Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//

// The callseq_start node requires the hasSideEffects flag, even though these
// instructions are noops on SystemZ.
let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_start timm:$amt1, timm:$amt2)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_end timm:$amt1, timm:$amt2)]>;
}

// Takes as input the value of the stack pointer after a dynamic allocation
// has been made.  Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
//
// This expands to an LA or LAY instruction.  We restrict the offset
// to the range of LA and keep the LAY range in reserve for when
// the size of the outgoing arguments is added.
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
                         [(set GR64:$dst, dynalloc12only:$src)]>;

let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
    usesCustomInserter = 1 in
  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
                             (ins GR64:$oldSP, GR64:$space),
           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;

let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
    hasSideEffects = 1 in
  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;

//===----------------------------------------------------------------------===//
// Branch instructions
//===----------------------------------------------------------------------===//

// Conditional branches.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
  // with the condition-code mask being the first operand.  It seems friendlier
  // to use mnemonic forms like JE and JLH when writing out the assembly though.
  let isCodeGenOnly = 1 in {
    // An assembler extended mnemonic for BRC.
    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
    // An assembler extended mnemonic for BRCL.  (The extension is "G"
    // rather than "L" because "JL" is "Jump if Less".)
    def BRCL : CondBranchRIL<"jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BC  : CondBranchRX<"b#",  0x47>;
      def BCR : CondBranchRR<"b#r", 0x07>;
      def BIC : CondBranchRXY<"bi#", 0xe347>,
                Requires<[FeatureMiscellaneousExtensions2]>;
    }
  }

  // Allow using the raw forms directly from the assembler (and occasional
  // special code generation needs) as well.
  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
  let isIndirectBranch = 1 in {
    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
                 Requires<[FeatureMiscellaneousExtensions2]>;
  }

  // Define AsmParser extended mnemonics for each general condition-code mask
  // (integer or floating-point)
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
                    Requires<[FeatureMiscellaneousExtensions2]>;
    }
  }
}

// Unconditional branches.  These are in fact simply variants of the
// conditional branches with the condition mask set to "always".
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
  let isIndirectBranch = 1 in {
    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  }
}

// NOPs.  These are again variants of the conditional branches,
// with the condition mask set to "never".
def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;

// Fused compare-and-branch instructions.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that the relative compare-and-branch
// instructions clobber CC, so that we can lower them to separate
// comparisons and BRCLs if the branch ends up being out of range.
let isBranch = 1, isTerminator = 1 in {
  // As for normal branches, we handle these instructions internally in
  // their raw CRJ-like form, but use assembly macros like CRJE when writing
  // them out.  Using the *Pair multiclasses, we also create the raw forms.
  let Defs = [CC] in {
    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
  }
  let isIndirectBranch = 1 in {
    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
  }

  // Define AsmParser mnemonics for each integer condition-code mask.
  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    let Defs = [CC] in {
      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
                                          imm32sx8>;
      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
                                          imm64sx8>;
      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
                                          imm32zx8>;
      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
                                          imm64zx8>;
    }
    let isIndirectBranch = 1 in {
      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
                                         imm32sx8>;
      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
                                         imm64sx8>;
      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
                                         imm32zx8>;
      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
                                         imm64zx8>;
    }
  }
}

// Decrement a register and branch if it is nonzero.  These don't clobber CC,
// but we might need to split long relative branches into sequences that do.
let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
  }
  // This doesn't need to clobber CC since we never need to split it.
  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
              Requires<[FeatureHighWord]>;

  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
}

let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
  }
  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
}

//===----------------------------------------------------------------------===//
// Trap instructions
//===----------------------------------------------------------------------===//

// Unconditional trap.
let hasCtrlDep = 1, hasSideEffects = 1 in
  def Trap : Alias<4, (outs), (ins), [(trap)]>;

// Conditional trap.
let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare-and-trap instructions.
let hasCtrlDep = 1, hasSideEffects = 1 in {
  // These patterns work the same way as for compare-and-branch.
  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
  let Predicates = [FeatureMiscellaneousExtensions] in {
    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
  }

  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
                                         imm32sx16>;
    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
                                         imm64sx16>;
    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
                                         imm32zx16>;
    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
                                         imm64zx16>;
    let Predicates = [FeatureMiscellaneousExtensions] in {
      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Call and return instructions
//===----------------------------------------------------------------------===//

// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
let isCall = 1, Defs = [CC] in {
  def BRAS  : CallRI <"bras", 0xA75>;
  def BRASL : CallRIL<"brasl", 0xC05>;
  def BAS   : CallRX <"bas", 0x4D>;
  def BASR  : CallRR <"basr", 0x0D>;
}

// Regular calls.
let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
                        [(z_call pcrel32:$I2)]>;
  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
                        [(z_call ADDR64:$R2)]>;
}

// TLS calls.  These will be lowered into a call to __tls_get_offset,
// with an extra relocation specifying the TLS symbol.
let isCall = 1, Defs = [R14D, CC] in {
  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
}

// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
// are argument registers and since branching to R0 is a no-op.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
                     [(z_sibcall pcrel32:$I2)]>;
  let Uses = [R1D] in
    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
}

// Conditional sibling calls.
let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
                                   pcrel32:$I2), []>;
  let Uses = [R1D] in
    def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
}

// Fused compare and conditional sibling calls.
let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

// A return instruction (br %r14).
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;

// A conditional return instruction (bcr <cond>, %r14).
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare and conditional returns.
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

def Select32    : SelectWrapper<i32, GR32>,
                  Requires<[FeatureNoLoadStoreOnCond]>;
def Select64    : SelectWrapper<i64, GR64>,
                  Requires<[FeatureNoLoadStoreOnCond]>;

// We don't define 32-bit Mux stores if we don't have STOCFH, because the
// low-only STOC should then always be used if possible.
defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore32Mux : CondStores<GRX32, simple_store,
                                 simple_load, bdxaddr20only>,
                      Requires<[FeatureLoadStoreOnCond2]>;
defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32    : CondStores<GR32, simple_store,
                                 simple_load, bdxaddr20only>;

defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
                    nonvolatile_anyextloadi8, bdxaddr20only>;
defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
                    nonvolatile_anyextloadi16, bdxaddr20only>;
defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
                    nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, simple_store,
                              simple_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Register moves.
def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;

let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
}

let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;

// Immediate moves.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
  // deopending on the choice of register.
  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;

  // Other 16-bit immediates.
  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;

  // 32-bit immediates.
  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}

// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
  // Expands to L, LY or LFH, depending on the choice of register.
  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
             Requires<[FeatureHighWord]>;
  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
            Requires<[FeatureHighWord]>;
  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
  }
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}

let canFoldAsLoad = 1 in {
  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
            (LZRF bdxaddr20only:$src)>;
  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
            (LZRG bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
}

// Register stores.
let SimpleBDXStore = 1, mayStore = 1 in {
  // Expands to ST, STY or STFH, depending on the choice of register.
  def STMux : StoreRXYPseudo<store, GRX32, 4>,
              Requires<[FeatureHighWord]>;
  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
             Requires<[FeatureHighWord]>;
  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
  }
}
def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;

// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;

// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;

// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
}

// Move right.
let Predicates = [FeatureMiscellaneousExtensions3],
    mayLoad = 1, mayStore = 1, Uses = [R0L] in
  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;

// String moves.
let mayLoad = 1, mayStore = 1, Defs = [CC] in
  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;

//===----------------------------------------------------------------------===//
// Conditional move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
  // Select.
  let isCommutable = 1 in {
    // Expands to SELR or SELFHR or a branch-and-move sequence,
    // depending on the choice of registers.
    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
  }

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
                                          GR32, GR32, GR32>;
    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
                                          GRH32, GRH32, GRH32>;
    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
                                          GR64, GR64, GR64>;
  }
}

let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
  // Load immediate on condition.  Matched via DAG pattern and created
  // by the PeepholeOptimizer via FoldImmediate.

  // Expands to LOCHI or LOCHHI, depending on the choice of register.
  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;

  // Move register on condition.  Matched via DAG pattern and
  // created by early if-conversion.
  let isCommutable = 1 in {
    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
    // depending on the choice of registers.
    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
  }

  // Load on condition.  Matched via DAG pattern.
  // Expands to LOC or LOCFH, depending on the choice of register.
  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;

  // Store on condition.  Expanded from CondStore* pseudos.
  // Expands to STOC or STOCFH, depending on the choice of register.
  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
                                         imm32sx16>;
    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
                                         imm64sx16>;
    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
                                         imm32sx16>;
    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
  }
}

let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
  // Move register on condition.  Matched via DAG pattern and
  // created by early if-conversion.
  let isCommutable = 1 in {
    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
  }

  // Load on condition.  Matched via DAG pattern.
  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;

  // Store on condition.  Expanded from CondStore* pseudos.
  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
  }
}
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
//
// Note that putting these before zero extensions mean that we will prefer
// them for anyextload*.  There's not really much to choose between the two
// either way, but signed-extending loads have a short LH and a long LHY,
// while zero-extending loads have only the long LLH.
//
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;

// 64-bit extensions from registers.
def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;

let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;

// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
// depending on the choice of register.
def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
            Requires<[FeatureHighWord]>;
def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
          Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
// depending on the choice of register.
def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
            Requires<[FeatureHighWord]>;
defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;

// 64-bit extensions from memory.
def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;

//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.

// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
              Requires<[FeatureHighWord]>;
def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
              Requires<[FeatureHighWord]>;
def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;

// 64-bit extensions from registers.
def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;

// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
// depending on the choice of register.
def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
// depending on the choice of register.
def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
             Requires<[FeatureHighWord]>;
def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;

// 64-bit extensions from memory.
def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;

// 31-to-64-bit zero extensions.
def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
def : Pat<(and GR64:$src, 0x7fffffff),
          (LLGTR GR64:$src)>;
def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
          (LLGT bdxaddr20only:$src)>;

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
            (LLZRGF bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
}

// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// "Any" extensions
//===----------------------------------------------------------------------===//

// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;

// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//

// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;

// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
// STC, STCY or STCH, depending on the choice of register.
def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
// STH, STHY or STHH, depending on the choice of register.
def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
           Requires<[FeatureHighWord]>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;

// Truncations of 64-bit registers to memory.
defm : StoreGR64Pair<STC, STCY, truncstorei8>;
defm : StoreGR64Pair<STH, STHY, truncstorei16>;
def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
defm : StoreGR64Pair<ST, STY, truncstorei32>;
def  : StoreGR64PC<STRL, aligned_truncstorei32>;

// Store characters under mask -- not (yet) used for codegen.
defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;

//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//

// Multi-register loads.
defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;

// Multi-register stores.
defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

// Byte-swapping register moves.
def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;

// Byte-swapping loads.
def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;

// Byte-swapping stores.
def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;

// Byte-swapping memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;

//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//

// Load BDX-style addresses.
let isAsCheapAsAMove = 1, isReMaterializable = 1 in
  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;

// Load a PC-relative address.  There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;

// Load the Global Offset Table address.  This will be lowered into a
//     larl $R1, _GLOBAL_OFFSET_TABLE_
// instruction.
def GOT : Alias<6, (outs GR64:$R1), (ins),
                [(set GR64:$R1, (global_offset_table))]>;

//===----------------------------------------------------------------------===//
// Absolute and Negation
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>;
    def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
}
def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
defm : SXU<z_iabs,   LPGFR>;
defm : SXU<z_iabs64, LPGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
}
def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
defm : SXU<z_inegabs,   LNGFR>;
defm : SXU<z_inegabs64, LNGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;

//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1 in
  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;

defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;

defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;

// Insert characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
}

// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
//
// IIxMux expands to II[LH]x, depending on the choice of register.
def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
             Requires<[FeatureHighWord]>;
def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
             Requires<[FeatureHighWord]>;
def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;

// ...likewise for 32-bit immediates.  For GR32s this is a general
// full-width move.  (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
               Requires<[FeatureHighWord]>;
  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;

// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                  imm64hf32:$imm)>;

//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//

// Addition producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
  }
  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;

  // Addition to a high register.
  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;

  // Addition of signed 32-bit immediates.
  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;

  // Addition of memory.
  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;

  // Addition to memory.
  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<z_sadd, GR64, AGFR>;

// Addition producing a carry.
let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
  }
  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;

  // Addition to a high register.
  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
                Requires<[FeatureDistinctOps]>;
  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
                Requires<[FeatureDistinctOps]>;

  // Addition of unsigned 32-bit immediates.
  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;

  // Addition of signed 32-bit immediates.
  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
              Requires<[FeatureHighWord]>;

  // Addition of memory.
  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;

  // Addition to memory.
  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
}
defm : ZXB<z_uadd, GR64, ALGFR>;

// Addition producing and using a carry.
let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Addition of a register.
  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;

  // Addition of memory.
  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
}

// Addition that does not modify the condition code.
def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
             Requires<[FeatureHighWord]>;


//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//

// Subtraction producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
    CCIfNoSignedWrap = 1 in {
  // Subtraction of a register.
  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;

  // Subtraction from a high register.
  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Subtraction of memory.
  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
}
defm : SXB<z_ssub, GR64, SGFR>;

// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
        Requires<[FeatureHighWord]>;
  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
            (AFIMux GR32:$src1, simm32n:$src2)>,
        Requires<[FeatureHighWord]>;
  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
            (AHI GR32:$src1, imm32sx16n:$src2)>;
  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
            (AFI GR32:$src1, simm32n:$src2)>;
  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
            (AGHI GR64:$src1, imm64sx16n:$src2)>;
  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
            (AGFI GR64:$src1, imm64sx32n:$src2)>;
}

// And vice versa in one special case, where we need to load a
// constant into a register in any case, but the negated constant
// requires fewer instructions to load.
def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;

// Subtraction producing a carry.
let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
  // Subtraction of a register.
  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;

  // Subtraction from a high register.
  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Subtraction of unsigned 32-bit immediates.
  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;

  // Subtraction of memory.
  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
}
defm : ZXB<z_usub, GR64, SLGFR>;

// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
        Requires<[FeatureDistinctOps]>;
  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
        Requires<[FeatureDistinctOps]>;
}

// And vice versa in one special case (but we prefer addition).
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
          (SLGFI GR64:$src1, imm64zx32n:$src2)>;

// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Subtraction of a register.
  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;

  // Subtraction of memory.
  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
}


//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ANDs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
  }

  let isConvertibleToThreeAddress = 1 in {
    // ANDs of a 16-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 16-bit field, not the full register.
    //
    // NIxMux expands to NI[LH]x, depending on the choice of register.
    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
                 Requires<[FeatureHighWord]>;
    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
                 Requires<[FeatureHighWord]>;
    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;

    // ANDs of a 32-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 32-bit field, which means we can
    // use it as a zero indicator for i32 operations but not otherwise.
    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
      // Expands to NILF or NIHF, depending on the choice of register.
      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
                   Requires<[FeatureHighWord]>;
      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
    }
    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
  }

  // ANDs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
  }

  // AND to memory
  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;

  // Block AND.
  let mayLoad = 1, mayStore = 1 in
    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;

//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
  }

  // ORs of a 16-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 16-bit field, not the full register.
  //
  // OIxMux expands to OI[LH]x, depending on the choice of register.
  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;

  // ORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to OILF or OIHF, depending on the choice of register.
    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
  }
  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;

  // ORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
  }

  // OR to memory
  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;

  // Block OR.
  let mayLoad = 1, mayStore = 1 in
    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;

//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // XORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
  }

  // XORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to XILF or XIHF, depending on the choice of register.
    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
  }
  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;

  // XORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
  }

  // XOR to memory
  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;

  // Block XOR.
  let mayLoad = 1, mayStore = 1 in
    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;

//===----------------------------------------------------------------------===//
// Combined logical operations
//===----------------------------------------------------------------------===//

let Predicates = [FeatureMiscellaneousExtensions3],
    Defs = [CC] in {
  // AND with complement.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
  }

  // OR with complement.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
  }

  // NAND.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
  }

  // NOR.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
  }

  // NXOR.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
  }
}

//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//

// Multiplication of a register, setting the condition code.  We prefer these
// over MS(G)R if available, even though we cannot use the condition code,
// since they are three-operand instructions.
let Predicates = [FeatureMiscellaneousExtensions2],
    Defs = [CC], isCommutable = 1 in {
  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
}

// Multiplication of a register.
let isCommutable = 1 in {
  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;

// Multiplication of a signed 16-bit immediate.
def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;

// Multiplication of a signed 32-bit immediate.
def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;

// Multiplication of memory.
defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
            Requires<[FeatureMiscellaneousExtensions2]>;
def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;

// Multiplication of memory, setting the condition code.
let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
}

// Multiplication of a register, producing two results.
def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
           Requires<[FeatureMiscellaneousExtensions2]>;
def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;

def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
          (MGRK GR64:$src1, GR64:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;

// Multiplication of memory, producing two results.
def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
          Requires<[FeatureMiscellaneousExtensions2]>;
def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;

def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//

let hasSideEffects = 1 in {  // Do not speculatively execute.
  // Division and remainder, from registers.
  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;

  // Division and remainder, from memory.
  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
}
def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                       subreg_l32)), GR32:$src2)>;
def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                      subreg_l32)), bdxaddr20only:$src2)>;
def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//

// Logical shift left.
defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;

// Arithmetic shift left.
let Defs = [CC] in {
  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
}

// Logical shift right.
defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;

// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
}

// Rotate left.
def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;

// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
  let isCodeGenOnly = 1 in
    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}

// On zEC12 we have a variant of RISBG that does not set CC.
let Predicates = [FeatureMiscellaneousExtensions] in
  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;

// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let Predicates = [FeatureHighWord] in {
  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
}

// Rotate second operand left and perform a logical operation with selected
// bits of the first operand.  The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}

//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//

// Signed comparisons.  We put these before the unsigned comparisons because
// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
// of the unsigned forms do.
let Defs = [CC], CCValues = 0xE in {
  // Comparison with a register.
  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;

  // Comparison with a high register.
  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
             Requires<[FeatureHighWord]>;
  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
             Requires<[FeatureHighWord]>;

  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
  // depending on the choice of register.
  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;

  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
  // depending on the choice of register.
  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;

  // Comparison with memory.
  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
               Requires<[FeatureHighWord]>;
  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
               Requires<[FeatureHighWord]>;
  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;

  // Comparison between memory and a signed 16-bit immediate.
  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
}
defm : SXB<z_scmp, GR64, CGFR>;

// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
  // Comparison with a register.
  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;

  // Comparison with a high register.
  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
  // or CLIH, depending on the choice of register.
  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
                Requires<[FeatureHighWord]>;
  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
              Requires<[FeatureHighWord]>;
  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;

  // Comparison with memory.
  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
                Requires<[FeatureHighWord]>;
  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
                Requires<[FeatureHighWord]>;
  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
                             aligned_azextloadi16>;
  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
                             aligned_load>;
  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
                             aligned_azextloadi16>;
  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
                             aligned_azextloadi32>;
  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
                             aligned_load>;

  // Comparison between memory and an unsigned 8-bit immediate.
  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;

  // Comparison between memory and an unsigned 16-bit immediate.
  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;

// Memory-to-memory comparison.
let mayLoad = 1, Defs = [CC] in {
  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
}

// String comparison.
let mayLoad = 1, Defs = [CC] in
  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;

// Test under mask.
let Defs = [CC] in {
  // TMxMux expands to TM[LH]x, depending on the choice of register.
  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;

  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;

  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
}

def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;

// Compare logical characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
}

//===----------------------------------------------------------------------===//
// Prefetch and execution hint
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1 in {
  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
}

let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
  // Branch Prediction Preload
  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
  def BPRP : BranchPreloadMII<"bprp", 0xC5>;

  // Next Instruction Access Intent
  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
}

//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//

// A serialization instruction that acts as a barrier for all memory
// accesses, which expands to "bcr 14, 0".
let hasSideEffects = 1 in
def Serialize : Alias<2, (outs), (ins), []>;

// A pseudo instruction that serves as a compiler barrier.
let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;

let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
}

def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;

def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
}

def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;

def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32ll16c>;
  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32lh16c>;
  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64ll16c>;
  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lh16c>;
  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hl16c>;
  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hh16c>;
  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lf32c>;
  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hf32c>;
}

def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
}

def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
}

def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
                                               imm32lh16c>;
def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32ll16c>;
def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32lh16c>;
def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64ll16c>;
def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lh16c>;
def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hl16c>;
def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hh16c>;
def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lf32c>;
def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hf32c>;

def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;

def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;

def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;

def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;

def ATOMIC_CMP_SWAPW
  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                  ADDR32:$bitshift, ADDR32:$negbitshift,
                                  uimm32:$bitsize),
           [(set GR32:$dst,
                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                     ADDR32:$bitshift, ADDR32:$negbitshift,
                                     uimm32:$bitsize))]> {
  let Defs = [CC];
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

// Test and set.
let mayLoad = 1, Defs = [CC] in
  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;

// Compare and swap.
let Defs = [CC] in {
  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
}

// Compare double and swap.
let Defs = [CC] in {
  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
}

// Compare and swap and store.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;

// Perform locked operation.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;

// Load/store pair from/to quadword.
def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;

// Load pair disjoint.
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
}

//===----------------------------------------------------------------------===//
// Translate and convert
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1 in
  def TR : SideEffectBinarySSa<"tr", 0xDC>;

let mayLoad = 1, Defs = [CC, R0L, R1D] in {
  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L] in
  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;

let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;

  let isAsmParserOnly = 1 in {
    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
  }
}

//===----------------------------------------------------------------------===//
// Message-security assist
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;

  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;

  let Predicates = [FeatureMessageSecurityAssist4] in {
    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
                                               GR128, GR128, GR128>;
    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
  }

  let Predicates = [FeatureMessageSecurityAssist5] in
    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;

  let Predicates = [FeatureMessageSecurityAssist8] in
    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
                                              GR128, GR128, GR128>;

  let Predicates = [FeatureMessageSecurityAssist9] in
    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
}

//===----------------------------------------------------------------------===//
// Guarded storage
//===----------------------------------------------------------------------===//

// These instructions use and/or modify the guarded storage control
// registers, which we do not otherwise model, so they should have
// hasSideEffects.
let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;

  let mayLoad = 1 in
    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
  let mayStore = 1 in
    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
}

//===----------------------------------------------------------------------===//
// Decimal arithmetic
//===----------------------------------------------------------------------===//

defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;

defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;

let mayLoad = 1, mayStore = 1 in {
  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;

  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
  let Defs = [CC] in {
    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
  }
}

let mayLoad = 1, mayStore = 1 in {
  let Defs = [CC] in {
    def AP : SideEffectBinarySSb<"ap", 0xFA>;
    def SP : SideEffectBinarySSb<"sp", 0xFB>;
    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
  }
  def MP : SideEffectBinarySSb<"mp", 0xFC>;
  def DP : SideEffectBinarySSb<"dp", 0xFD>;
  let Defs = [CC] in {
    def ED : SideEffectBinarySSa<"ed", 0xDE>;
    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
  }
}

let Defs = [CC] in {
  def CP : CompareSSb<"cp", 0xF9>;
  def TP : TestRSL<"tp", 0xEBC0>;
}

//===----------------------------------------------------------------------===//
// Access registers
//===----------------------------------------------------------------------===//

// Read a 32-bit access register into a GR32.  As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;

// Set access register.
def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;

// Copy access register.
def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;

// Load address extended.
defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;

// Load access multiple.
defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;

// Store access multiple.
defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;

//===----------------------------------------------------------------------===//
// Program mask and addressing mode
//===----------------------------------------------------------------------===//

// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
let Uses = [CC] in
  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;

// Set CC and program mask from a register.
let hasSideEffects = 1, Defs = [CC] in
  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;

// Branch and link - like BAS, but also extracts CC and program mask.
let isCall = 1, Uses = [CC], Defs = [CC] in {
  def BAL  : CallRX<"bal", 0x45>;
  def BALR : CallRR<"balr", 0x05>;
}

// Test addressing mode.
let Defs = [CC] in
  def TAM : SideEffectInherentE<"tam", 0x010B>;

// Set addressing mode.
let hasSideEffects = 1 in {
  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
}

// Branch and set mode.  Not really a call, but also sets an output register.
let isBranch = 1, isTerminator = 1, isBarrier = 1 in
  def BSM : CallRR<"bsm", 0x0B>;

// Branch and save and set mode.
let isCall = 1, Defs = [CC] in
  def BASSM : CallRR<"bassm", 0x0C>;

//===----------------------------------------------------------------------===//
// Transactional execution
//===----------------------------------------------------------------------===//

let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
  // Transaction Begin
  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
    let hasNoSchedulingInfo = 1 in
     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
                                      int_s390_tbeginc, imm32zx16>;
  }

  // Transaction End
  let Defs = [CC] in
    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;

  // Transaction Abort
  let isTerminator = 1, isBarrier = 1, mayStore = 1,
      hasSideEffects = 1 in
    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;

  // Nontransactional Store
  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;

  // Extract Transaction Nesting Depth
  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
}

//===----------------------------------------------------------------------===//
// Processor assist
//===----------------------------------------------------------------------===//

let Predicates = [FeatureProcessorAssist] in {
  let hasSideEffects = 1 in
    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
  def : Pat<(int_s390_ppa_txassist GR32:$src),
            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                 zero_reg, 1)>;
}

//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//

// Find leftmost one, AKA count leading zeros.  The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared.  We only use the first result here.
let Defs = [CC] in
  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
def : Pat<(i64 (ctlz GR64:$src)),
          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;

// Population count.  Counts bits set per byte or doubleword.
let Predicates = [FeatureMiscellaneousExtensions3] in {
  let Defs = [CC] in
    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
}
let Predicates = [FeaturePopulationCount], Defs = [CC] in
  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;

// Search a block of memory for a character.
let mayLoad = 1, Defs = [CC] in
  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
let mayLoad = 1, Defs = [CC], Uses = [R0L] in
  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;

// Compare until substring equal.
let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;

// Compare and form codeword.
let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;

// Update tree.
let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
  def UPT : SideEffectInherentE<"upt", 0x0102>;

// Checksum.
let mayLoad = 1, Defs = [CC] in
  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;

// Compression call.
let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;

// Sort lists.
let Predicates = [FeatureEnhancedSort],
    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;

// Deflate conversion call.
let Predicates = [FeatureDeflateConversion],
    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
                                           GR128, GR128, GR64>;

// Execute.
let hasSideEffects = 1 in {
  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
}

//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1, hasSideEffects = 1 in {
  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             imm32sx16:$I2),
                                ".insn ri,$enc,$R1,$I2", []>;
  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              AnyReg:$R3, brtarget16:$I2),
                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              brtarget32:$I2),
                                 ".insn ril,$enc,$R1,$I2", []>;
  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                               uimm32:$I2),
                                  ".insn rilu,$enc,$R1,$I2", []>;
  def InsnRIS : DirectiveInsnRIS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      imm32sx8:$I2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
  def InsnRR : DirectiveInsnRR<(outs),
                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
                               ".insn rr,$enc,$R1,$R2", []>;
  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
                                              AnyReg:$R1, AnyReg:$R2),
                                 ".insn rre,$enc,$R1,$R2", []>;
  def InsnRRF : DirectiveInsnRRF<(outs),
                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
                                      AnyReg:$R3, imm32zx4:$M4),
                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
  def InsnRRS : DirectiveInsnRRS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
  def InsnRS  : DirectiveInsnRS<(outs),
                                (ins imm64zx32:$enc, AnyReg:$R1,
                                     AnyReg:$R3, bdaddr12only:$BD2),
                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
  def InsnRSE : DirectiveInsnRSE<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr12only:$BD2),
                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
  def InsnRSI : DirectiveInsnRSI<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, brtarget16:$RI2),
                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
  def InsnRSY : DirectiveInsnRSY<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr20only:$BD2),
                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             bdxaddr12only:$XBD2),
                                ".insn rx,$enc,$R1,$XBD2", []>;
  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr12only:$XBD2),
                                 ".insn rxe,$enc,$R1,$XBD2", []>;
  def InsnRXF : DirectiveInsnRXF<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdxaddr12only:$XBD2),
                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr20only:$XBD2),
                                 ".insn rxy,$enc,$R1,$XBD2", []>;
  def InsnS : DirectiveInsnS<(outs),
                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
                             ".insn s,$enc,$BD2", []>;
  def InsnSI : DirectiveInsnSI<(outs),
                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
                                    imm32sx8:$I2),
                               ".insn si,$enc,$BD1,$I2", []>;
  def InsnSIY : DirectiveInsnSIY<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr20only:$BD1, imm32zx8:$I2),
                                 ".insn siy,$enc,$BD1,$I2", []>;
  def InsnSIL : DirectiveInsnSIL<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      imm32zx16:$I2),
                                 ".insn sil,$enc,$BD1,$I2", []>;
  def InsnSS : DirectiveInsnSS<(outs),
                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
                                    bdaddr12only:$BD2, AnyReg:$R3),
                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
  def InsnSSE : DirectiveInsnSSE<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
                                 ".insn sse,$enc,$BD1,$BD2", []>;
  def InsnSSF : DirectiveInsnSSF<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      bdaddr12only:$BD2, AnyReg:$R3),
                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
}

//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//

// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
// equivalent to (and (xor x, -1), y)
def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;

// Shift/rotate instructions only use the last 6 bits of the second operand
// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
// last 16 bits.
// Complexity is added so that we match this before we match NILF on the AND
// operation alone.
let AddedComplexity = 4 in {
  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
}

// Substitute (x*64-s) with (-s), since shift/rotate instructions only
// use the last 6 bits of the second operand register (making it modulo 64).
let AddedComplexity = 4 in {
  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
}

// Peepholes for turning scalar operations into block operations.
defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
                      OCSequence, XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 8>;