly = V.alternate;
  let M1 = V.ccmask;
}

class CondBranchRR<string mnemonic, bits<8> opcode>
  : InstRR<opcode, (outs), (ins cond4:$valid, cond4:$R1, GR64:$R2),
           !subst("#", "${R1}", mnemonic)#"\t$R2", []> {
  let CCMaskFirst = 1;
}

class AsmCondBranchRR<string mnemonic, bits<8> opcode>
  : InstRR<opcode, (outs), (ins imm32zx4:$R1, GR64:$R2),
           mnemonic#"\t$R1, $R2", []>;

class FixedCondBranchRR<CondVariant V, string mnemonic, bits<8> opcode,
                      SDPatternOperator operator = null_frag>
  : InstRR<opcode, (outs), (ins ADDR64:$R2),
           !subst("#", V.suffix, mnemonic)#"\t$R2", [(operator ADDR64:$R2)]> {
  let isAsmParserOnly = V.alternate;
  let R1 = V.ccmask;
}

class CondBranchRX<string mnemonic, bits<8> opcode>
  : InstRXb<opcode, (outs), (ins cond4:$valid, cond4:$M1, bdxaddr12only:$XBD2),
            !subst("#", "${M1}", mnemonic)#"\t$XBD2", []> {
  let CCMaskFirst = 1;
}

class AsmCondBranchRX<string mnemonic, bits<8> opcode>
  : InstRXb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr12only:$XBD2),
            mnemonic#"\t$M1, $XBD2", []>;

class FixedCondBranchRX<CondVariant V, string mnemonic, bits<8> opcode>
  : InstRXb<opcode, (outs), (ins bdxaddr12only:$XBD2),
            !subst("#", V.suffix, mnemonic)#"\t$XBD2", []> {
  let isAsmParserOnly = V.alternate;
  let M1 = V.ccmask;
}

class CondBranchRXY<string mnemonic, bits<16> opcode>
  : InstRXYb<opcode, (outs), (ins cond4:$valid, cond4:$M1, bdxaddr20only:$XBD2),
             !subst("#", "${M1}", mnemonic)#"\t$XBD2", []> {
  let CCMaskFirst = 1;
  let mayLoad = 1;
}

class AsmCondBranchRXY<string mnemonic, bits<16> opcode>
  : InstRXYb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr20only:$XBD2),
             mnemonic#"\t$M1, $XBD2", []> {
  let mayLoad = 1;
}

class FixedCondBranchRXY<CondVariant V, string mnemonic, bits<16> opcode,
                         SDPatternOperator operator = null_frag>
  : InstRXYb<opcode, (outs), (ins bdxaddr20only:$XBD2),
             !subst("#", V.suffix, mnemonic)#"\t$XBD2",
             [(operator (load bdxaddr20only:$XBD2))]> {
  let isAsmParserOnly = V.alternate;
  let M1 = V.ccmask;
  let mayLoad = 1;
}

class CmpBranchRIEa<string mnemonic, bits<16> opcode,
                    RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, cond4:$M3),
             mnemonic#"$M3\t$R1, $I2", []>;

class AsmCmpBranchRIEa<string mnemonic, bits<16> opcode,
                       RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, imm32zx4:$M3),
             mnemonic#"\t$R1, $I2, $M3", []>;

class FixedCmpBranchRIEa<CondVariant V, string mnemonic, bits<16> opcode,
                          RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2),
             mnemonic#V.suffix#"\t$R1, $I2", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CmpBranchRIEaPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls, ImmOpWithPattern imm> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRIEa<mnemonic, opcode, cls, imm>;
  def Asm : AsmCmpBranchRIEa<mnemonic, opcode, cls, imm>;
}

class CmpBranchRIEb<string mnemonic, bits<16> opcode,
                    RegisterOperand cls>
  : InstRIEb<opcode, (outs),
             (ins cls:$R1, cls:$R2, cond4:$M3, brtarget16:$RI4),
             mnemonic#"$M3\t$R1, $R2, $RI4", []>;

class AsmCmpBranchRIEb<string mnemonic, bits<16> opcode,
                       RegisterOperand cls>
  : InstRIEb<opcode, (outs),
             (ins cls:$R1, cls:$R2, imm32zx4:$M3, brtarget16:$RI4),
             mnemonic#"\t$R1, $R2, $M3, $RI4", []>;

class FixedCmpBranchRIEb<CondVariant V, string mnemonic, bits<16> opcode,
                         RegisterOperand cls>
  : InstRIEb<opcode, (outs), (ins cls:$R1, cls:$R2, brtarget16:$RI4),
             mnemonic#V.suffix#"\t$R1, $R2, $RI4", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CmpBranchRIEbPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRIEb<mnemonic, opcode, cls>;
  def Asm : AsmCmpBranchRIEb<mnemonic, opcode, cls>;
}

class CmpBranchRIEc<string mnemonic, bits<16> opcode,
                    RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEc<opcode, (outs),
             (ins cls:$R1, imm:$I2, cond4:$M3, brtarget16:$RI4),
             mnemonic#"$M3\t$R1, $I2, $RI4", []>;

class AsmCmpBranchRIEc<string mnemonic, bits<16> opcode,
                       RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEc<opcode, (outs),
             (ins cls:$R1, imm:$I2, imm32zx4:$M3, brtarget16:$RI4),
             mnemonic#"\t$R1, $I2, $M3, $RI4", []>;

class FixedCmpBranchRIEc<CondVariant V, string mnemonic, bits<16> opcode,
                         RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEc<opcode, (outs), (ins cls:$R1, imm:$I2, brtarget16:$RI4),
             mnemonic#V.suffix#"\t$R1, $I2, $RI4", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CmpBranchRIEcPair<string mnemonic, bits<16> opcode,
                            RegisterOperand cls, ImmOpWithPattern imm> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRIEc<mnemonic, opcode, cls, imm>;
  def Asm : AsmCmpBranchRIEc<mnemonic, opcode, cls, imm>;
}

class CmpBranchRRFc<string mnemonic, bits<16> opcode,
                    RegisterOperand cls>
  : InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, cond4:$M3),
             mnemonic#"$M3\t$R1, $R2", []>;

class AsmCmpBranchRRFc<string mnemonic, bits<16> opcode,
                       RegisterOperand cls>
  : InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, imm32zx4:$M3),
             mnemonic#"\t$R1, $R2, $M3", []>;

multiclass CmpBranchRRFcPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRRFc<mnemonic, opcode, cls>;
  def Asm : AsmCmpBranchRRFc<mnemonic, opcode, cls>;
}

class FixedCmpBranchRRFc<CondVariant V, string mnemonic, bits<16> opcode,
                          RegisterOperand cls>
  : InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2),
             mnemonic#V.suffix#"\t$R1, $R2", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

class CmpBranchRRS<string mnemonic, bits<16> opcode,
                   RegisterOperand cls>
  : InstRRS<opcode, (outs),
            (ins cls:$R1, cls:$R2, cond4:$M3, bdaddr12only:$BD4),
            mnemonic#"$M3\t$R1, $R2, $BD4", []>;

class AsmCmpBranchRRS<string mnemonic, bits<16> opcode,
                      RegisterOperand cls>
  : InstRRS<opcode, (outs),
            (ins cls:$R1, cls:$R2, imm32zx4:$M3, bdaddr12only:$BD4),
            mnemonic#"\t$R1, $R2, $M3, $BD4", []>;

class FixedCmpBranchRRS<CondVariant V, string mnemonic, bits<16> opcode,
                        RegisterOperand cls>
  : InstRRS<opcode, (outs), (ins cls:$R1, cls:$R2, bdaddr12only:$BD4),
            mnemonic#V.suffix#"\t$R1, $R2, $BD4", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CmpBranchRRSPair<string mnemonic, bits<16> opcode,
                            RegisterOperand cls> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRRS<mnemonic, opcode, cls>;
  def Asm : AsmCmpBranchRRS<mnemonic, opcode, cls>;
}

class CmpBranchRIS<string mnemonic, bits<16> opcode,
                   RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIS<opcode, (outs),
            (ins cls:$R1, imm:$I2, cond4:$M3, bdaddr12only:$BD4),
            mnemonic#"$M3\t$R1, $I2, $BD4", []>;

class AsmCmpBranchRIS<string mnemonic, bits<16> opcode,
                      RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIS<opcode, (outs),
            (ins cls:$R1, imm:$I2, imm32zx4:$M3, bdaddr12only:$BD4),
            mnemonic#"\t$R1, $I2, $M3, $BD4", []>;

class FixedCmpBranchRIS<CondVariant V, string mnemonic, bits<16> opcode,
                        RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIS<opcode, (outs), (ins cls:$R1, imm:$I2, bdaddr12only:$BD4),
            mnemonic#V.suffix#"\t$R1, $I2, $BD4", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CmpBranchRISPair<string mnemonic, bits<16> opcode,
                            RegisterOperand cls, ImmOpWithPattern imm> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRIS<mnemonic, opcode, cls, imm>;
  def Asm : AsmCmpBranchRIS<mnemonic, opcode, cls, imm>;
}

class CmpBranchRSYb<string mnemonic, bits<16> opcode,
                    RegisterOperand cls>
  : InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2, cond4:$M3),
             mnemonic#"$M3\t$R1, $BD2", []>;

class AsmCmpBranchRSYb<string mnemonic, bits<16> opcode,
                       RegisterOperand cls>
  : InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2, imm32zx4:$M3),
             mnemonic#"\t$R1, $M3, $BD2", []>;

multiclass CmpBranchRSYbPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls> {
  let isCodeGenOnly = 1 in
    def "" : CmpBranchRSYb<mnemonic, opcode, cls>;
  def Asm : AsmCmpBranchRSYb<mnemonic, opcode, cls>;
}

class FixedCmpBranchRSYb<CondVariant V, string mnemonic, bits<16> opcode,
                          RegisterOperand cls>
  : InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2),
             mnemonic#V.suffix#"\t$R1, $BD2", []> {
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
  : InstRIb<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$RI2),
            mnemonic#"\t$R1, $RI2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchUnaryRIL<string mnemonic, bits<12> opcode, RegisterOperand cls>
  : InstRILb<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget32:$RI2),
             mnemonic#"\t$R1, $RI2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchUnaryRR<string mnemonic, bits<8> opcode, RegisterOperand cls>
  : InstRR<opcode, (outs cls:$R1), (ins cls:$R1src, GR64:$R2),
           mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchUnaryRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRRE<opcode, (outs cls:$R1), (ins cls:$R1src, GR64:$R2),
            mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchUnaryRX<string mnemonic, bits<8> opcode, RegisterOperand cls>
  : InstRXa<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchUnaryRXY<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRXYa<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr20only:$XBD2),
             mnemonic#"\t$R1, $XBD2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchBinaryRSI<string mnemonic, bits<8> opcode, RegisterOperand cls>
  : InstRSI<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, brtarget16:$RI2),
            mnemonic#"\t$R1, $R3, $RI2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchBinaryRIEe<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRIEe<opcode, (outs cls:$R1),
             (ins cls:$R1src, cls:$R3, brtarget16:$RI2),
             mnemonic#"\t$R1, $R3, $RI2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchBinaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls>
  : InstRSa<opcode, (outs cls:$R1),
            (ins cls:$R1src, cls:$R3, bdaddr12only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BranchBinaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRSYa<opcode,
             (outs cls:$R1), (ins cls:$R1src, cls:$R3, bdaddr20only:$BD2),
             mnemonic#"\t$R1, $R3, $BD2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class LoadMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
                     AddressingMode mode = bdaddr12only>
  : InstRSa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayLoad = 1;
}

class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
                      AddressingMode mode = bdaddr20only>
  : InstRSYa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
             mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayLoad = 1;
}

multiclass LoadMultipleRSPair<string mnemonic, bits<8> rsOpcode,
                              bits<16> rsyOpcode, RegisterOperand cls> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : LoadMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : LoadMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
  }
}

class LoadMultipleSSe<string mnemonic, bits<8> opcode, RegisterOperand cls>
  : InstSSe<opcode, (outs cls:$R1, cls:$R3),
            (ins bdaddr12only:$BD2, bdaddr12only:$BD4),
            mnemonic#"\t$R1, $R3, $BD2, $BD4", []> {
  let mayLoad = 1;
}

multiclass LoadMultipleVRSaAlign<string mnemonic, bits<16> opcode> {
  let mayLoad = 1 in {
    def Align : InstVRSa<opcode, (outs VR128:$V1, VR128:$V3),
                        (ins bdaddr12only:$BD2, imm32zx4:$M4),
                        mnemonic#"\t$V1, $V3, $BD2, $M4", []>;
    let M4 = 0 in
      def "" : InstVRSa<opcode, (outs VR128:$V1, VR128:$V3),
                        (ins bdaddr12only:$BD2),
                        mnemonic#"\t$V1, $V3, $BD2", []>;
  }
}

class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls>
  : InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
             mnemonic#"\t$R1, $RI2",
             [(operator cls:$R1, pcrel32:$RI2)]> {
  let mayStore = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls, bits<5> bytes,
              AddressingMode mode = bdxaddr12only>
  : InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(operator cls:$R1, mode:$XBD2)]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes,
               AddressingMode mode = bdxaddr20only>
  : InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
             mnemonic#"\t$R1, $XBD2",
             [(operator cls:$R1, mode:$XBD2)]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayStore = 1;
  let AccessBytes = bytes;
}

multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                       SDPatternOperator operator, RegisterOperand cls,
                       bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
                        bdxaddr20pair>;
  }
}

class StoreVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               TypedReg tr, bits<5> bytes, bits<4> type = 0>
  : InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2),
            mnemonic#"\t$V1, $XBD2",
            [(operator (tr.vt tr.op:$V1), bdxaddr12only:$XBD2)]> {
  let M3 = type;
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreVRXGeneric<string mnemonic, bits<16> opcode>
  : InstVRX<opcode, (outs), (ins VR128:$V1, bdxaddr12only:$XBD2, imm32zx4:$M3),
            mnemonic#"\t$V1, $XBD2, $M3", []> {
  let mayStore = 1;
}

multiclass StoreVRXAlign<string mnemonic, bits<16> opcode> {
  let mayStore = 1, AccessBytes = 16 in {
    def Align : InstVRX<opcode, (outs),
                        (ins VR128:$V1, bdxaddr12only:$XBD2, imm32zx4:$M3),
                        mnemonic#"\t$V1, $XBD2, $M3", []>;
    let M3 = 0 in
      def "" : InstVRX<opcode, (outs), (ins VR128:$V1, bdxaddr12only:$XBD2),
                       mnemonic#"\t$V1, $XBD2", []>;
  }
}

class StoreLengthVRSb<string mnemonic, bits<16> opcode,
                      SDPatternOperator operator, bits<5> bytes>
  : InstVRSb<opcode, (outs), (ins VR128:$V1, GR32:$R3, bdaddr12only:$BD2),
             mnemonic#"\t$V1, $R3, $BD2",
             [(operator VR128:$V1, GR32:$R3, bdaddr12only:$BD2)]> {
  let M4 = 0;
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreLengthVRSd<string mnemonic, bits<16> opcode,
                      SDPatternOperator operator, bits<5> bytes>
  : InstVRSd<opcode, (outs), (ins VR128:$V1, GR32:$R3, bdaddr12only:$BD2),
             mnemonic#"\t$V1, $R3, $BD2",
             [(operator VR128:$V1, GR32:$R3, bdaddr12only:$BD2)]> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreLengthVSI<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator, bits<5> bytes>
  : InstVSI<opcode, (outs), (ins VR128:$V1, bdaddr12only:$BD2, imm32zx8:$I3),
            mnemonic#"\t$V1, $BD2, $I3",
            [(operator VR128:$V1, imm32zx8:$I3, bdaddr12only:$BD2)]> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
                      AddressingMode mode = bdaddr12only>
  : InstRSa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayStore = 1;
}

class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
                       AddressingMode mode = bdaddr20only>
  : InstRSYa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
             mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayStore = 1;
}

multiclass StoreMultipleRSPair<string mnemonic, bits<8> rsOpcode,
                               bits<16> rsyOpcode, RegisterOperand cls> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : StoreMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : StoreMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
  }
}

multiclass StoreMultipleVRSaAlign<string mnemonic, bits<16> opcode> {
  let mayStore = 1 in {
    def Align : InstVRSa<opcode, (outs), (ins VR128:$V1, VR128:$V3,
                                              bdaddr12only:$BD2, imm32zx4:$M4),
                         mnemonic#"\t$V1, $V3, $BD2, $M4", []>;
    let M4 = 0 in
      def "" : InstVRSa<opcode, (outs), (ins VR128:$V1, VR128:$V3,
                                             bdaddr12only:$BD2),
                        mnemonic#"\t$V1, $V3, $BD2", []>;
  }
}

// StoreSI* instructions are used to store an integer to memory, but the
// addresses are more restricted than for normal stores.  If we are in the
// situation of having to force either the address into a register or the
// constant into a register, it's usually better to do the latter.
// We therefore match the address in the same way as a normal store and
// only use the StoreSI* instruction if the matched address is suitable.
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              ImmOpWithPattern imm>
  : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(operator imm:$I2, mviaddr12pair:$BD1)]> {
  let mayStore = 1;
}

class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               ImmOpWithPattern imm>
  : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator imm:$I2, mviaddr20pair:$BD1)]> {
  let mayStore = 1;
}

class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               ImmOpWithPattern imm>
  : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator imm:$I2, mviaddr12pair:$BD1)]> {
  let mayStore = 1;
}

multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
                       SDPatternOperator operator, ImmOpWithPattern imm> {
  let DispKey = mnemonic in {
    let DispSize = "12" in
      def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
    let DispSize = "20" in
      def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
  }
}

class StoreSSE<string mnemonic, bits<16> opcode>
  : InstSSE<opcode, (outs), (ins bdaddr12only:$BD1, bdaddr12only:$BD2),
            mnemonic#"\t$BD1, $BD2", []> {
  let mayStore = 1;
}

class CondStoreRSY<string mnemonic, bits<16> opcode,
                   RegisterOperand cls, bits<5> bytes,
                   AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$M3),
            mnemonic#"$M3\t$R1, $BD2", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
}

// Like CondStoreRSY, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
                      RegisterOperand cls, bits<5> bytes,
                      AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$M3),
             mnemonic#"\t$R1, $BD2, $M3", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

// Like CondStoreRSY, but with a fixed CC mask.
class FixedCondStoreRSY<CondVariant V, string mnemonic, bits<16> opcode,
                        RegisterOperand cls, bits<5> bytes,
                        AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2),
             mnemonic#V.suffix#"\t$R1, $BD2", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CondStoreRSYPair<string mnemonic, bits<16> opcode,
                            RegisterOperand cls, bits<5> bytes,
                            AddressingMode mode = bdaddr20only> {
  let isCodeGenOnly = 1 in
    def "" : CondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
  def Asm : AsmCondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
}

class SideEffectUnaryI<string mnemonic, bits<8> opcode, ImmOpWithPattern imm>
  : InstI<opcode, (outs), (ins imm:$I1),
          mnemonic#"\t$I1", []>;

class SideEffectUnaryRR<string mnemonic, bits<8>opcode, RegisterOperand cls>
  : InstRR<opcode, (outs), (ins cls:$R1),
           mnemonic#"\t$R1", []> {
  let R2 = 0;
}

class SideEffectUnaryRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
                         SDPatternOperator operator>
  : InstRRE<opcode, (outs), (ins cls:$R1),
            mnemonic#"\t$R1", [(operator cls:$R1)]> {
  let R2 = 0;
}

class SideEffectUnaryS<string mnemonic, bits<16> opcode,
                       SDPatternOperator operator, bits<5> bytes,
                       AddressingMode mode = bdaddr12only>
  : InstS<opcode, (outs), (ins mode:$BD2),
          mnemonic#"\t$BD2", [(operator mode:$BD2)]> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class SideEffectAddressS<string mnemonic, bits<16> opcode,
                        SDPatternOperator operator,
                        AddressingMode mode = bdaddr12only>
  : InstS<opcode, (outs), (ins mode:$BD2),
          mnemonic#"\t$BD2", [(operator mode:$BD2)]>;

class LoadAddressRX<string mnemonic, bits<8> opcode,
                    SDPatternOperator operator, AddressingMode mode>
  : InstRXa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set GR64:$R1, (operator mode:$XBD2))]>;

class LoadAddressRXY<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator, AddressingMode mode>
  : InstRXYa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
             mnemonic#"\t$R1, $XBD2",
             [(set GR64:$R1, (operator mode:$XBD2))]>;

multiclass LoadAddressRXPair<string mnemonic, bits<8> rxOpcode,
                             bits<16> rxyOpcode, SDPatternOperator operator> {
  let DispKey = mnemonic in {
    let DispSize = "12" in
      def "" : LoadAddressRX<mnemonic, rxOpcode, operator, laaddr12pair>;
    let DispSize = "20" in
      def Y  : LoadAddressRXY<mnemonic#"y", rxyOpcode, operator, laaddr20pair>;
  }
}

class LoadAddressRIL<string mnemonic, bits<12> opcode,
                     SDPatternOperator operator>
  : InstRILb<opcode, (outs GR64:$R1), (ins pcrel32:$RI2),
             mnemonic#"\t$R1, $RI2",
             [(set GR64:$R1, (operator pcrel32:$RI2))]>;

class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
           mnemonic#"\t$R1, $R2",
           [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
            mnemonic#"\t$R1, $R2",
            [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

class UnaryTiedRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRRE<opcode, (outs cls:$R1), (ins cls:$R1src),
            mnemonic#"\t$R1", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let R2 = 0;
}

class UnaryMemRRFc<string mnemonic, bits<16> opcode,
                   RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls2:$R2, cls1:$R1), (ins cls1:$R1src),
            mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let M3 = 0;
}

class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
              RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIa<opcode, (outs cls:$R1), (ins imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(set cls:$R1, (operator imm:$I2))]>;

class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
               RegisterOperand cls, ImmOpWithPattern imm>
  : InstRILa<opcode, (outs cls:$R1), (ins imm:$I2),
             mnemonic#"\t$R1, $I2",
             [(set cls:$R1, (operator imm:$I2))]>;

class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls>
  : InstRILb<opcode, (outs cls:$R1), (ins pcrel32:$RI2),
             mnemonic#"\t$R1, $RI2",
             [(set cls:$R1, (operator pcrel32:$RI2))]> {
  let mayLoad = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class CondUnaryRSY<string mnemonic, bits<16> opcode,
                   SDPatternOperator operator, RegisterOperand cls,
                   bits<5> bytes, AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs cls:$R1),
             (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$M3),
             mnemonic#"$M3\t$R1, $BD2",
             [(set cls:$R1,
                   (z_select_ccmask (operator bdaddr20only:$BD2), cls:$R1src,
                                    cond4:$valid, cond4:$M3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let MemKey = mnemonic#cls;
  let MemType = "target";
}

// Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
                      RegisterOperand cls, bits<5> bytes,
                      AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$M3),
             mnemonic#"\t$R1, $BD2, $M3", []> {
  let mayLoad = 1;
  let AccessBytes = bytes;
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Like CondUnaryRSY, but with a fixed CC mask.
class FixedCondUnaryRSY<CondVariant V, string mnemonic, bits<16> opcode,
                        RegisterOperand cls, bits<5> bytes,
                        AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
             mnemonic#V.suffix#"\t$R1, $BD2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CondUnaryRSYPair<string mnemonic, bits<16> opcode,
                            SDPatternOperator operator,
                            RegisterOperand cls, bits<5> bytes,
                            AddressingMode mode = bdaddr20only> {
  let isCodeGenOnly = 1 in
    def "" : CondUnaryRSY<mnemonic, opcode, operator, cls, bytes, mode>;
  def Asm : AsmCondUnaryRSY<mnemonic, opcode, cls, bytes, mode>;
}

class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls, bits<5> bytes,
              AddressingMode mode = bdxaddr12only>
  : InstRXa<opcode, (outs cls:$R1), (ins mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes>
  : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let M3 = 0;
}

class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes,
               AddressingMode mode = bdxaddr20only>
  : InstRXYa<opcode, (outs cls:$R1), (ins mode:$XBD2),
             mnemonic#"\t$R1, $XBD2",
             [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                       SDPatternOperator operator, RegisterOperand cls,
                       bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
                        bdxaddr20pair>;
  }
}

class UnaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                TypedReg tr, ImmOpWithPattern imm, bits<4> type = 0>
  : InstVRIa<opcode, (outs tr.op:$V1), (ins imm:$I2),
             mnemonic#"\t$V1, $I2",
             [(set (tr.vt tr.op:$V1), (operator (i32 timm:$I2)))]> {
  let M3 = type;
}

class UnaryVRIaGeneric<string mnemonic, bits<16> opcode, ImmOpWithPattern imm>
  : InstVRIa<opcode, (outs VR128:$V1), (ins imm:$I2, imm32zx4:$M3),
             mnemonic#"\t$V1, $I2, $M3", []>;

class UnaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0,
                bits<4> m5 = 0, string fp_mnemonic = "">
  : InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2),
             mnemonic#"\t$V1, $V2",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2)))]> {
  let M3 = type;
  let M4 = m4;
  let M5 = m5;
  let OpKey = fp_mnemonic#!subst("VR", "FP", !cast<string>(tr1.op));
  let OpType = "reg";
}

class UnaryVRRaGeneric<string mnemonic, bits<16> opcode, bits<4> m4 = 0,
                       bits<4> m5 = 0>
  : InstVRRa<opcode, (outs VR128:$V1), (ins VR128:$V2, imm32zx4:$M3),
             mnemonic#"\t$V1, $V2, $M3", []> {
  let M4 = m4;
  let M5 = m5;
}

class UnaryVRRaFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0>
  : InstVRRa<opcode, (outs VR128:$V1),
             (ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4),
             mnemonic#"\t$V1, $V2, $M3, $M4", []> {
  let M5 = m5;
}

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// The form that does not set CC has an extra operand to optionally allow
// specifying arbitrary M5 values in assembler.
multiclass UnaryExtraVRRaSPair<string mnemonic, bits<16> opcode,
                               SDPatternOperator operator,
                               SDPatternOperator operator_cc,
                               TypedReg tr1, TypedReg tr2, bits<4> type> {
  let M3 = type, M4 = 0 in
    def "" : InstVRRa<opcode, (outs tr1.op:$V1),
                      (ins tr2.op:$V2, imm32zx4:$M5),
                      mnemonic#"\t$V1, $V2, $M5", []>;
  def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2))),
            (!cast<Instruction>(NAME) tr2.op:$V2, 0)>;
  def : InstAlias<mnemonic#"\t$V1, $V2",
                  (!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2, 0)>;
  let Defs = [CC] in
    def S : UnaryVRRa<mnemonic#"s", opcode, operator_cc, tr1, tr2,
                      type, 0, 1>;
}

multiclass UnaryExtraVRRaSPairGeneric<string mnemonic, bits<16> opcode> {
  let M4 = 0, Defs = [CC] in
    def "" : InstVRRa<opcode, (outs VR128:$V1),
                     (ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M5),
                     mnemonic#"\t$V1, $V2, $M3, $M5", []>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $M3",
                  (!cast<Instruction>(NAME) VR128:$V1, VR128:$V2,
                                            imm32zx4:$M3, 0)>;
}

class UnaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               TypedReg tr, bits<5> bytes, bits<4> type = 0>
  : InstVRX<opcode, (outs tr.op:$V1), (ins bdxaddr12only:$XBD2),
            mnemonic#"\t$V1, $XBD2",
            [(set (tr.vt tr.op:$V1), (operator bdxaddr12only:$XBD2))]> {
  let M3 = type;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class UnaryVRXGeneric<string mnemonic, bits<16> opcode>
  : InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
            mnemonic#"\t$V1, $XBD2, $M3", []> {
  let mayLoad = 1;
}

multiclass UnaryVRXAlign<string mnemonic, bits<16> opcode> {
  let mayLoad = 1, AccessBytes = 16 in {
    def Align : InstVRX<opcode, (outs VR128:$V1),
                        (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
                        mnemonic#"\t$V1, $XBD2, $M3", []>;
    let M3 = 0 in
      def "" : InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2),
                       mnemonic#"\t$V1, $XBD2", []>;
  }
}

class SideEffectBinaryRX<string mnemonic, bits<8> opcode,
                         RegisterOperand cls>
  : InstRXa<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2", []>;

class SideEffectBinaryRXY<string mnemonic, bits<16> opcode,
                          RegisterOperand cls>
  : InstRXYa<opcode, (outs), (ins cls:$R1, bdxaddr20only:$XBD2),
             mnemonic#"\t$R1, $XBD2", []>;

class SideEffectBinaryRILPC<string mnemonic, bits<12> opcode,
                            RegisterOperand cls>
  : InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
             mnemonic#"\t$R1, $RI2", []> {
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class SideEffectBinaryRRE<string mnemonic, bits<16> opcode,
                          RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
            mnemonic#"\t$R1, $R2", []>;

class SideEffectBinaryRRFa<string mnemonic, bits<16> opcode,
                           RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2),
             mnemonic#"\t$R1, $R2", []> {
  let R3 = 0;
  let M4 = 0;
}

class SideEffectBinaryRRFc<string mnemonic, bits<16> opcode,
                           RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFc<opcode, (outs), (ins cls1:$R1, cls2:$R2),
             mnemonic#"\t$R1, $R2", []> {
  let M3 = 0;
}

class SideEffectBinaryIE<string mnemonic, bits<16> opcode,
                         ImmOpWithPattern imm1, ImmOpWithPattern imm2>
  : InstIE<opcode, (outs), (ins imm1:$I1, imm2:$I2),
           mnemonic#"\t$I1, $I2", []>;

class SideEffectBinarySI<string mnemonic, bits<8> opcode, Operand imm>
  : InstSI<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2", []>;

class SideEffectBinarySIL<string mnemonic, bits<16> opcode,
                          SDPatternOperator operator, ImmOpWithPattern imm>
  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2", [(operator bdaddr12only:$BD1, imm:$I2)]>;

class SideEffectBinarySSa<string mnemonic, bits<8> opcode>
  : InstSSa<opcode, (outs), (ins bdladdr12onlylen8:$BDL1, bdaddr12only:$BD2),
            mnemonic#"\t$BDL1, $BD2", []>;

class SideEffectBinarySSb<string mnemonic, bits<8> opcode>
  : InstSSb<opcode,
            (outs), (ins bdladdr12onlylen4:$BDL1, bdladdr12onlylen4:$BDL2),
            mnemonic#"\t$BDL1, $BDL2", []>;

class SideEffectBinarySSf<string mnemonic, bits<8> opcode>
  : InstSSf<opcode, (outs), (ins bdaddr12only:$BD1, bdladdr12onlylen8:$BDL2),
            mnemonic#"\t$BD1, $BDL2", []>;

class SideEffectBinarySSE<string mnemonic, bits<16> opcode>
  : InstSSE<opcode, (outs), (ins bdaddr12only:$BD1, bdaddr12only:$BD2),
            mnemonic#"\t$BD1, $BD2", []>;

class SideEffectBinaryMemMemRR<string mnemonic, bits<8> opcode,
                               RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
           mnemonic#"\t$R1, $R2", []> {
    let Constraints = "$R1 = $R1src, $R2 = $R2src";
    let DisableEncoding = "$R1src, $R2src";
}

class SideEffectBinaryMemRRE<string mnemonic, bits<16> opcode,
                             RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls2:$R2), (ins cls1:$R1, cls2:$R2src),
            mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R2 = $R2src";
  let DisableEncoding = "$R2src";
}

class SideEffectBinaryMemMemRRE<string mnemonic, bits<16> opcode,
                                RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
            mnemonic#"\t$R1, $R2", []> {
    let Constraints = "$R1 = $R1src, $R2 = $R2src";
    let DisableEncoding = "$R1src, $R2src";
}

class SideEffectBinaryMemMemRRFc<string mnemonic, bits<16> opcode,
                                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
             mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src, $R2 = $R2src";
  let DisableEncoding = "$R1src, $R2src";
  let M3 = 0;
}

class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
           mnemonic#"\t$R1, $R2",
           [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
            mnemonic#"\t$R1, $R2",
            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRRD<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRRD<opcode, (outs cls1:$R1), (ins cls2:$R3, cls2:$R2),
            mnemonic#"\t$R1, $R3, $R2",
            [(set cls1:$R1, (operator cls2:$R3, cls2:$R2))]> {
  let OpKey = mnemonic#cls;
  let OpType = "reg";
}

class BinaryRRFa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2,
                 RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
             mnemonic#"\t$R1, $R2, $R3",
             [(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
  let M4 = 0;
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls1,
                        RegisterOperand cls2> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRRFa<mnemonic#"k", opcode2, operator, cls1, cls1, cls2>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2" in
      def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
  }
}

multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
                         SDPatternOperator operator, RegisterOperand cls1,
                         RegisterOperand cls2> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRRFa<mnemonic#"k", opcode2, operator, cls1, cls1, cls2>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2" in
      def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
  }
}

class BinaryRRFb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2,
                 RegisterOperand cls3>
  : InstRRFb<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
             mnemonic#"\t$R1, $R3, $R2",
             [(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
  let M4 = 0;
}

class BinaryRRFc<string mnemonic, bits<16> opcode,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls1:$R1), (ins cls2:$R2, imm32zx4:$M3),
             mnemonic#"\t$R1, $R2, $M3", []>;

class BinaryMemRRFc<string mnemonic, bits<16> opcode,
                    RegisterOperand cls1, RegisterOperand cls2, ImmOpWithPattern imm>
  : InstRRFc<opcode, (outs cls2:$R2, cls1:$R1), (ins cls1:$R1src, imm:$M3),
            mnemonic#"\t$R1, $R2, $M3", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

multiclass BinaryMemRRFcOpt<string mnemonic, bits<16> opcode,
                            RegisterOperand cls1, RegisterOperand cls2> {
  def "" : BinaryMemRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
  def Opt : UnaryMemRRFc<mnemonic, opcode, cls1, cls2>;
}

class BinaryRRFd<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                RegisterOperand cls2>
  : InstRRFd<opcode, (outs cls1:$R1), (ins cls2:$R2, imm32zx4:$M4),
             mnemonic#"\t$R1, $R2, $M4", []>;

class BinaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                RegisterOperand cls2>
  : InstRRFe<opcode, (outs cls1:$R1), (ins imm32zx4:$M3, cls2:$R2),
             mnemonic#"\t$R1, $M3, $R2", []> {
  let M4 = 0;
}

class CondBinaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                   RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls1:$R1),
             (ins cls1:$R1src, cls2:$R2, cond4:$valid, cond4:$M3),
             mnemonic#"$M3\t$R1, $R2",
             [(set cls1:$R1, (z_select_ccmask cls2:$R2, cls1:$R1src,
                                              cond4:$valid, cond4:$M3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let CCMaskLast = 1;
  let NumOpsKey = !subst("loc", "sel", mnemonic);
  let NumOpsValue = "2";
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

// Like CondBinaryRRF, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondBinaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                       RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls1:$R1),
             (ins cls1:$R1src, cls2:$R2, imm32zx4:$M3),
             mnemonic#"\t$R1, $R2, $M3", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Like CondBinaryRRF, but with a fixed CC mask.
class FixedCondBinaryRRF<CondVariant V, string mnemonic, bits<16> opcode,
                         RegisterOperand cls1, RegisterOperand cls2>
  : InstRRFc<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
             mnemonic#V.suffix#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CondBinaryRRFPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls1, RegisterOperand cls2> {
  let isCodeGenOnly = 1 in
    def "" : CondBinaryRRF<mnemonic, opcode, cls1, cls2>;
  def Asm : AsmCondBinaryRRF<mnemonic, opcode, cls1, cls2>;
}

class CondBinaryRRFa<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                    RegisterOperand cls2, RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1),
             (ins cls3:$R3, cls2:$R2, cond4:$valid, cond4:$M4),
             mnemonic#"$M4\t$R1, $R2, $R3",
             [(set cls1:$R1, (z_select_ccmask cls2:$R2, cls3:$R3,
                                              cond4:$valid, cond4:$M4))]> {
  let CCMaskLast = 1;
  let NumOpsKey = mnemonic;
  let NumOpsValue = "3";
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

// Like CondBinaryRRFa, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondBinaryRRFa<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                        RegisterOperand cls2, RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1), (ins cls3:$R3, cls2:$R2, imm32zx4:$M4),
             mnemonic#"\t$R1, $R2, $R3, $M4", []>;

// Like CondBinaryRRFa, but with a fixed CC mask.
class FixedCondBinaryRRFa<CondVariant V, string mnemonic, bits<16> opcode,
                         RegisterOperand cls1, RegisterOperand cls2,
                         RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1), (ins cls3:$R3, cls2:$R2),
             mnemonic#V.suffix#"\t$R1, $R2, $R3", []> {
  let isAsmParserOnly = V.alternate;
  let M4 = V.ccmask;
}

multiclass CondBinaryRRFaPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls1, RegisterOperand cls2,
                             RegisterOperand cls3> {
  let isCodeGenOnly = 1 in
    def "" : CondBinaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
  def Asm : AsmCondBinaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
}

class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
               RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
             mnemonic#"\t$R1, $R3, $I2",
             [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;

multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls,
                        ImmOpWithPattern imm> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRIE<mnemonic#"k", opcode2, operator, cls, imm>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2" in
      def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
  }
}

class CondBinaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
                    ImmOpWithPattern imm>
  : InstRIEg<opcode, (outs cls:$R1),
             (ins cls:$R1src, imm:$I2, cond4:$valid, cond4:$M3),
             mnemonic#"$M3\t$R1, $I2",
             [(set cls:$R1, (z_select_ccmask imm:$I2, cls:$R1src,
                                             cond4:$valid, cond4:$M3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let CCMaskLast = 1;
}

// Like CondBinaryRIE, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondBinaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
                       ImmOpWithPattern imm>
  : InstRIEg<opcode, (outs cls:$R1),
             (ins cls:$R1src, imm:$I2, imm32zx4:$M3),
             mnemonic#"\t$R1, $I2, $M3", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Like CondBinaryRIE, but with a fixed CC mask.
class FixedCondBinaryRIE<CondVariant V, string mnemonic, bits<16> opcode,
                         RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIEg<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
             mnemonic#V.suffix#"\t$R1, $I2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let isAsmParserOnly = V.alternate;
  let M3 = V.ccmask;
}

multiclass CondBinaryRIEPair<string mnemonic, bits<16> opcode,
                             RegisterOperand cls, ImmOpWithPattern imm> {
  let isCodeGenOnly = 1 in
    def "" : CondBinaryRIE<mnemonic, opcode, cls, imm>;
  def Asm : AsmCondBinaryRIE<mnemonic, opcode, cls, imm>;
}

class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                RegisterOperand cls, ImmOpWithPattern imm>
  : InstRILa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
             mnemonic#"\t$R1, $I2",
             [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls>
  : InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
            mnemonic#"\t$R1, $BD2",
            [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
  let R3 = 0;
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls>
  : InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
             mnemonic#"\t$R1, $R3, $BD2",
             [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;

multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K  : BinaryRSY<mnemonic#"k", opcode2, operator, cls>,
               Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2" in
      def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
  }
}

class BinaryRSL<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRSLb<opcode, (outs cls:$R1),
             (ins bdladdr12onlylen8:$BDL2, imm32zx4:$M3),
             mnemonic#"\t$R1, $BDL2, $M3", []> {
  let mayLoad = 1;
}

class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
               AddressingMode mode = bdxaddr12only>
  : InstRXa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
  : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator cls:$R1src,
                                     (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let M3 = 0;
}

class BinaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2,
                SDPatternOperator load, bits<5> bytes>
  : InstRXF<opcode, (outs cls1:$R1), (ins cls2:$R3, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $R3, $XBD2",
            [(set cls1:$R1, (operator cls2:$R3, (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                AddressingMode mode = bdxaddr20only>
  : InstRXYa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
             mnemonic#"\t$R1, $XBD2",
             [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                        SDPatternOperator operator, RegisterOperand cls,
                        SDPatternOperator load, bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
                        bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
                         bdxaddr20pair>;
  }
}

class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               Operand imm, AddressingMode mode = bdaddr12only>
  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
  let mayLoad = 1;
  let mayStore = 1;
}

class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                Operand imm, AddressingMode mode = bdaddr20only>
  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
  let mayLoad = 1;
  let mayStore = 1;
}

multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
                        bits<16> siyOpcode, SDPatternOperator operator,
                        Operand imm> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
  }
}

class BinarySSF<string mnemonic, bits<12> opcode, RegisterOperand cls>
  : InstSSF<opcode, (outs cls:$R3), (ins bdaddr12pair:$BD1, bdaddr12pair:$BD2),
            mnemonic#"\t$R3, $BD1, $BD2", []> {
  let mayLoad = 1;
}

class BinaryVRIb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr, bits<4> type>
  : InstVRIb<opcode, (outs tr.op:$V1), (ins imm32zx8:$I2, imm32zx8:$I3),
             mnemonic#"\t$V1, $I2, $I3",
             [(set (tr.vt tr.op:$V1), (operator imm32zx8_timm:$I2, imm32zx8_timm:$I3))]> {
  let M4 = type;
}

class BinaryVRIbGeneric<string mnemonic, bits<16> opcode>
  : InstVRIb<opcode, (outs VR128:$V1),
             (ins imm32zx8:$I2, imm32zx8:$I3, imm32zx4:$M4),
             mnemonic#"\t$V1, $I2, $I3, $M4", []>;

class BinaryVRIc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type>
  : InstVRIc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, imm32zx16:$I2),
             mnemonic#"\t$V1, $V3, $I2",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V3),
                                                  imm32zx16_timm:$I2))]> {
  let M4 = type;
}

class BinaryVRIcGeneric<string mnemonic, bits<16> opcode>
  : InstVRIc<opcode, (outs VR128:$V1),
             (ins VR128:$V3, imm32zx16:$I2, imm32zx4:$M4),
             mnemonic#"\t$V1, $V3, $I2, $M4", []>;

class BinaryVRIe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m5>
  : InstVRIe<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx12:$I3),
             mnemonic#"\t$V1, $V2, $I3",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  imm32zx12_timm:$I3))]> {
  let M4 = type;
  let M5 = m5;
}

class BinaryVRIeFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRIe<opcode, (outs VR128:$V1),
             (ins VR128:$V2, imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $I3, $M4, $M5", []>;

class BinaryVRIh<string mnemonic, bits<16> opcode>
  : InstVRIh<opcode, (outs VR128:$V1),
             (ins imm32zx16:$I2, imm32zx4:$I3),
             mnemonic#"\t$V1, $I2, $I3", []>;

class BinaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0>
  : InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $M5",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  imm32zx12:$M5))]> {
  let M3 = type;
  let M4 = m4;
}

class BinaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRa<opcode, (outs VR128:$V1),
             (ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;

class BinaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type = 0,
                 bits<4> modifier = 0>
  : InstVRRb<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
             mnemonic#"\t$V1, $V2, $V3",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3)))]> {
  let M4 = type;
  let M5 = modifier;
}

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
multiclass BinaryVRRbSPair<string mnemonic, bits<16> opcode,
                           SDPatternOperator operator,
                           SDPatternOperator operator_cc, TypedReg tr1,
                           TypedReg tr2, bits<4> type, bits<4> modifier = 0> {
  def "" : BinaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
                      !and (modifier, 14)>;
  let Defs = [CC] in
    def S : BinaryVRRb<mnemonic#"s", opcode, operator_cc, tr1, tr2, type,
                       !add (!and (modifier, 14), 1)>;
}

class BinaryVRRbSPairGeneric<string mnemonic, bits<16> opcode>
  : InstVRRb<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []> {
  let Defs = [CC];
}

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// The form that does not set CC has an extra operand to optionally allow
// specifying arbitrary M5 values in assembler.
multiclass BinaryExtraVRRbSPair<string mnemonic, bits<16> opcode,
                                SDPatternOperator operator,
                                SDPatternOperator operator_cc,
                                TypedReg tr1, TypedReg tr2, bits<4> type> {
  let M4 = type in
    def "" : InstVRRb<opcode, (outs tr1.op:$V1),
                      (ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M5),
                      mnemonic#"\t$V1, $V2, $V3, $M5", []>;
  def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2), (tr2.vt tr2.op:$V3))),
            (!cast<Instruction>(NAME) tr2.op:$V2, tr2.op:$V3, 0)>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
                  (!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
                                            tr2.op:$V3, 0)>;
  let Defs = [CC] in
    def S : BinaryVRRb<mnemonic#"s", opcode, operator_cc, tr1, tr2, type, 1>;
}

multiclass BinaryExtraVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
  let Defs = [CC] in
    def "" : InstVRRb<opcode, (outs VR128:$V1),
                     (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
                     mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
                  (!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
                                            imm32zx4:$M4, 0)>;
}

class BinaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m5 = 0,
                 bits<4> m6 = 0, string fp_mnemonic = "">
  : InstVRRc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
             mnemonic#"\t$V1, $V2, $V3",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3)))]> {
  let M4 = type;
  let M5 = m5;
  let M6 = m6;
  let OpKey = fp_mnemonic#"MemFold"#!subst("VR", "FP", !cast<string>(tr1.op));
  let OpType = "reg";
}

class BinaryVRRcGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0,
                        bits<4> m6 = 0>
  : InstVRRc<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, imm32zx4:$M4),
             mnemonic#"\t$V1, $V2, $V3, $M4", []> {
  let M5 = m5;
  let M6 = m6;
}

class BinaryVRRcFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m6 = 0>
  : InstVRRc<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []> {
  let M6 = m6;
}

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
multiclass BinaryVRRcSPair<string mnemonic, bits<16> opcode,
                           SDPatternOperator operator,
                           SDPatternOperator operator_cc, TypedReg tr1,
                           TypedReg tr2, bits<4> type, bits<4> m5,
                           bits<4> modifier = 0> {
  def "" : BinaryVRRc<mnemonic, opcode, operator, tr1, tr2, type,
                      m5, !and (modifier, 14)>;
  let Defs = [CC] in
    def S : BinaryVRRc<mnemonic#"s", opcode, operator_cc, tr1, tr2, type,
                       m5, !add (!and (modifier, 14), 1)>;
}

class BinaryVRRcSPairFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRc<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
                  imm32zx4:$M6),
             mnemonic#"\t$V1, $V2, $V3, $M4, $M5, $M6", []>;

class BinaryVRRf<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr>
  : InstVRRf<opcode, (outs tr.op:$V1), (ins GR64:$R2, GR64:$R3),
             mnemonic#"\t$V1, $R2, $R3",
             [(set (tr.vt tr.op:$V1), (operator GR64:$R2, GR64:$R3))]>;

class BinaryVRRi<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstVRRi<opcode, (outs cls:$R1), (ins VR128:$V2, imm32zx4:$M3),
             mnemonic#"\t$R1, $V2, $M3", []> {
  let M4 = 0;
}

class BinaryVRSa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<4> type>
  : InstVRSa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, shift12only:$BD2),
             mnemonic#"\t$V1, $V3, $BD2",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V3),
                                                  shift12only:$BD2))]> {
  let M4 = type;
}

class BinaryVRSaGeneric<string mnemonic, bits<16> opcode>
  : InstVRSa<opcode, (outs VR128:$V1),
             (ins VR128:$V3, shift12only:$BD2, imm32zx4:$M4),
             mnemonic#"\t$V1, $V3, $BD2, $M4", []>;

class BinaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 bits<5> bytes>
  : InstVRSb<opcode, (outs VR128:$V1), (ins GR32:$R3, bdaddr12only:$BD2),
             mnemonic#"\t$V1, $R3, $BD2",
             [(set VR128:$V1, (operator GR32:$R3, bdaddr12only:$BD2))]> {
  let M4 = 0;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryVRSc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr, bits<4> type>
  : InstVRSc<opcode, (outs GR64:$R1), (ins tr.op:$V3, shift12only:$BD2),
           mnemonic#"\t$R1, $V3, $BD2",
           [(set GR64:$R1, (operator (tr.vt tr.op:$V3), shift12only:$BD2))]> {
  let M4 = type;
}

class BinaryVRScGeneric<string mnemonic, bits<16> opcode>
  : InstVRSc<opcode, (outs GR64:$R1),
             (ins VR128:$V3, shift12only:$BD2, imm32zx4: $M4),
             mnemonic#"\t$R1, $V3, $BD2, $M4", []>;

class BinaryVRSd<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 bits<5> bytes>
  : InstVRSd<opcode, (outs VR128:$V1), (ins GR32:$R3, bdaddr12only:$BD2),
             mnemonic#"\t$V1, $R3, $BD2",
             [(set VR128:$V1, (operator GR32:$R3, bdaddr12only:$BD2))]> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                TypedReg tr, bits<5> bytes>
  : InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
            mnemonic#"\t$V1, $XBD2, $M3",
            [(set (tr.vt tr.op:$V1), (operator bdxaddr12only:$XBD2,
                                               imm32zx4_timm:$M3))]> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class StoreBinaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
                    bits<5> bytes, AddressingMode mode = bdaddr12only>
  : InstRSb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
            mnemonic#"\t$R1, $M3, $BD2", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreBinaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
                     bits<5> bytes, AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
             mnemonic#"\t$R1, $M3, $BD2", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

multiclass StoreBinaryRSPair<string mnemonic, bits<8> rsOpcode,
                             bits<16> rsyOpcode, RegisterOperand cls,
                             bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : StoreBinaryRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : StoreBinaryRSY<mnemonic#"y", rsyOpcode, cls, bytes,
                              bdaddr20pair>;
  }
}

class StoreBinaryRSL<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRSLb<opcode, (outs),
             (ins cls:$R1, bdladdr12onlylen8:$BDL2, imm32zx4:$M3),
             mnemonic#"\t$R1, $BDL2, $M3", []> {
  let mayStore = 1;
}

class BinaryVSI<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                bits<5> bytes>
  : InstVSI<opcode, (outs VR128:$V1), (ins bdaddr12only:$BD2, imm32zx8:$I3),
            mnemonic#"\t$V1, $BD2, $I3",
            [(set VR128:$V1, (operator imm32zx8:$I3, bdaddr12only:$BD2))]> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class StoreBinaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
                     ImmOpWithPattern index>
  : InstVRV<opcode, (outs), (ins VR128:$V1, bdvaddr12only:$VBD2, index:$M3),
            mnemonic#"\t$V1, $VBD2, $M3", []> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreBinaryVRX<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator, TypedReg tr, bits<5> bytes,
                     ImmOpWithPattern index>
  : InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2, index:$M3),
            mnemonic#"\t$V1, $XBD2, $M3",
            [(operator (tr.vt tr.op:$V1), bdxaddr12only:$XBD2, index:$M3)]> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

class MemoryBinarySSd<string mnemonic, bits<8> opcode,
                      RegisterOperand cls>
  : InstSSd<opcode, (outs),
            (ins bdraddr12only:$RBD1, bdaddr12only:$BD2, cls:$R3),
            mnemonic#"\t$RBD1, $BD2, $R3", []>;

class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
           mnemonic#"\t$R1, $R2",
           [(set CC, (operator cls1:$R1, cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
  let isCompare = 1;
}

class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
            mnemonic#"\t$R1, $R2",
            [(set CC, (operator cls1:$R1, cls2:$R2))]> {
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
  let isCompare = 1;
}

class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                RegisterOperand cls, ImmOpWithPattern imm>
  : InstRIa<opcode, (outs), (ins cls:$R1, imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(set CC, (operator cls:$R1, imm:$I2))]> {
  let isCompare = 1;
}

class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls, ImmOpWithPattern imm>
  : InstRILa<opcode, (outs), (ins cls:$R1, imm:$I2),
             mnemonic#"\t$R1, $I2",
             [(set CC, (operator cls:$R1, imm:$I2))]> {
  let isCompare = 1;
}

class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                   RegisterOperand cls, SDPatternOperator load>
  : InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
             mnemonic#"\t$R1, $RI2",
             [(set CC, (operator cls:$R1, (load pcrel32:$RI2)))]> {
  let isCompare = 1;
  let mayLoad = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                AddressingMode mode = bdxaddr12only>
  : InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set CC, (operator cls:$R1, (load mode:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set CC, (operator cls:$R1, (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
  let M3 = 0;
}

class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                 AddressingMode mode = bdxaddr20only>
  : InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
             mnemonic#"\t$R1, $XBD2",
             [(set CC, (operator cls:$R1, (load mode:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                         SDPatternOperator operator, RegisterOperand cls,
                         SDPatternOperator load, bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
                         load, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
                          load, bytes, bdxaddr20pair>;
  }
}

class CompareRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
                bits<5> bytes, AddressingMode mode = bdaddr12only>
  : InstRSb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
            mnemonic#"\t$R1, $M3, $BD2", []> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class CompareRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
                 bits<5> bytes, AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
             mnemonic#"\t$R1, $M3, $BD2", []> {
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass CompareRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
                         RegisterOperand cls, bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : CompareRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : CompareRSY<mnemonic#"y", rsyOpcode, cls, bytes, bdaddr20pair>;
  }
}

class CompareSSb<string mnemonic, bits<8> opcode>
  : InstSSb<opcode,
            (outs), (ins bdladdr12onlylen4:$BDL1, bdladdr12onlylen4:$BDL2),
            mnemonic#"\t$BDL1, $BDL2", []> {
  let isCompare = 1;
  let mayLoad = 1;
}

class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                SDPatternOperator load, ImmOpWithPattern imm,
                AddressingMode mode = bdaddr12only>
  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(set CC, (operator (load mode:$BD1), imm:$I2))]> {
  let isCompare = 1;
  let mayLoad = 1;
}

class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 SDPatternOperator load, ImmOpWithPattern imm>
  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(set CC, (operator (load bdaddr12only:$BD1), imm:$I2))]> {
  let isCompare = 1;
  let mayLoad = 1;
}

class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 SDPatternOperator load, ImmOpWithPattern imm,
                 AddressingMode mode = bdaddr20only>
  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(set CC, (operator (load mode:$BD1), imm:$I2))]> {
  let isCompare = 1;
  let mayLoad = 1;
}

multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
                         SDPatternOperator operator, SDPatternOperator load,
                         ImmOpWithPattern imm> {
  let DispKey = mnemonic in {
    let DispSize = "12" in
      def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
                          bdaddr20pair>;
  }
}

class CompareVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr, bits<4> type, string fp_mnemonic = "">
  : InstVRRa<opcode, (outs), (ins tr.op:$V1, tr.op:$V2),
             mnemonic#"\t$V1, $V2",
             [(set CC, (operator (tr.vt tr.op:$V1), (tr.vt tr.op:$V2)))]> {
  let isCompare = 1;
  let M3 = type;
  let M4 = 0;
  let M5 = 0;
  let OpKey = fp_mnemonic#!subst("VR", "FP", !cast<string>(tr.op));
  let OpType = "reg";
}

class CompareVRRaGeneric<string mnemonic, bits<16> opcode>
  : InstVRRa<opcode, (outs), (ins VR128:$V1, VR128:$V2, imm32zx4:$M3),
             mnemonic#"\t$V1, $V2, $M3", []> {
  let isCompare = 1;
  let M4 = 0;
  let M5 = 0;
}

class CompareVRRaFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRa<opcode, (outs),
             (ins VR64:$V1, VR64:$V2, imm32zx4:$M3, imm32zx4:$M4),
             mnemonic#"\t$V1, $V2, $M3, $M4", []> {
  let isCompare = 1;
  let M5 = 0;
}

class CompareVRRh<string mnemonic, bits<16> opcode>
  : InstVRRh<opcode, (outs), (ins VR128:$V1, VR128:$V2, imm32zx4:$M3),
             mnemonic#"\t$V1, $V2, $M3", []> {
  let isCompare = 1;
}

class TestInherentS<string mnemonic, bits<16> opcode,
                    SDPatternOperator operator>
  : InstS<opcode, (outs), (ins), mnemonic, [(set CC, (operator))]> {
  let BD2 = 0;
}

class TestRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
              RegisterOperand cls>
  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set CC, (operator cls:$R1, bdxaddr12only:$XBD2))]> {
  let M3 = 0;
}

class TestBinarySIL<string mnemonic, bits<16> opcode,
                    SDPatternOperator operator, ImmOpWithPattern imm>
  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(set CC, (operator bdaddr12only:$BD1, imm:$I2))]>;

class TestRSL<string mnemonic, bits<16> opcode>
  : InstRSLa<opcode, (outs), (ins bdladdr12onlylen4:$BDL1),
             mnemonic#"\t$BDL1", []> {
  let mayLoad = 1;
}

class TestVRRg<string mnemonic, bits<16> opcode>
  : InstVRRg<opcode, (outs), (ins VR128:$V1),
             mnemonic#"\t$V1", []>;

class SideEffectTernarySSc<string mnemonic, bits<8> opcode>
  : InstSSc<opcode, (outs), (ins bdladdr12onlylen4:$BDL1,
                                 shift12only:$BD2, imm32zx4:$I3),
            mnemonic#"\t$BDL1, $BD2, $I3", []>;

class SideEffectTernaryRRFa<string mnemonic, bits<16> opcode,
                            RegisterOperand cls1, RegisterOperand cls2,
                            RegisterOperand cls3>
  : InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3),
             mnemonic#"\t$R1, $R2, $R3", []> {
  let M4 = 0;
}

class SideEffectTernaryMemMemRRFa<string mnemonic, bits<16> opcode,
                                  RegisterOperand cls1, RegisterOperand cls2,
                                  RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1, cls2:$R2),
             (ins cls1:$R1src, cls2:$R2src, cls3:$R3),
             mnemonic#"\t$R1, $R2, $R3", []> {
  let Constraints = "$R1 = $R1src, $R2 = $R2src";
  let DisableEncoding = "$R1src, $R2src";
  let M4 = 0;
}

class SideEffectTernaryRRFb<string mnemonic, bits<16> opcode,
                            RegisterOperand cls1, RegisterOperand cls2,
                            RegisterOperand cls3>
  : InstRRFb<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3),
             mnemonic#"\t$R1, $R3, $R2", []> {
  let M4 = 0;
}

class SideEffectTernaryMemMemMemRRFb<string mnemonic, bits<16> opcode,
                                     RegisterOperand cls1,
                                     RegisterOperand cls2,
                                     RegisterOperand cls3>
  : InstRRFb<opcode, (outs cls1:$R1, cls2:$R2, cls3:$R3),
             (ins cls1:$R1src, cls2:$R2src, cls3:$R3src),
             mnemonic#"\t$R1, $R3, $R2", []> {
  let Constraints = "$R1 = $R1src, $R2 = $R2src, $R3 = $R3src";
  let DisableEncoding = "$R1src, $R2src, $R3src";
  let M4 = 0;
}

class SideEffectTernaryRRFc<string mnemonic, bits<16> opcode,
                            RegisterOperand cls1, RegisterOperand cls2,
                            ImmOpWithPattern imm>
  : InstRRFc<opcode, (outs), (ins cls1:$R1, cls2:$R2, imm:$M3),
             mnemonic#"\t$R1, $R2, $M3", []>;

multiclass SideEffectTernaryRRFcOpt<string mnemonic, bits<16> opcode,
                                    RegisterOperand cls1,
                                    RegisterOperand cls2> {
  def "" : SideEffectTernaryRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
  def Opt : SideEffectBinaryRRFc<mnemonic, opcode, cls1, cls2>;
}

class SideEffectTernaryMemMemRRFc<string mnemonic, bits<16> opcode,
                                  RegisterOperand cls1, RegisterOperand cls2,
                                  ImmOpWithPattern imm>
  : InstRRFc<opcode, (outs cls1:$R1, cls2:$R2),
             (ins cls1:$R1src, cls2:$R2src, imm:$M3),
             mnemonic#"\t$R1, $R2, $M3", []> {
  let Constraints = "$R1 = $R1src, $R2 = $R2src";
  let DisableEncoding = "$R1src, $R2src";
}

multiclass SideEffectTernaryMemMemRRFcOpt<string mnemonic, bits<16> opcode,
                                          RegisterOperand cls1,
                                          RegisterOperand cls2> {
  def "" : SideEffectTernaryMemMemRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
  def Opt : SideEffectBinaryMemMemRRFc<mnemonic, opcode, cls1, cls2>;
}

class SideEffectTernarySSF<string mnemonic, bits<12> opcode,
                           RegisterOperand cls>
  : InstSSF<opcode, (outs),
            (ins bdaddr12only:$BD1, bdaddr12only:$BD2, cls:$R3),
            mnemonic#"\t$BD1, $BD2, $R3", []>;

class TernaryRRFa<string mnemonic, bits<16> opcode,
                 RegisterOperand cls1, RegisterOperand cls2,
                 RegisterOperand cls3>
  : InstRRFa<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3, imm32zx4:$M4),
             mnemonic#"\t$R1, $R2, $R3, $M4", []>;

class TernaryRRFb<string mnemonic, bits<16> opcode,
                  RegisterOperand cls1, RegisterOperand cls2,
                  RegisterOperand cls3>
  : InstRRFb<opcode, (outs cls1:$R1, cls3:$R3),
             (ins cls1:$R1src, cls2:$R2, imm32zx4:$M4),
             mnemonic#"\t$R1, $R3, $R2, $M4", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class TernaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                  RegisterOperand cls2>
  : InstRRFe<opcode, (outs cls1:$R1),
             (ins imm32zx4:$M3, cls2:$R2, imm32zx4:$M4),
             mnemonic#"\t$R1, $M3, $R2, $M4", []>;

class TernaryRRD<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRD<opcode, (outs cls1:$R1), (ins cls2:$R1src, cls2:$R3, cls2:$R2),
            mnemonic#"\t$R1, $R3, $R2",
            [(set cls1:$R1, (operator cls2:$R1src, cls2:$R3, cls2:$R2))]> {
  let OpKey = mnemonic#cls;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class TernaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
                bits<5> bytes, AddressingMode mode = bdaddr12only>
  : InstRSb<opcode, (outs cls:$R1),
            (ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
            mnemonic#"\t$R1, $M3, $BD2", []> {

  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class TernaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
                bits<5> bytes, AddressingMode mode = bdaddr20only>
  : InstRSYb<opcode, (outs cls:$R1),
             (ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
             mnemonic#"\t$R1, $M3, $BD2", []> {

  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass TernaryRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
                         RegisterOperand cls, bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : TernaryRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : TernaryRSY<mnemonic#"y", rsyOpcode, cls, bytes, bdaddr20pair>;
  }
}

class SideEffectTernaryRS<string mnemonic, bits<8> opcode,
                          RegisterOperand cls1, RegisterOperand cls2>
  : InstRSa<opcode, (outs),
            (ins cls1:$R1, cls2:$R3, bdaddr12only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []>;

class SideEffectTernaryRSY<string mnemonic, bits<16> opcode,
                           RegisterOperand cls1, RegisterOperand cls2>
  : InstRSYa<opcode, (outs),
             (ins cls1:$R1, cls2:$R3, bdaddr20only:$BD2),
             mnemonic#"\t$R1, $R3, $BD2", []>;

class SideEffectTernaryMemMemRS<string mnemonic, bits<8> opcode,
                                RegisterOperand cls1, RegisterOperand cls2>
  : InstRSa<opcode, (outs cls1:$R1, cls2:$R3),
            (ins cls1:$R1src, cls2:$R3src, shift12only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
    let Constraints = "$R1 = $R1src, $R3 = $R3src";
    let DisableEncoding = "$R1src, $R3src";
}

class SideEffectTernaryMemMemRSY<string mnemonic, bits<16> opcode,
                                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRSYa<opcode, (outs cls1:$R1, cls2:$R3),
             (ins cls1:$R1src, cls2:$R3src, shift20only:$BD2),
             mnemonic#"\t$R1, $R3, $BD2", []> {
    let Constraints = "$R1 = $R1src, $R3 = $R3src";
    let DisableEncoding = "$R1src, $R3src";
}

class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2,
                 SDPatternOperator load, bits<5> bytes>
  : InstRXF<opcode, (outs cls1:$R1),
            (ins cls2:$R1src, cls2:$R3, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $R3, $XBD2",
            [(set cls1:$R1, (operator cls2:$R1src, cls2:$R3,
                                      (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class TernaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, ImmOpWithPattern imm, ImmOpWithPattern index>
  : InstVRIa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V1src, imm:$I2, index:$M3),
             mnemonic#"\t$V1, $I2, $M3",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V1src),
                                                  imm:$I2, index:$M3))]> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
}

class TernaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, bits<4> type>
  : InstVRId<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
             mnemonic#"\t$V1, $V2, $V3, $I4",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  imm32zx8_timm:$I4))]> {
  let M5 = type;
}

class TernaryVRIi<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstVRIi<opcode, (outs VR128:$V1),
             (ins cls:$R2, imm32zx8:$I3, imm32zx4:$M4),
             mnemonic#"\t$V1, $R2, $I3, $M4", []>;

class TernaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m4or>
  : InstVRRa<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $M4, $M5",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  imm32zx4_timm:$M4,
                                                  imm32zx4_timm:$M5))],
             m4or> {
  let M3 = type;
}

class TernaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRa<opcode, (outs VR128:$V1),
             (ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;

class TernaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, bits<4> type,
                  SDPatternOperator m5mask, bits<4> m5or>
  : InstVRRb<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, m5mask:$M5),
             mnemonic#"\t$V1, $V2, $V3, $M5",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  m5mask:$M5))],
             m5or> {
  let M4 = type;
}

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// Also create aliases to make use of M5 operand optional in assembler.
multiclass TernaryOptVRRbSPair<string mnemonic, bits<16> opcode,
                               SDPatternOperator operator,
                               SDPatternOperator operator_cc,
                               TypedReg tr1, TypedReg tr2, bits<4> type,
                               bits<4> modifier = 0> {
  def "" : TernaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
                       imm32zx4even_timm, !and (modifier, 14)>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
                  (!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
                                            tr2.op:$V3, 0)>;
  let Defs = [CC] in
    def S : TernaryVRRb<mnemonic#"s", opcode, operator_cc, tr1, tr2, type,
                        imm32zx4even_timm, !add(!and (modifier, 14), 1)>;
  def : InstAlias<mnemonic#"s\t$V1, $V2, $V3",
                  (!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
                                                tr2.op:$V3, 0)>;
}

multiclass TernaryOptVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
  let Defs = [CC] in
    def "" : InstVRRb<opcode, (outs VR128:$V1),
                     (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
                     mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
                  (!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
                                            imm32zx4:$M4, 0)>;
}

class TernaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2>
  : InstVRRc<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M4),
             mnemonic#"\t$V1, $V2, $V3, $M4",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  imm32zx4_timm:$M4))]> {
  let M5 = 0;
  let M6 = 0;
}

class TernaryVRRcFloat<string mnemonic, bits<16> opcode,
                       SDPatternOperator operator, TypedReg tr1, TypedReg tr2,
                       bits<4> type = 0, bits<4> m5 = 0>
  : InstVRRc<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M6),
             mnemonic#"\t$V1, $V2, $V3, $M6",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  imm32zx4_timm:$M6))]> {
  let M4 = type;
  let M5 = m5;
}

class TernaryVRRcFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRc<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
                  imm32zx4:$M6),
             mnemonic#"\t$V1, $V2, $V3, $M4, $M5, $M6", []>;

class TernaryVRRd<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m6 = 0>
  : InstVRRd<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
             mnemonic#"\t$V1, $V2, $V3, $V4",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  (tr1.vt tr1.op:$V4)))]> {
  let M5 = type;
  let M6 = m6;
}

class TernaryVRRdGeneric<string mnemonic, bits<16> opcode>
  : InstVRRd<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $V3, $V4, $M5", []> {
  let M6 = 0;
}

// Ternary operation where the assembler mnemonic has an extra operand to
// optionally allow specifying arbitrary M6 values.
multiclass TernaryExtraVRRd<string mnemonic, bits<16> opcode,
                             SDPatternOperator operator,
                             TypedReg tr1, TypedReg tr2, bits<4> type> {
  let M5 = type, Defs = [CC] in
    def "" : InstVRRd<opcode, (outs tr1.op:$V1),
                      (ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4, imm32zx4:$M6),
                      mnemonic#"\t$V1, $V2, $V3, $V4, $M6", []>;
  def : Pat<(operator (tr2.vt tr2.op:$V2), (tr2.vt tr2.op:$V3),
                      (tr1.vt tr1.op:$V4)),
            (!cast<Instruction>(NAME) tr2.op:$V2, tr2.op:$V3, tr1.op:$V4, 0)>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4",
                  (!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
                                            tr2.op:$V3, tr1.op:$V4, 0)>;
}

multiclass TernaryExtraVRRdGeneric<string mnemonic, bits<16> opcode> {
  let Defs = [CC] in
    def "" : InstVRRd<opcode, (outs VR128:$V1),
                      (ins VR128:$V2, VR128:$V3, VR128:$V4,
                       imm32zx4:$M5, imm32zx4:$M6),
                      mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4, $M5",
                  (!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
                                            VR128:$V4, imm32zx4:$M5, 0)>;
}

class TernaryVRRe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, bits<4> m5 = 0, bits<4> type = 0,
                  string fp_mnemonic = "">
  : InstVRRe<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
             mnemonic#"\t$V1, $V2, $V3, $V4",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  (tr1.vt tr1.op:$V4)))]> {
  let M5 = m5;
  let M6 = type;
  let OpKey = fp_mnemonic#"MemFold"#!subst("VR", "FP", !cast<string>(tr1.op));
  let OpType = "reg";
}

class TernaryVRReFloatGeneric<string mnemonic, bits<16> opcode>
  : InstVRRe<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5, imm32zx4:$M6),
             mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;

class TernaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  TypedReg tr1, TypedReg tr2, RegisterOperand cls, bits<4> type>
  : InstVRSb<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V1src, cls:$R3, shift12only:$BD2),
             mnemonic#"\t$V1, $R3, $BD2",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V1src),
                                                  cls:$R3,
                                                  shift12only:$BD2))]> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
  let M4 = type;
}

class TernaryVRRi<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstVRRi<opcode, (outs cls:$R1), (ins VR128:$V2,
                                      imm32zx4:$M3, imm32zx4:$M4),
             mnemonic#"\t$R1, $V2, $M3, $M4", []>;

class TernaryVRSbGeneric<string mnemonic, bits<16> opcode>
  : InstVRSb<opcode, (outs VR128:$V1),
             (ins VR128:$V1src, GR64:$R3, shift12only:$BD2, imm32zx4:$M4),
             mnemonic#"\t$V1, $R3, $BD2, $M4", []> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
}

class TernaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
                 ImmOpWithPattern index>
  : InstVRV<opcode, (outs VR128:$V1),
           (ins VR128:$V1src, bdvaddr12only:$VBD2, index:$M3),
           mnemonic#"\t$V1, $VBD2, $M3", []> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class TernaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 TypedReg tr1, TypedReg tr2, bits<5> bytes, ImmOpWithPattern index>
  : InstVRX<opcode, (outs tr1.op:$V1),
           (ins tr2.op:$V1src, bdxaddr12only:$XBD2, index:$M3),
           mnemonic#"\t$V1, $XBD2, $M3",
           [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V1src),
                                                bdxaddr12only:$XBD2,
                                                index:$M3))]> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class QuaternaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                     TypedReg tr1, TypedReg tr2, bits<4> type>
  : InstVRId<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V1src, tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
             mnemonic#"\t$V1, $V2, $V3, $I4",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V1src),
                                                  (tr2.vt tr2.op:$V2),
                                                  (tr2.vt tr2.op:$V3),
                                                  imm32zx8_timm:$I4))]> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
  let M5 = type;
}

class QuaternaryVRIdGeneric<string mnemonic, bits<16> opcode>
  : InstVRId<opcode, (outs VR128:$V1),
             (ins VR128:$V1src, VR128:$V2, VR128:$V3,
                  imm32zx8:$I4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $V3, $I4, $M5", []> {
  let Constraints = "$V1 = $V1src";
  let DisableEncoding = "$V1src";
}

class QuaternaryVRIf<string mnemonic, bits<16> opcode>
  : InstVRIf<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3,
                  imm32zx8:$I4, imm32zx4:$M5),
            mnemonic#"\t$V1, $V2, $V3, $I4, $M5", []>;

class QuaternaryVRIg<string mnemonic, bits<16> opcode>
  : InstVRIg<opcode, (outs VR128:$V1),
             (ins VR128:$V2, imm32zx8:$I3,
                  imm32zx8:$I4, imm32zx4:$M5),
             mnemonic#"\t$V1, $V2, $I3, $I4, $M5", []>;

class QuaternaryVRRd<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator, TypedReg tr1, TypedReg tr2,
                     TypedReg tr3, TypedReg tr4, bits<4> type,
                     SDPatternOperator m6mask = imm32zx4_timm, bits<4> m6or = 0>
  : InstVRRd<opcode, (outs tr1.op:$V1),
             (ins tr2.op:$V2, tr3.op:$V3, tr4.op:$V4, m6mask:$M6),
             mnemonic#"\t$V1, $V2, $V3, $V4, $M6",
             [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2),
                                                  (tr3.vt tr3.op:$V3),
                                                  (tr4.vt tr4.op:$V4),
                                                  m6mask:$M6))],
             m6or> {
  let M5 = type;
}

class QuaternaryVRRdGeneric<string mnemonic, bits<16> opcode>
  : InstVRRd<opcode, (outs VR128:$V1),
             (ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5, imm32zx4:$M6),
             mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;

// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M6.
// Also create aliases to make use of M6 operand optional in assembler.
multiclass QuaternaryOptVRRdSPair<string mnemonic, bits<16> opcode,
                                  SDPatternOperator operator,
                                SDPatternOperator operator_cc,
                                TypedReg tr1, TypedReg tr2, bits<4> type,
                                bits<4> modifier = 0> {
  def "" : QuaternaryVRRd<mnemonic, opcode, operator,
                          tr1, tr2, tr2, tr2, type,
                          imm32zx4even_timm, !and (modifier, 14)>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4",
                  (!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
                                            tr2.op:$V3, tr2.op:$V4, 0)>;
  let Defs = [CC] in
    def S : QuaternaryVRRd<mnemonic#"s", opcode, operator_cc,
                           tr1, tr2, tr2, tr2, type,
                           imm32zx4even_timm, !add (!and (modifier, 14), 1)>;
  def : InstAlias<mnemonic#"s\t$V1, $V2, $V3, $V4",
                  (!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
                                                tr2.op:$V3, tr2.op:$V4, 0)>;
}

multiclass QuaternaryOptVRRdSPairGeneric<string mnemonic, bits<16> opcode> {
  let Defs = [CC] in
    def "" : QuaternaryVRRdGeneric<mnemonic, opcode>;
  def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4, $M5",
                  (!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
                                            VR128:$V4, imm32zx4_timm:$M5, 0)>;
}

class SideEffectQuaternaryRRFa<string mnemonic, bits<16> opcode,
                               RegisterOperand cls1, RegisterOperand cls2,
                               RegisterOperand cls3>
  : InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3, imm32zx4:$M4),
             mnemonic#"\t$R1, $R2, $R3, $M4", []>;

multiclass SideEffectQuaternaryRRFaOptOpt<string mnemonic, bits<16> opcode,
                                          RegisterOperand cls1,
                                          RegisterOperand cls2,
                                          RegisterOperand cls3> {
  def "" : SideEffectQuaternaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
  def Opt : SideEffectTernaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
  def OptOpt : SideEffectBinaryRRFa<mnemonic, opcode, cls1, cls2>;
}

class SideEffectQuaternaryRRFb<string mnemonic, bits<16> opcode,
                               RegisterOperand cls1, RegisterOperand cls2,
                               RegisterOperand cls3>
  : InstRRFb<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3, imm32zx4:$M4),
             mnemonic#"\t$R1, $R3, $R2, $M4", []>;

multiclass SideEffectQuaternaryRRFbOpt<string mnemonic, bits<16> opcode,
                                       RegisterOperand cls1,
                                       RegisterOperand cls2,
                                       RegisterOperand cls3> {
  def "" : SideEffectQuaternaryRRFb<mnemonic, opcode, cls1, cls2, cls3>;
  def Opt : SideEffectTernaryRRFb<mnemonic, opcode, cls1, cls2, cls3>;
}

class SideEffectQuaternarySSe<string mnemonic, bits<8> opcode,
                              RegisterOperand cls>
  : InstSSe<opcode, (outs),
            (ins cls:$R1, bdaddr12only:$BD2, cls:$R3, bdaddr12only:$BD4),
            mnemonic#"\t$R1, $BD2, $R3, $BD4", []>;

class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  RegisterOperand cls, AddressingMode mode = bdaddr20only>
  : InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
             mnemonic#"\t$R1, $R3, $BD2",
             [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
  let mayLoad = 1;
  let mayStore = 1;
}

class CmpSwapRRE<string mnemonic, bits<16> opcode,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
            mnemonic#"\t$R1, $R2", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let mayStore = 1;
}

class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls, AddressingMode mode = bdaddr12only>
  : InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
            mnemonic#"\t$R1, $R3, $BD2",
            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let mayStore = 1;
}

class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, AddressingMode mode = bdaddr20only>
  : InstRSYa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
             mnemonic#"\t$R1, $R3, $BD2",
             [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let mayStore = 1;
}

multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
                         SDPatternOperator operator, RegisterOperand cls> {
  let DispKey = mnemonic # cls in {
    let DispSize = "12" in
      def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
  }
}

class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                       RegisterOperand cls2>
  : InstRIEf<opcode, (outs cls1:$R1),
             (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
                  imm32zx6:$I5),
             mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
  : InstRXYb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr20only:$XBD2),
             mnemonic#"\t$M1, $XBD2",
             [(operator imm32zx4_timm:$M1, bdxaddr20only:$XBD2)]>;

class PrefetchRILPC<string mnemonic, bits<12> opcode,
                    SDPatternOperator operator>
  : InstRILc<opcode, (outs), (ins imm32zx4_timm:$M1, pcrel32:$RI2),
             mnemonic#"\t$M1, $RI2",
             [(operator imm32zx4_timm:$M1, pcrel32:$RI2)]> {
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class BranchPreloadSMI<string mnemonic, bits<8> opcode>
  : InstSMI<opcode, (outs),
            (ins imm32zx4:$M1, brtarget16bpp:$RI2, bdxaddr12only:$BD3),
            mnemonic#"\t$M1, $RI2, $BD3", []>;

class BranchPreloadMII<string mnemonic, bits<8> opcode>
  : InstMII<opcode, (outs),
            (ins imm32zx4:$M1, brtarget12bpp:$RI2, brtarget24bpp:$RI3),
            mnemonic#"\t$M1, $RI2, $RI3", []>;

// A floating-point load-and test operation.  Create both a normal unary
// operation and one that acts as a comparison against zero.
// Note that the comparison against zero operation is not available if we
// have vector support, since load-and-test instructions will partially
// clobber the target (vector) register.
multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
                          RegisterOperand cls> {
  def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
  let isCodeGenOnly = 1, Predicates = [FeatureNoVector] in
    def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//

class Pseudo<dag outs, dag ins, list<dag> pattern>
  : InstSystemZ<0, outs, ins, "", pattern> {
  let isPseudo = 1;
  let isCodeGenOnly = 1;
}

// Like UnaryRI, but expanded after RA depending on the choice of register.
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                    ImmOpWithPattern imm>
  : Pseudo<(outs cls:$R1), (ins imm:$I2),
           [(set cls:$R1, (operator imm:$I2))]>;

// Like UnaryRXY, but expanded after RA depending on the choice of register.
class UnaryRXYPseudo<string key, SDPatternOperator operator,
                     RegisterOperand cls, bits<5> bytes,
                     AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
           [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = key#"r"#cls;
  let OpType = "mem";
  let mayLoad = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like UnaryRR, but expanded after RA depending on the choice of registers.
class UnaryRRPseudo<string key, SDPatternOperator operator,
                    RegisterOperand cls1, RegisterOperand cls2>
  : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
           [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = key#cls1;
  let OpType = "reg";
}

// Like BinaryRI, but expanded after RA depending on the choice of register.
class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                     ImmOpWithPattern imm>
  : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// Like BinaryRIE, but expanded after RA depending on the choice of register.
class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
                      ImmOpWithPattern imm>
  : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
           [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;

// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
                              RegisterOperand cls, ImmOpWithPattern imm> {
  let NumOpsKey = key in {
    let NumOpsValue = "3" in
      def K : BinaryRIEPseudo<operator, cls, imm>,
              Requires<[FeatureHighWord, FeatureDistinctOps]>;
    let NumOpsValue = "2" in
      def "" : BinaryRIPseudo<operator, cls, imm>,
               Requires<[FeatureHighWord]>;
  }
}

// A pseudo that is used during register allocation when folding a memory
// operand. The 3-address register instruction with a spilled source cannot
// be converted directly to a target 2-address reg/mem instruction.
// Mapping:  <INSN>R  ->  MemFoldPseudo  ->  <INSN>
class MemFoldPseudo<string mnemonic, RegisterOperand cls, bits<5> bytes,
                    AddressingMode mode>
  : Pseudo<(outs cls:$R1), (ins cls:$R2, mode:$XBD2), []> {
    let OpKey = !subst("mscrk", "msrkc",
                !subst("msgcrk", "msgrkc",
                mnemonic#"rk"#cls));
    let OpType = "mem";
    let MemKey = mnemonic#cls;
    let MemType = "pseudo";
    let mayLoad = 1;
    let AccessBytes = bytes;
    let HasIndex = 1;
    let hasNoSchedulingInfo = 1;
}

// Same as MemFoldPseudo but for mapping a W... vector instruction
class MemFoldPseudo_FP<string mnemonic, RegisterOperand cls, bits<5> bytes,
                    AddressingMode mode>
  : MemFoldPseudo<mnemonic, cls, bytes, mode> {
    let OpKey = mnemonic#"r"#"MemFold"#cls;
}

class MemFoldPseudo_FPTern<string mnemonic, RegisterOperand cls, bits<5> bytes,
                           AddressingMode mode>
  : Pseudo<(outs cls:$R1), (ins cls:$R2, cls:$R3, mode:$XBD2), []> {
    let OpKey = mnemonic#"r"#"MemFold"#cls;
    let OpType = "mem";
    let MemKey = mnemonic#cls;
    let MemType = "pseudo";
    let mayLoad = 1;
    let AccessBytes = bytes;
    let HasIndex = 1;
    let hasNoSchedulingInfo = 1;
}

// Same as MemFoldPseudo but for Load On Condition with CC operands.
class MemFoldPseudo_CondMove<string mnemonic, RegisterOperand cls, bits<5> bytes,
                             AddressingMode mode>
  : Pseudo<(outs cls:$R1),
           (ins cls:$R2, mode:$XBD2, cond4:$valid, cond4:$M3), []> {
    let OpKey = !subst("loc", "sel", mnemonic)#"r"#cls;
    let OpType = "mem";
    let MemKey = mnemonic#cls;
    let MemType = "pseudo";
    let mayLoad = 1;
    let AccessBytes = bytes;
    let hasNoSchedulingInfo = 1;
}

// Like CompareRI, but expanded after RA depending on the choice of register.
class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                      ImmOpWithPattern imm>
  : Pseudo<(outs), (ins cls:$R1, imm:$I2),
           [(set CC, (operator cls:$R1, imm:$I2))]> {
  let isCompare = 1;
}

// Like CompareRXY, but expanded after RA depending on the choice of register.
class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
                       SDPatternOperator load, bits<5> bytes,
                       AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
           [(set CC, (operator cls:$R1, (load mode:$XBD2)))]> {
  let mayLoad = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like TestBinarySIL, but expanded later.
class TestBinarySILPseudo<SDPatternOperator operator, ImmOpWithPattern imm>
  : Pseudo<(outs), (ins bdaddr12only:$BD1, imm:$I2),
           [(set CC, (operator bdaddr12only:$BD1, imm:$I2))]>;

// Like CondBinaryRRF, but expanded after RA depending on the choice of
// register.
class CondBinaryRRFPseudo<string mnemonic, RegisterOperand cls1,
                          RegisterOperand cls2>
  : Pseudo<(outs cls1:$R1),
           (ins cls1:$R1src, cls2:$R2, cond4:$valid, cond4:$M3),
           [(set cls1:$R1, (z_select_ccmask cls2:$R2, cls1:$R1src,
                                            cond4:$valid, cond4:$M3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let CCMaskLast = 1;
  let NumOpsKey = !subst("loc", "sel", mnemonic);
  let NumOpsValue = "2";
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

// Like CondBinaryRRFa, but expanded after RA depending on the choice of
// register.
class CondBinaryRRFaPseudo<string mnemonic, RegisterOperand cls1,
                           RegisterOperand cls2, RegisterOperand cls3>
  : Pseudo<(outs cls1:$R1),
           (ins cls3:$R3, cls2:$R2, cond4:$valid, cond4:$M4),
           [(set cls1:$R1, (z_select_ccmask cls2:$R2, cls3:$R3,
                                            cond4:$valid, cond4:$M4))]> {
  let CCMaskLast = 1;
  let NumOpsKey = mnemonic;
  let NumOpsValue = "3";
  let OpKey = mnemonic#cls1;
  let OpType = "reg";
}

// Like CondBinaryRIE, but expanded after RA depending on the choice of
// register.
class CondBinaryRIEPseudo<RegisterOperand cls, ImmOpWithPattern imm>
  : Pseudo<(outs cls:$R1),
           (ins cls:$R1src, imm:$I2, cond4:$valid, cond4:$M3),
           [(set cls:$R1, (z_select_ccmask imm:$I2, cls:$R1src,
                                           cond4:$valid, cond4:$M3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let CCMaskLast = 1;
}

// Like CondUnaryRSY, but expanded after RA depending on the choice of
// register.
class CondUnaryRSYPseudo<string mnemonic, SDPatternOperator operator,
                         RegisterOperand cls, bits<5> bytes,
                         AddressingMode mode = bdaddr20only>
  : Pseudo<(outs cls:$R1),
           (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
           [(set cls:$R1,
                 (z_select_ccmask (operator mode:$BD2), cls:$R1src,
                                  cond4:$valid, cond4:$R3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
  let OpKey = mnemonic#"r"#cls;
  let OpType = "mem";
  let MemKey = mnemonic#cls;
  let MemType = "target";
}

// Like CondStoreRSY, but expanded after RA depending on the choice of
// register.
class CondStoreRSYPseudo<RegisterOperand cls, bits<5> bytes,
                         AddressingMode mode = bdaddr20only>
  : Pseudo<(outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3), []> {
  let mayStore = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
}

// Like StoreRXY, but expanded after RA depending on the choice of register.
class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
                     bits<5> bytes, AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
           [(operator cls:$R1, mode:$XBD2)]> {
  let mayStore = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like RotateSelectRIEf, but expanded after RA depending on the choice
// of registers.
class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
  : Pseudo<(outs cls1:$R1),
           (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
                imm32zx6:$I5),
           []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<ValueType vt, RegisterOperand cls>
  : Pseudo<(outs cls:$dst),
           (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
           [(set (vt cls:$dst), (z_select_ccmask cls:$src1, cls:$src2,
                                            imm32zx4_timm:$valid, imm32zx4_timm:$cc))]> {
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
  let Uses = [CC];
}

// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
                      SDPatternOperator load, AddressingMode mode> {
  let Uses = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1,
      mayLoad = 1, mayStore = 1 in {
    def "" : Pseudo<(outs),
                    (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
                    [(store (z_select_ccmask cls:$new, (load mode:$addr),
                                             imm32zx4_timm:$valid, imm32zx4_timm:$cc),
                            mode:$addr)]>;
    def Inv : Pseudo<(outs),
                     (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
                     [(store (z_select_ccmask (load mode:$addr), cls:$new,
                                              imm32zx4_timm:$valid, imm32zx4_timm:$cc),
                              mode:$addr)]>;
  }
}

// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
                       dag pat, DAGOperand operand>
  : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
           [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
  let Defs = [CC];
  let Has20BitOffset = 1;
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
  : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, ImmOpWithPattern imm>
  : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
  : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, ImmOpWithPattern imm>
  : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;

// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
                        DAGOperand operand>
  : Pseudo<(outs GR32:$dst),
           (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
                ADDR32:$negbitshift, uimm32:$bitsize),
           [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
                                      ADDR32:$negbitshift, uimm32:$bitsize))]> {
  let Defs = [CC];
  let Has20BitOffset = 1;
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
  : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, ImmOpWithPattern imm>
  : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;

// A pseudo instruction that is a direct alias of a real instruction.
// These aliases are used in cases where a particular register operand is
// fixed or where the same instruction is used with different register sizes.
// The size parameter is the size in bytes of the associated real instruction.
class Alias<int size, dag outs, dag ins, list<dag> pattern>
  : InstSystemZ<size, outs, ins, "", pattern> {
  let isPseudo = 1;
  let isCodeGenOnly = 1;
}

class UnaryAliasVRS<RegisterOperand cls1, RegisterOperand cls2>
 : Alias<6, (outs cls1:$src1), (ins cls2:$src2), []>;

// An alias of a UnaryVRR*, but with different register sizes.
class UnaryAliasVRR<SDPatternOperator operator, TypedReg tr1, TypedReg tr2>
  : Alias<6, (outs tr1.op:$V1), (ins tr2.op:$V2),
          [(set (tr1.vt tr1.op:$V1), (operator (tr2.vt tr2.op:$V2)))]>;

// An alias of a UnaryVRX, but with different register sizes.
class UnaryAliasVRX<SDPatternOperator operator, TypedReg tr,
                    AddressingMode mode = bdxaddr12only>
  : Alias<6, (outs tr.op:$V1), (ins mode:$XBD2),
          [(set (tr.vt tr.op:$V1), (operator mode:$XBD2))]>;

// An alias of a StoreVRX, but with different register sizes.
class StoreAliasVRX<SDPatternOperator operator, TypedReg tr,
                    AddressingMode mode = bdxaddr12only>
  : Alias<6, (outs), (ins tr.op:$V1, mode:$XBD2),
          [(operator (tr.vt tr.op:$V1), mode:$XBD2)]>;

// An alias of a BinaryRI, but with different register sizes.
class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
                    ImmOpWithPattern imm>
  : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// An alias of a BinaryRIL, but with different register sizes.
class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
                     ImmOpWithPattern imm>
  : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// An alias of a BinaryVRRf, but with different register sizes.
class BinaryAliasVRRf<RegisterOperand cls>
  : Alias<6, (outs VR128:$V1), (ins cls:$R2, cls:$R3), []>;

// An alias of a CompareRI, but with different register sizes.
class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
                     ImmOpWithPattern imm>
  : Alias<4, (outs), (ins cls:$R1, imm:$I2),
          [(set CC, (operator cls:$R1, imm:$I2))]> {
  let isCompare = 1;
}

// An alias of a RotateSelectRIEf, but with different register sizes.
class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
  : Alias<6, (outs cls1:$R1),
          (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
               imm32zx6:$I5), []> {
  let Constraints = "$R1 = $R1src";
}

//===----------------------------------------------------------------------===//
// Multiclasses that emit both real and pseudo instructions
//===----------------------------------------------------------------------===//

multiclass BinaryRXYAndPseudo<string mnemonic, bits<16> opcode,
                              SDPatternOperator operator, RegisterOperand cls,
                              SDPatternOperator load, bits<5> bytes,
                              AddressingMode mode = bdxaddr20only> {
  def "" : BinaryRXY<mnemonic, opcode, operator, cls, load, bytes, mode> {
    let MemKey = mnemonic#cls;
    let MemType = "target";
  }
  let Has20BitOffset = 1 in
    def _MemFoldPseudo : MemFoldPseudo<mnemonic, cls, bytes, mode>;
}

multiclass BinaryRXPairAndPseudo<string mnemonic, bits<8> rxOpcode,
                                 bits<16> rxyOpcode, SDPatternOperator operator,
                                 RegisterOperand cls,
                                 SDPatternOperator load, bits<5> bytes> {
  let DispKey = mnemonic # cls in {
    def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
                      bdxaddr12pair> {
      let DispSize = "12";
      let MemKey = mnemonic#cls;
      let MemType = "target";
    }
    let DispSize = "20" in
      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load,
                         bytes, bdxaddr20pair>;
  }
  def _MemFoldPseudo : MemFoldPseudo<mnemonic, cls, bytes, bdxaddr12pair>;
}

multiclass BinaryRXEAndPseudo<string mnemonic, bits<16> opcode,
                              SDPatternOperator operator, RegisterOperand cls,
                              SDPatternOperator load, bits<5> bytes> {
  def "" : BinaryRXE<mnemonic, opcode, operator, cls, load, bytes> {
    let MemKey = mnemonic#cls;
    let MemType = "target";
  }
  def _MemFoldPseudo : MemFoldPseudo_FP<mnemonic, cls, bytes, bdxaddr12pair>;
}

multiclass TernaryRXFAndPseudo<string mnemonic, bits<16> opcode,
                               SDPatternOperator operator, RegisterOperand cls1,
                               RegisterOperand cls2, SDPatternOperator load,
                               bits<5> bytes> {
  def "" : TernaryRXF<mnemonic, opcode, operator, cls1, cls2, load, bytes> {
    let MemKey = mnemonic#cls1;
    let MemType = "target";
  }
  def _MemFoldPseudo : MemFoldPseudo_FPTern<mnemonic, cls1, bytes, bdxaddr12pair>;
}

multiclass CondUnaryRSYPairAndMemFold<string mnemonic, bits<16> opcode,
                                      SDPatternOperator operator,
                                      RegisterOperand cls, bits<5> bytes,
                                      AddressingMode mode = bdaddr20only> {
  defm "" : CondUnaryRSYPair<mnemonic, opcode, operator, cls, bytes, mode>;
  def _MemFoldPseudo : MemFoldPseudo_CondMove<mnemonic, cls, bytes, mode>;
}

multiclass CondUnaryRSYPseudoAndMemFold<string mnemonic,
                                        SDPatternOperator operator,
                                        RegisterOperand cls, bits<5> bytes,
                                        AddressingMode mode = bdaddr20only> {
  def "" : CondUnaryRSYPseudo<mnemonic, operator, cls, bytes, mode>;
  def _MemFoldPseudo : MemFoldPseudo_CondMove<mnemonic, cls, bytes, mode>;
}

// Define an instruction that operates on two fixed-length blocks of memory,
// and associated pseudo instructions for operating on blocks of any size.
// The Sequence form uses a straight-line sequence of instructions and
// the Loop form uses a loop of length-256 instructions followed by
// another instruction to handle the excess.
multiclass MemorySS<string mnemonic, bits<8> opcode,
                    SDPatternOperator sequence, SDPatternOperator loop> {
  def "" : SideEffectBinarySSa<mnemonic, opcode>;
  let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [CC] in {
    def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                       imm64:$length),
                           [(sequence bdaddr12only:$dest, bdaddr12only:$src,
                                      imm64:$length)]>;
    def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                   imm64:$length, GR64:$count256),
                      [(loop bdaddr12only:$dest, bdaddr12only:$src,
                             imm64:$length, GR64:$count256)]>;
  }
}

// The same, but setting a CC result as comparison operator.
multiclass CompareMemorySS<string mnemonic, bits<8> opcode,
                          SDPatternOperator sequence, SDPatternOperator loop> {
  def "" : SideEffectBinarySSa<mnemonic, opcode>;
  let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
    def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                       imm64:$length),
                           [(set CC, (sequence bdaddr12only:$dest, bdaddr12only:$src,
                                               imm64:$length))]>;
    def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                   imm64:$length, GR64:$count256),
                      [(set CC, (loop bdaddr12only:$dest, bdaddr12only:$src,
                                      imm64:$length, GR64:$count256))]>;
  }
}

// Define an instruction that operates on two strings, both terminated
// by the character in R0.  The instruction processes a CPU-determinated
// number of bytes at a time and sets CC to 3 if the instruction needs
// to be repeated.  Also define a pseudo instruction that represents
// the full loop (the main instruction plus the branch on CC==3).
multiclass StringRRE<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator> {
  let Uses = [R0L] in
    def "" : SideEffectBinaryMemMemRRE<mnemonic, opcode, GR64, GR64>;
  let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
    def Loop : Pseudo<(outs GR64:$end),
                      (ins GR64:$start1, GR64:$start2, GR32:$char),
                      [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
                                                 GR32:$char))]>;
}