Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

//-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// -------------------------- Post RA scheduling ---------------------------- //
// SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
// the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
// implementation that looks to optimize decoder grouping and balance the
// usage of processor resources. Scheduler states are saved for the end
// region of each MBB, so that a successor block can learn from it.
//===----------------------------------------------------------------------===//

#include "SystemZMachineScheduler.h"
#include "llvm/CodeGen/MachineLoopInfo.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

#ifndef NDEBUG
// Print the set of SUs
void SystemZPostRASchedStrategy::SUSet::
dump(SystemZHazardRecognizer &HazardRec) const {
  dbgs() << "{";
  for (auto &SU : *this) {
    HazardRec.dumpSU(SU, dbgs());
    if (SU != *rbegin())
      dbgs() << ",  ";
  }
  dbgs() << "}\n";
}
#endif

// Try to find a single predecessor that would be interesting for the
// scheduler in the top-most region of MBB.
static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
                                             const MachineLoop *Loop) {
  MachineBasicBlock *PredMBB = nullptr;
  if (MBB->pred_size() == 1)
    PredMBB = *MBB->pred_begin();

  // The loop header has two predecessors, return the latch, but not for a
  // single block loop.
  if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
    for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
      if (Loop->contains(*I))
        PredMBB = (*I == MBB ? nullptr : *I);
  }

  assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
          && "Loop MBB should not consider predecessor outside of loop.");

  return PredMBB;
}

void SystemZPostRASchedStrategy::
advanceTo(MachineBasicBlock::iterator NextBegin) {
  MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
  MachineBasicBlock::iterator I =
    ((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
     std::next(LastEmittedMI) : MBB->begin());

  for (; I != NextBegin; ++I) {
    if (I->isPosition() || I->isDebugInstr())
      continue;
    HazardRec->emitInstruction(&*I);
  }
}

void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
  LLVM_DEBUG(HazardRec->dumpState(););
}

void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
  assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
          "Entering MBB twice?");
  LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));

  MBB = NextMBB;

  /// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
  /// point to it.
  HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
  LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
             if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
             dbgs() << ":\n";);

  // Try to take over the state from a single predecessor, if it has been
  // scheduled. If this is not possible, we are done.
  MachineBasicBlock *SinglePredMBB =
    getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
  if (SinglePredMBB == nullptr ||
      SchedStates.find(SinglePredMBB) == SchedStates.end())
    return;

  LLVM_DEBUG(dbgs() << "** Continued scheduling from "
                    << printMBBReference(*SinglePredMBB) << "\n";);

  HazardRec->copyState(SchedStates[SinglePredMBB]);
  LLVM_DEBUG(HazardRec->dumpState(););

  // Emit incoming terminator(s). Be optimistic and assume that branch
  // prediction will generally do "the right thing".
  for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
       I != SinglePredMBB->end(); I++) {
    LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
    bool TakenBranch = (I->isBranch() &&
                        (TII->getBranchInfo(*I).isIndirect() ||
                         TII->getBranchInfo(*I).getMBBTarget() == MBB));
    HazardRec->emitInstruction(&*I, TakenBranch);
    if (TakenBranch)
      break;
  }
}

void SystemZPostRASchedStrategy::leaveMBB() {
  LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);

  // Advance to first terminator. The successor block will handle terminators
  // dependent on CFG layout (T/NT branch etc).
  advanceTo(MBB->getFirstTerminator());
}

SystemZPostRASchedStrategy::
SystemZPostRASchedStrategy(const MachineSchedContext *C)
  : MLI(C->MLI),
    TII(static_cast<const SystemZInstrInfo *>
        (C->MF->getSubtarget().getInstrInfo())),
    MBB(nullptr), HazardRec(nullptr) {
  const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
  SchedModel.init(ST);
}

SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
  // Delete hazard recognizers kept around for each MBB.
  for (auto I : SchedStates) {
    SystemZHazardRecognizer *hazrec = I.second;
    delete hazrec;
  }
}

void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
                                            MachineBasicBlock::iterator End,
                                            unsigned NumRegionInstrs) {
  // Don't emit the terminators.
  if (Begin->isTerminator())
    return;

  // Emit any instructions before start of region.
  advanceTo(Begin);
}

// Pick the next node to schedule.
SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
  // Only scheduling top-down.
  IsTopNode = true;

  if (Available.empty())
    return nullptr;

  // If only one choice, return it.
  if (Available.size() == 1) {
    LLVM_DEBUG(dbgs() << "** Only one: ";
               HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
    return *Available.begin();
  }

  // All nodes that are possible to schedule are stored in the Available set.
  LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););

  Candidate Best;
  for (auto *SU : Available) {

    // SU is the next candidate to be compared against current Best.
    Candidate c(SU, *HazardRec);

    // Remeber which SU is the best candidate.
    if (Best.SU == nullptr || c < Best) {
      Best = c;
      LLVM_DEBUG(dbgs() << "** Best so far: ";);
    } else
      LLVM_DEBUG(dbgs() << "** Tried      : ";);
    LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
               dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);

    // Once we know we have seen all SUs that affect grouping or use unbuffered
    // resources, we can stop iterating if Best looks good.
    if (!SU->isScheduleHigh && Best.noCost())
      break;
  }

  assert (Best.SU != nullptr);
  return Best.SU;
}

SystemZPostRASchedStrategy::Candidate::
Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
  SU = SU_;

  // Check the grouping cost. For a node that must begin / end a
  // group, it is positive if it would do so prematurely, or negative
  // if it would fit naturally into the schedule.
  GroupingCost = HazardRec.groupingCost(SU);

  // Check the resources cost for this SU.
  ResourcesCost = HazardRec.resourcesCost(SU);
}

bool SystemZPostRASchedStrategy::Candidate::
operator<(const Candidate &other) {

  // Check decoder grouping.
  if (GroupingCost < other.GroupingCost)
    return true;
  if (GroupingCost > other.GroupingCost)
    return false;

  // Compare the use of resources.
  if (ResourcesCost < other.ResourcesCost)
    return true;
  if (ResourcesCost > other.ResourcesCost)
    return false;

  // Higher SU is otherwise generally better.
  if (SU->getHeight() > other.SU->getHeight())
    return true;
  if (SU->getHeight() < other.SU->getHeight())
    return false;

  // If all same, fall back to original order.
  if (SU->NodeNum < other.SU->NodeNum)
    return true;

  return false;
}

void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
  LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
             if (Available.size() == 1) dbgs() << "(only one) ";
             Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);

  // Remove SU from Available set and update HazardRec.
  Available.erase(SU);
  HazardRec->EmitInstruction(SU);
}

void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
  // Set isScheduleHigh flag on all SUs that we want to consider first in
  // pickNode().
  const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
  bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
  SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);

  // Put all released SUs in the Available set.
  Available.insert(SU);
}