Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the VE instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "VEInstrFormats.td"

//===----------------------------------------------------------------------===//
// Helper functions to retrieve target constants.
//
// VE instructions have a space to hold following immediates
//   $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp.
//   $sz also has 7 bits to represent mimm or mimmfp.
//   $disp has 32 bits to represent simm32.
//
// The mimm is a special immediate value of sequential bit stream of 0 or 1.
//     `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11,
//             where `m` is equal to the number of leading zeros.
//     `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00,
//             where `m` is equal to the number of leading ones.
// Each bit of mimm's 7 bits is used like below:
//     bit 6  : If `(m)0`, this bit is 1.  Otherwise, this bit is 0.
//     bit 5-0: Represents the m (0-63).
// Use `!add(m, 64)` to generates an immediate value in pattern matchings.
//
// The floating point immediate value is not something like compacted value.
// It is simple integer representation, so it works rarely.
//     e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1).
//===----------------------------------------------------------------------===//

def ULO7 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f,
                                   SDLoc(N), MVT::i32);
}]>;
def LO7 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
                                   SDLoc(N), MVT::i32);
}]>;
def MIMM : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(convMImmVal(getImmVal(N)),
                                   SDLoc(N), MVT::i32);
}]>;
def LO32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
                                   SDLoc(N), MVT::i32);
}]>;
def HI32 : SDNodeXForm<imm, [{
  // Transformation function: shift the immediate value down into the low bits.
  return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
                                   SDLoc(N), MVT::i32);
}]>;

def LO7FP : SDNodeXForm<fpimm, [{
  uint64_t Val = getFpImmVal(N);
  return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32);
}]>;
def MIMMFP : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(convMImmVal(getFpImmVal(N)),
                                   SDLoc(N), MVT::i32);
}]>;
def LOFP32 : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff),
                                   SDLoc(N), MVT::i32);
}]>;
def HIFP32 : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32);
}]>;

def icond2cc : SDNodeXForm<cond, [{
  VECC::CondCode VECC = intCondCode2Icc(N->get());
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def icond2ccSwap : SDNodeXForm<cond, [{
  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
  VECC::CondCode VECC = intCondCode2Icc(CC);
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def fcond2cc : SDNodeXForm<cond, [{
  VECC::CondCode VECC = fpCondCode2Fcc(N->get());
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def fcond2ccSwap : SDNodeXForm<cond, [{
  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
  VECC::CondCode VECC = fpCondCode2Fcc(CC);
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def CCOP : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue(),
                                   SDLoc(N), MVT::i32);
}]>;

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

// zero
def ZeroAsmOperand : AsmOperandClass {
  let Name = "Zero";
}
def zero : Operand<i32>, PatLeaf<(imm), [{
    return N->getSExtValue() == 0; }]> {
  let ParserMatchClass = ZeroAsmOperand;
}

// uimm0to2 - Special immediate value represents 0, 1, and 2.
def UImm0to2AsmOperand : AsmOperandClass {
  let Name = "UImm0to2";
}
def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{
    return N->getZExtValue() < 3; }], ULO7> {
  let ParserMatchClass = UImm0to2AsmOperand;
}

// uimm1 - Generic immediate value.
def UImm1AsmOperand : AsmOperandClass {
  let Name = "UImm1";
}
def uimm1 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<1>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm1AsmOperand;
}

// uimm2 - Generic immediate value.
def UImm2AsmOperand : AsmOperandClass {
  let Name = "UImm2";
}
def uimm2 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<2>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm2AsmOperand;
}

// uimm3 - Generic immediate value.
def UImm3AsmOperand : AsmOperandClass {
  let Name = "UImm3";
}
def uimm3 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<3>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm3AsmOperand;
}

// uimm6 - Generic immediate value.
def UImm6AsmOperand : AsmOperandClass {
  let Name = "UImm6";
}
def uimm6 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<6>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm6AsmOperand;
}

// uimm7 - Generic immediate value.
def UImm7AsmOperand : AsmOperandClass {
  let Name = "UImm7";
}
def uimm7 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<7>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm7AsmOperand;
}

// simm7 - Generic immediate value.
def SImm7AsmOperand : AsmOperandClass {
  let Name = "SImm7";
}
def simm7 : Operand<i32>, PatLeaf<(imm), [{
    return isInt<7>(N->getSExtValue()); }], LO7> {
  let ParserMatchClass = SImm7AsmOperand;
  let DecoderMethod = "DecodeSIMM7";
}

// mimm - Special immediate value of sequential bit stream of 0 or 1.
def MImmAsmOperand : AsmOperandClass {
  let Name = "MImm";
  let ParserMethod = "parseMImmOperand";
}
def mimm : Operand<i32>, PatLeaf<(imm), [{
    return isMImmVal(getImmVal(N)); }], MIMM> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// simm7fp - Generic fp immediate value.
def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{
    return isInt<7>(getFpImmVal(N));
  }], LO7FP> {
  let ParserMatchClass = SImm7AsmOperand;
  let DecoderMethod = "DecodeSIMM7";
}

// mimmfp - Special fp immediate value of sequential bit stream of 0 or 1.
def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{
    return isMImmVal(getFpImmVal(N)); }], MIMMFP> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// mimmfp32 - 32 bit width mimmfp
//   Float value places at higher bits, so ignore lower 32 bits.
def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{
    return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// other generic patterns to use in pattern matchings
def simm32      : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
def uimm32      : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def lomsbzero   : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
                                      == 0; }]>;
def lozero      : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
                                      == 0; }]>;
def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000)
                                        == 0; }]>;
def fplozero    : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff)
                                        == 0; }]>;

def CCSIOp : PatLeaf<(cond), [{
  switch (N->get()) {
  default:          return true;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE: return false;
  }
}]>;

def CCUIOp : PatLeaf<(cond), [{
  switch (N->get()) {
  default:         return true;
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETGT:
  case ISD::SETGE: return false;
  }
}]>;

//===----------------------------------------------------------------------===//
// Addressing modes.
// SX-Aurora has following fields.
//    sz: register or 0
//    sy: register or immediate (-64 to 63)
//    disp: immediate (-2147483648 to 2147483647)
//
// There are two kinds of instruction.
//    ASX format uses sz + sy + disp.
//    AS format uses sz + disp.
//
// Moreover, there are four kinds of assembly instruction format.
//    ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
//    "(, sz)", "(sy)", or "(sy, sz)".
//    AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
//    AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
//    AS format in RRM format for host memory access uses "sz", "(sz)",
//    or "disp(sz)".
//
// We defined them below.
//
// ASX format:
//    MEMrri, MEMrii, MEMzri, MEMzii
// AS format:
//    MEMriASX, MEMziASX    : simple AS format
//    MEMriRRM, MEMziRRM    : AS format in RRM format
//    MEMriHM, MEMziHM      : AS format in RRM format for host memory access
//===----------------------------------------------------------------------===//

// DAG selections for both ASX and AS formats.
def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>;

// ASX format.
def VEMEMrriAsmOperand : AsmOperandClass {
  let Name = "MEMrri";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMriiAsmOperand : AsmOperandClass {
  let Name = "MEMrii";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMzriAsmOperand : AsmOperandClass {
  let Name = "MEMzri";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMziiAsmOperand : AsmOperandClass {
  let Name = "MEMzii";
  let ParserMethod = "parseMEMOperand";
}

// ASX format uses single assembly instruction format.
def MEMrri : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
  let ParserMatchClass = VEMEMrriAsmOperand;
}
def MEMrii : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops ptr_rc, i32imm, i32imm);
  let ParserMatchClass = VEMEMriiAsmOperand;
}
def MEMzri : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i32imm);
  let ParserMatchClass = VEMEMzriAsmOperand;
}
def MEMzii : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i32imm);
  let ParserMatchClass = VEMEMziiAsmOperand;
}

// AS format.
def VEMEMriAsmOperand : AsmOperandClass {
  let Name = "MEMri";
  let ParserMethod = "parseMEMAsOperand";
}
def VEMEMziAsmOperand : AsmOperandClass {
  let Name = "MEMzi";
  let ParserMethod = "parseMEMAsOperand";
}

// AS format uses multiple assembly instruction formats
//   1. AS generic assembly instruction format:
def MEMriASX : Operand<iPTR> {
  let PrintMethod = "printMemASOperandASX";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziASX : Operand<iPTR> {
  let PrintMethod = "printMemASOperandASX";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//   2. AS RRM style assembly instruction format:
def MEMriRRM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandRRM";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziRRM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandRRM";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//   3. AS HM style assembly instruction format:
def MEMriHM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandHM";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziHM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandHM";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//===----------------------------------------------------------------------===//
// Other operands.
//===----------------------------------------------------------------------===//

// Branch targets have OtherVT type.
def brtarget32 : Operand<OtherVT> {
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "DecodeSIMM32";
}

// Operand for printing out a condition code.
def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; }
def CCOp : Operand<i32>, ImmLeaf<i32, [{
    return Imm >= 0 && Imm < 22; }], CCOP> {
  let PrintMethod = "printCCOperand";
  let DecoderMethod = "DecodeCCOperand";
  let EncoderMethod = "getCCOpValue";
  let ParserMatchClass = CCOpAsmOperand;
}

// Operand for a rounding mode code.
def RDOpAsmOperand : AsmOperandClass {
  let Name = "RDOp";
}
def RDOp : Operand<i32> {
  let PrintMethod = "printRDOperand";
  let DecoderMethod = "DecodeRDOperand";
  let EncoderMethod = "getRDOpValue";
  let ParserMatchClass = RDOpAsmOperand;
}

def VEhi    : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
def VElo    : SDNode<"VEISD::Lo", SDTIntUnaryOp>;

//  These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
                                          SDTCisVT<1, i64> ]>;
def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i64>,
                                        SDTCisVT<1, i64> ]>;

def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
def call          : SDNode<"VEISD::CALL", SDT_SPCall,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                            SDNPVariadic]>;

def retflag       : SDNode<"VEISD::RET_FLAG", SDTNone,
                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

def getGOT        : Operand<iPTR>;

// GETFUNPLT for PIC
def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;

// GETTLSADDR for TLS
def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
                        [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                         SDNPVariadic]>;

// GETSTACKTOP
def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone,
                        [SDNPHasChain, SDNPSideEffect]>;


//===----------------------------------------------------------------------===//
// VE Flag Conditions
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class CC_VAL<int N> : PatLeaf<(i32 N)>;
def CC_IG    : CC_VAL< 0>;  // Greater
def CC_IL    : CC_VAL< 1>;  // Less
def CC_INE   : CC_VAL< 2>;  // Not Equal
def CC_IEQ   : CC_VAL< 3>;  // Equal
def CC_IGE   : CC_VAL< 4>;  // Greater or Equal
def CC_ILE   : CC_VAL< 5>;  // Less or Equal
def CC_AF    : CC_VAL< 6>;  // Always false
def CC_G     : CC_VAL< 7>;  // Greater
def CC_L     : CC_VAL< 8>;  // Less
def CC_NE    : CC_VAL< 9>;  // Not Equal
def CC_EQ    : CC_VAL<10>;  // Equal
def CC_GE    : CC_VAL<11>;  // Greater or Equal
def CC_LE    : CC_VAL<12>;  // Less or Equal
def CC_NUM   : CC_VAL<13>;  // Number
def CC_NAN   : CC_VAL<14>;  // NaN
def CC_GNAN  : CC_VAL<15>;  // Greater or NaN
def CC_LNAN  : CC_VAL<16>;  // Less or NaN
def CC_NENAN : CC_VAL<17>;  // Not Equal or NaN
def CC_EQNAN : CC_VAL<18>;  // Equal or NaN
def CC_GENAN : CC_VAL<19>;  // Greater or Equal or NaN
def CC_LENAN : CC_VAL<20>;  // Less or Equal or NaN
def CC_AT    : CC_VAL<21>;  // Always true

//===----------------------------------------------------------------------===//
// VE Rounding Mode
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the VERD::RoundingMode enum
// values.
class RD_VAL<int N> : PatLeaf<(i32 N)>;
def RD_NONE  : RD_VAL< 0>;  // According to PSW
def RD_RZ    : RD_VAL< 8>;  // Round toward Zero
def RD_RP    : RD_VAL< 9>;  // Round toward Plus infinity
def RD_RM    : RD_VAL<10>;  // Round toward Minus infinity
def RD_RN    : RD_VAL<11>;  // Round to Nearest (ties to Even)
def RD_RA    : RD_VAL<12>;  // Round to Nearest (ties to Away)

//===----------------------------------------------------------------------===//
// VE Multiclasses for common instruction formats
//===----------------------------------------------------------------------===//

// Multiclass for generic RR type instructions
let hasSideEffects = 0 in
multiclass RRbm<string opcStr, bits<8>opc,
                RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7, Operand mOp = mimm> {
  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
  // VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
  // in RHS, so we use following definition.
  let cy = 0 in
  def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>;
  let cz = 0 in
  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}

// Multiclass for non-commutative RR type instructions
let hasSideEffects = 0 in
multiclass RRNCbm<string opcStr, bits<8>opc,
                RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7, Operand mOp = mimm> {
  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
  let cy = 0 in
  def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>;
  let cz = 0 in
  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}

// Generic RR multiclass with 2 arguments.
//   e.g. ADDUL, ADDSWSX, ADDSWZX, and etc.
multiclass RRm<string opcStr, bits<8>opc,
               RegisterClass RC, ValueType Ty,
               SDPatternOperator OpNode = null_frag,
               Operand immOp = simm7, Operand mOp = mimm> :
  RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for non-commutative instructions with 2 arguments.
//   e.g. SUBUL, SUBUW, SUBSWSX, and etc.
multiclass RRNCm<string opcStr, bits<8>opc,
                 RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag,
                 Operand immOp = simm7, Operand mOp = mimm> :
  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for floating point instructions with 2 arguments.
//   e.g. FADDD, FADDS, FSUBD, and etc.
multiclass RRFm<string opcStr, bits<8>opc,
                RegisterClass RC, ValueType Ty,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7fp, Operand mOp = mimmfp> :
  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for shift instructions with 2 arguments.
//   e.g. SLL, SRL, SLAWSX, and etc.
let hasSideEffects = 0 in
multiclass RRIm<string opcStr, bits<8>opc,
                RegisterClass RC, ValueType Ty,
                SDPatternOperator OpNode = null_frag> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>;
  let cz = 0 in
  def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>;
  let cy = 0 in
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>;
  let cy = 0, cz = 0 in
  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>;
}

// Special RR multiclass for 128 bits shift left instruction.
//   e.g. SLD
let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in
multiclass RRILDm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Special RR multiclass for 128 bits shift right instruction.
//   e.g. SRD
let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in
multiclass RRIRDm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Generic RR multiclass with an argument.
//   e.g. LDZ, PCNT, and  BRV
let cy = 0, sy = 0, hasSideEffects = 0 in
multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag> {
  def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
             [(set Ty:$sx, (OpNode Ty:$sz))]>;
  let cz = 0 in
  def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
             !strconcat(opcStr, " $sx, $sz"),
             [(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
}

// Special RR multiclass for MRG instruction.
//   e.g. MRG
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in
multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in
  def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in
  def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Special RR multiclass for BSWP instruction.
//   e.g. BSWP
let hasSideEffects = 0 in
multiclass RRSWPm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  let cy = 0 in
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
  let cy = 0, cz = 0 in
  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
}

// Multiclass for CMOV instructions.
//   e.g. CMOVL, CMOVW, CMOVD, and etc.
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
    cfw = ? in
multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
  def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def ir : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, simm7:$sy, I64:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def rm : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, simm7:$sy, mimm:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Multiclass for floating point conversion instructions.
//   e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc.
// sz{3-0} = rounding mode
let cz = 0, hasSideEffects = 0 in
multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
                  RegisterClass RCi, ValueType Tyi> {
  def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy),
             !strconcat(opcStr, "${rd} $sx, $sy")> {
    bits<4> rd;
    let sz{5-4} = 0;
    let sz{3-0} = rd;
  }
  let cy = 0 in
  def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy),
             !strconcat(opcStr, "${rd} $sx, $sy")> {
    bits<4> rd;
    let sz{5-4} = 0;
    let sz{3-0} = rd;
  }
}

// Multiclass for floating point conversion instructions.
//   e.g. CVTDW, CVTSW, CVTDL, and etc.
let cz = 0, sz = 0, hasSideEffects = 0 in
multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag> {
  def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
             !strconcat(opcStr, " $sx, $sy"),
             [(set Tyo:$sx, (OpNode Tyi:$sy))]>;
  let cy = 0 in
  def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy),
             !strconcat(opcStr, " $sx, $sy")>;
}

// Multiclass for PFCH instructions.
//   e.g. PFCH
let sx = 0, hasSideEffects = 0 in
multiclass PFCHm<string opcStr, bits<8>opc> {
  def rri : RM<opc, (outs), (ins MEMrri:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>;
  let cy = 0 in
  def rii : RM<opc, (outs), (ins MEMrii:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>;
  let cz = 0 in
  def zri : RM<opc, (outs), (ins MEMzri:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs), (ins MEMzii:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>;
}

// Multiclass for CAS instructions.
//   e.g. TS1AML, TS1AMW, TS2AM, and etc.
let Constraints = "$dest = $sd", DisableEncoding = "$sd",
    mayStore=1, mayLoad = 1, hasSideEffects = 0 in
multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                    Operand immOp, Operand MEM, Operand ADDR,
                    SDPatternOperator OpNode = null_frag> {
  def r : RRM<opc, (outs RC:$dest), (ins MEM:$addr, RC:$sy, RC:$sd),
              !strconcat(opcStr, " $dest, $addr, $sy"),
              [(set Ty:$dest, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>;
  let cy = 0 in
  def i : RRM<opc, (outs RC:$dest), (ins MEM:$addr, immOp:$sy, RC:$sd),
              !strconcat(opcStr, " $dest, $addr, $sy"),
              [(set Ty:$dest, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>;
}
multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                  Operand immOp, SDPatternOperator OpNode = null_frag> {
  defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>;
  let cz = 0 in
  defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>;
}

// Multiclass for branch instructions
//   e.g. BCFL, BCFW, BCFD, and etc.
let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in
multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond,
                  Operand ADDR> {
  let bpf = 0 /* NONE */ in
  def "" : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
              !strconcat(opcStr, " ", cmpStr, "$addr")>;
  let bpf = 2 /* NOT TaKEN */ in
  def _nt : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
               !strconcat(opcStr, ".nt ", cmpStr, "$addr")>;
  let bpf = 3 /* TaKEN */ in
  def _t : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
              !strconcat(opcStr, ".t ", cmpStr, "$addr")>;
}
multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
  defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>;
  let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>;
}
multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
               RegisterClass RC, Operand immOp> {
  let DecoderMethod = "DecodeBranchCondition" in
  defm r : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, RC:$comp)>;
  let DecoderMethod = "DecodeBranchCondition", cy = 0 in
  defm i : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, immOp:$comp)>;
  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
      cf = 15 /* AT */, isBarrier = 1 in
  defm a : BCtgm<opcStrAt, "", opc, (ins)>;
  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
      cf = 0 /* AF */ in
  defm na : BCtgm<opcStrAf, "", opc, (ins)>;
}

// Multiclass for relative branch instructions
//   e.g. BRCFL, BRCFW, BRCFD, and etc.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in
multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
  let bpf = 0 /* NONE */ in
  def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
              !strconcat(opcStr, " ", cmpStr, "$imm32")>;
  let bpf = 2 /* NOT TaKEN */ in
  def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
               !strconcat(opcStr, ".nt ", cmpStr, "$imm32")>;
  let bpf = 3 /* TaKEN */ in
  def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
              !strconcat(opcStr, ".t ", cmpStr, "$imm32")>;
}
multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
               RegisterClass RC, Operand immOp> {
  defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, RC:$sy, RC:$sz)>;
  let cy = 0 in
  defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, immOp:$sy, RC:$sz)>;
  let cy = 0, sy = 0, cz = 0, sz = 0, cf = 15 /* AT */, isBarrier = 1 in
  defm a : BCRbpfm<opcStrAt, "", opc, (ins)>;
  let cy = 0, sy = 0, cz = 0, sz = 0, cf = 0 /* AF */ in
  defm na : BCRbpfm<opcStrAf, "", opc, (ins)>;
}

// Multiclass for communication register instructions.
//   e.g. LCR
let hasSideEffects = 1 in
multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, simm7:$sy),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in def zr : RR<opc, (outs RC:$sx), (ins zero:$sz, RC:$sy),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def zi : RR<opc, (outs RC:$sx), (ins zero:$sz, simm7:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for communication register instructions.
//   e.g. SCR
let hasSideEffects = 1 in
multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rr : RR<opc, (outs), (ins RC:$sz, RC:$sy, RC:$sx),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ri : RR<opc, (outs), (ins RC:$sz, simm7:$sy, RC:$sx),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in def zr : RR<opc, (outs), (ins zero:$sz, RC:$sy, RC:$sx),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def zi : RR<opc, (outs), (ins zero:$sz, simm7:$sy, RC:$sx),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for communication register instructions.
//   e.g. FIDCR
let cz = 0, hasSideEffects = 1 in
multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for LHM instruction.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> {
  def ri : RRMHM<opc, (outs RC:$dest), (ins MEMriHM:$addr),
                 !strconcat(opcStr, " $dest, $addr")>;
  let cz = 0 in
  def zi : RRMHM<opc, (outs RC:$dest), (ins MEMziHM:$addr),
                 !strconcat(opcStr, " $dest, $addr")>;
}

// Multiclass for SHM instruction.
let mayStore = 1, hasSideEffects = 0 in
multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> {
  def ri : RRMHM<opc, (outs), (ins MEMriHM:$addr, RC:$sx),
                 !strconcat(opcStr, " $sx, $addr")>;
  let cz = 0 in
  def zi : RRMHM<opc, (outs), (ins MEMziHM:$addr, RC:$sx),
                 !strconcat(opcStr, " $sx, $addr")>;
}

//===----------------------------------------------------------------------===//
// Instructions
//
// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
// Guide here.  As those mnemonics, we use mnemonics defined in Vector Engine
// Assembly Language Reference Manual.
//===----------------------------------------------------------------------===//

//-----------------------------------------------------------------------------
// Section 8.2 - Load/Store instructions
//-----------------------------------------------------------------------------

// Multiclass for generic RM instructions
multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cy = 0 in
  def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cz = 0 in
  def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
}

// Section 8.2.1 - LEA
let cx = 0, DecoderMethod = "DecodeLoadI64" in
defm LEA : RMm<"lea", 0x06, I64>;
let cx = 1, DecoderMethod = "DecodeLoadI64" in
defm LEASL : RMm<"lea.sl", 0x06, I64>;
let cx = 0, DecoderMethod = "DecodeLoadI32", isCodeGenOnly = 1 in
defm LEA32 : RMm<"lea", 0x06, I32>;

def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
def : Pat<(add I32:$base, simm32:$disp),
          (LEA32rii (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $base, sub_i32), 0,
                    (LO32 $disp))>;

def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
                       [(add (add node:$base, node:$idx), node:$disp),
                        (add (add node:$base, node:$disp), node:$idx)]>;
def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
          (LEArii $base, (LO7 $idx), (LO32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
          (LEArri $base, $idx, (LO32 $disp))>;
def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
          (LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
          (LEASLrri $base, $idx, (HI32 $disp))>;

// Multiclass for load instructions.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag> {
  def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRrri:$addr))]>;
  let cy = 0 in
  def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRrii:$addr))]>;
  let cz = 0 in
  def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRzri:$addr))]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRzii:$addr))]>;
}

// Section 8.2.2 - LDS
let DecoderMethod = "DecodeLoadI64" in
defm LD : LOADm<"ld", 0x01, I64, i64, load>;
def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;

// Section 8.2.3 - LDU
let DecoderMethod = "DecodeLoadF32" in
defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;

// Section 8.2.4 - LDL
let DecoderMethod = "DecodeLoadI32" in
defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;

// Section 8.2.5 - LD2B
let DecoderMethod = "DecodeLoadI32" in
defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;

// Section 8.2.6 - LD1B
let DecoderMethod = "DecodeLoadI32" in
defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;

// Multiclass for store instructions.
let mayStore = 1 in
multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rri : RM<opc, (outs), (ins MEMrri:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRrri:$addr)]>;
  let cy = 0 in
  def rii : RM<opc, (outs), (ins MEMrii:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRrii:$addr)]>;
  let cz = 0 in
  def zri : RM<opc, (outs), (ins MEMzri:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRzri:$addr)]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs), (ins MEMzii:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRzii:$addr)]>;
}

// Section 8.2.7 - STS
let DecoderMethod = "DecodeStoreI64" in
defm ST : STOREm<"st", 0x11, I64, i64, store>;
def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;

// Section 8.2.8 - STU
let DecoderMethod = "DecodeStoreF32" in
defm STU : STOREm<"stu", 0x12, F32, f32, store>;

// Section 8.2.9 - STL
let DecoderMethod = "DecodeStoreI32" in
defm STL : STOREm<"stl", 0x13, I32, i32, store>;

// Section 8.2.10 - ST2B
let DecoderMethod = "DecodeStoreI32" in
defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;

// Section 8.2.11 - ST1B
let DecoderMethod = "DecodeStoreI32" in
defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;

// Section 8.2.12 - DLDS
let DecoderMethod = "DecodeLoadI64" in
defm DLD : LOADm<"dld", 0x09, I64, i64, load>;

// Section 8.2.13 - DLDU
let DecoderMethod = "DecodeLoadF32" in
defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>;

// Section 8.2.14 - DLDL
let DecoderMethod = "DecodeLoadI32" in
defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>;

// Section 8.2.15 - PFCH
let DecoderMethod = "DecodeASX" in
defm PFCH : PFCHm<"pfch", 0x0c>;

// Section 8.2.16 - TS1AM (Test and Set 1 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>;
let DecoderMethod = "DecodeTS1AMI32", cx = 1 in
defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>;

// Section 8.2.17 - TS2AM (Test and Set 2 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>;

// Section 8.2.18 - TS3AM (Test and Set 3 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>;

// Section 8.2.19 - ATMAM (Atomic AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>;

// Section 8.2.20 - CAS (Compare and Swap)
let DecoderMethod = "DecodeCASI64" in
defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7>;
let DecoderMethod = "DecodeCASI32", cx = 1 in
defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7>;

//-----------------------------------------------------------------------------
// Section 8.3 - Transfer Control Instructions
//-----------------------------------------------------------------------------

// Section 8.3.1 - FENCE (Fence)
let hasSideEffects = 1 in {
  let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">;
  def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> {
    bits<2> kind;
    let lf = kind{1};
    let sf = kind{0};
  }
  def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> {
    bits<3> kind;
    let c2 = kind{2};
    let c1 = kind{1};
    let c0 = kind{0};
  }
}

// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in
def SVOB : RR<0x30, (outs), (ins), "svob">;

//-----------------------------------------------------------------------------
// Section 8.4 - Fixed-point Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.4.1 - ADD (Add)
defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;

// Section 8.4.2 - ADS (Add Single)
defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;

// Section 8.4.3 - ADX (Add)
defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;

// Section 8.4.4 - SUB (Subtract)
defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;

// Section 8.4.5 - SBS (Subtract Single)
defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;

// Section 8.4.6 - SBX (Subtract)
defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;

// Section 8.4.7 - MPY (Multiply)
defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;

// Section 8.4.8 - MPS (Multiply Single)
defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;

// Section 8.4.9 - MPX (Multiply)
defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;

// Section 8.4.10 - MPD (Multiply)
defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>;

// Section 8.4.11 - DIV (Divide)
defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;

// Section 8.4.12 - DVS (Divide Single)
defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;

// Section 8.4.13 - DVX (Divide)
defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;

// Section 8.4.14 - CMP (Compare)
defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64>;
let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32>;

// Section 8.4.15 - CPS (Compare Single)
defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32>;

// Section 8.4.16 - CPX (Compare)
defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64>;

// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
// cx: sx/zx, cw: max/min
defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32>;
let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32>;
let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;

// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
defm MAXSL : RRm<"maxs.l", 0x68, I64, i64>;
let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64>;

//-----------------------------------------------------------------------------
// Section 8.5 - Logical Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.5.1 - AND (AND)
defm AND : RRm<"and", 0x44, I64, i64, and>;
let isCodeGenOnly = 1 in defm AND32 : RRm<"and", 0x44, I32, i32, and>;

// Section 8.5.2 - OR (OR)
defm OR : RRm<"or", 0x45, I64, i64, or>;
let isCodeGenOnly = 1 in defm OR32 : RRm<"or", 0x45, I32, i32, or>;

// Section 8.5.3 - XOR (Exclusive OR)
defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
let isCodeGenOnly = 1 in defm XOR32 : RRm<"xor", 0x46, I32, i32, xor>;

// Section 8.5.4 - EQV (Equivalence)
defm EQV : RRm<"eqv", 0x47, I64, i64>;

// Section 8.5.5 - NND (Negate AND)
def and_not : PatFrags<(ops node:$x, node:$y),
                       [(and (not node:$x), node:$y)]>;
defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>;

// Section 8.5.6 - MRG (Merge)
defm MRG : RRMRGm<"mrg", 0x56, I64, i64>;

// Section 8.5.7 - LDZ (Leading Zero Count)
defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz>;

// Section 8.5.8 - PCNT (Population Count)
defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;

// Section 8.5.9 - BRV (Bit Reverse)
defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;

// Section 8.5.10 - BSWP (Byte Swap)
defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;

// Section 8.5.11 - CMOV (Conditional Move)
let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64>;
let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32>;
let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64>;
let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32>;
def : MnemonicAlias<"cmov.l", "cmov.l.at">;
def : MnemonicAlias<"cmov.w", "cmov.w.at">;
def : MnemonicAlias<"cmov.d", "cmov.d.at">;
def : MnemonicAlias<"cmov.s", "cmov.s.at">;

//-----------------------------------------------------------------------------
// Section 8.6 - Shift Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.6.1 - SLL (Shift Left Logical)
defm SLL : RRIm<"sll", 0x65, I64, i64, shl>;

// Section 8.6.2 - SLD (Shift Left Double)
defm SLD : RRILDm<"sld", 0x64, I64, i64>;

// Section 8.6.3 - SRL (Shift Right Logical)
defm SRL : RRIm<"srl", 0x75, I64, i64, srl>;

// Section 8.6.4 - SRD (Shift Right Double)
defm SRD : RRIRDm<"srd", 0x74, I64, i64>;

// Section 8.6.5 - SLA (Shift Left Arithmetic)
defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>;
let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>;

// Section 8.6.6 - SLAX (Shift Left Arithmetic)
defm SLAL : RRIm<"sla.l", 0x57, I64, i64>;

// Section 8.6.7 - SRA (Shift Right Arithmetic)
defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>;
let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>;

// Section 8.6.8 - SRAX (Shift Right Arithmetic)
defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>;

def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
          (EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
def : Pat<(i32 (srl i32:$src, i32:$val)),
          (EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $src, sub_i32), !add(32, 64)), $val), sub_i32)>;

//-----------------------------------------------------------------------------
// Section 8.7 - Floating-point Arithmetic Instructions
//-----------------------------------------------------------------------------

// Section 8.7.1 - FAD (Floating Add)
defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
let cx = 1 in
defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>;

// Section 8.7.2 - FSB (Floating Subtract)
defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
let cx = 1 in
defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>;

// Section 8.7.3 - FMP (Floating Multiply)
defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
let cx = 1 in
defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>;

// Section 8.7.4 - FDV (Floating Divide)
defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
let cx = 1 in
defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>;

// Section 8.7.5 - FCP (Floating Compare)
defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64>;
let cx = 1 in
defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, null_frag, simm7fp, mimmfp32>;

// Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single)
// cx: double/float, cw: max/min
let cw = 0, cx = 0 in
defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>;
let cw = 0, cx = 1 in
defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>;
let cw = 1, cx = 0 in
defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>;
let cw = 1, cx = 1 in
defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>;

// Section 8.7.7 - FAQ (Floating Add Quadruple)
defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128>;

// Section 8.7.8 - FSQ (Floating Subtract Quadruple)
defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128>;

// Section 8.7.9 - FMQ (Floating Subtract Quadruple)
defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128>;

// Section 8.7.10 - FCQ (Floating Compare Quadruple)
defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, null_frag, simm7fp,
                    mimmfp>;

// Section 8.7.11 - FIX (Convert to Fixed Point)
// cx: double/float, cw: sx/zx, sz{0-3} = round
let cx = 0, cw = 0 /* sign extend */ in
defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, i32, I64, f64>;
let cx = 0, cw = 1 /* zero extend */ in
defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, i32, I64, f64>;
let cx = 1, cw = 0 /* sign extend */ in
defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, i32, F32, f32>;
let cx = 1, cw = 1 /* zero extend */ in
defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, i32, F32, f32>;

// Section 8.7.12 - FIXX (Convert to Fixed Point)
defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, i64, I64, f64>;

// Section 8.7.13 - FLT (Convert to Floating Point)
defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>;
let cx = 1 in
defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>;

// Section 8.7.14 - FLTX (Convert to Floating Point)
defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>;

// Section 8.7.15 - CVS (Convert to Single-format)
defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>;
let cx = 1 in
defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128>;

// Section 8.7.16 - CVD (Convert to Double-format)
defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>;
let cx = 1 in
defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128>;

// Section 8.7.17 - CVQ (Convert to Single-format)
defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64>;
let cx = 1 in
defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32>;

//-----------------------------------------------------------------------------
// Section 8.8 - Branch instructions
//-----------------------------------------------------------------------------

// Section 8.8.1 - BC (Branch on Codition)
defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>;

// Indirect branch aliases
def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>;
def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>;

// Return instruction is a special case of jump.
let Uses = [SX10], bpf = 3 /* TAKEN */, cf = 15 /* AT */, cy = 0, sy = 0,
    sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1,
    isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retflag)]>;

// Section 8.8.2 - BCS (Branch on Condition Single)
defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>;

// Section 8.8.3 - BCF (Branch on Condition Floating Point)
defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>;
let cx = 1 in
defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>;

// Section 8.8.4 - BCR (Branch on Condition Relative)
let cx = 0, cx2 = 0 in
defm BRCFL : BCRm<"br${cf}.l", "br.l", "braf.l", 0x18, I64, simm7>;
let cx = 1, cx2 = 0 in
defm BRCFW : BCRm<"br${cf}.w", "br.w", "braf.w", 0x18, I32, simm7>;
let cx = 0, cx2 = 1 in
defm BRCFD : BCRm<"br${cf}.d", "br.d", "braf.d", 0x18, I64, simm7fp>;
let cx = 1, cx2 = 1 in
defm BRCFS : BCRm<"br${cf}.s", "br.s", "braf.s", 0x18, F32, simm7fp>;

// Section 8.8.5 - BSIC (Branch and Save IC)
let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in
defm BSIC : RMm<"bsic", 0x08, I64>;

// Call instruction is a special case of BSIC.
let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0,
    isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops),
               "bsic %s10, (, $sz)", [(call i64:$sz)]>;

//-----------------------------------------------------------------------------
// Section 8.19 - Control Instructions
//-----------------------------------------------------------------------------

// Section 8.19.1 - SIC (Save Instruction Counter)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in
def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;

// Section 8.19.2 - LPM (Load Program Mode Flags)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in
def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">;

// Section 8.19.3 - SPM (Save Program Mode Flags)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">;

// Section 8.19.4 - LFR (Load Flag Register)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in {
  def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">;
  let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">;
}

// Section 8.19.5 - SFR (Save Flag Register)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">;

// Section 8.19.6 - SMIR (Save Miscellaneous Register)
let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
  def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">;
}

// Section 8.19.7 - NOP (No Operation)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
def NOP : RR<0x79, (outs), (ins), "nop">;

// Section 8.19.8 - MONC (Monitor Call)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
  def MONC : RR<0x3F, (outs), (ins), "monc">;
  let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">;
}

// Section 8.19.9 - LCR (Load Communication Register)
defm LCR : LOADCRm<"lcr", 0x40, I64>;

// Section 8.19.10 - SCR (Save Communication Register)
defm SCR : STORECRm<"scr", 0x50, I64>;

// Section 8.19.11 - TSCR (Test & Set Communication Register)
defm TSCR : LOADCRm<"tscr", 0x41, I64>;

// Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR)
defm FIDCR : FIDCRm<"fidcr", 0x51, I64>;

//-----------------------------------------------------------------------------
// Section 8.20 - Host Memory Access Instructions
//-----------------------------------------------------------------------------

// Section 8.20.1 - LHM (Load Host Memory)
let ry = 3, DecoderMethod = "DecodeLoadASI64" in
defm LHML : LHMm<"lhm.l", 0x21, I64>;
let ry = 2, DecoderMethod = "DecodeLoadASI64" in
defm LHMW : LHMm<"lhm.w", 0x21, I64>;
let ry = 1, DecoderMethod = "DecodeLoadASI64" in
defm LHMH : LHMm<"lhm.h", 0x21, I64>;
let ry = 0, DecoderMethod = "DecodeLoadASI64" in
defm LHMB : LHMm<"lhm.b", 0x21, I64>;

// Section 8.20.2 - SHM (Store Host Memory)
let ry = 3, DecoderMethod = "DecodeStoreASI64" in
defm SHML : SHMm<"shm.l", 0x31, I64>;
let ry = 2, DecoderMethod = "DecodeStoreASI64" in
defm SHMW : SHMm<"shm.w", 0x31, I64>;
let ry = 1, DecoderMethod = "DecodeStoreASI64" in
defm SHMH : SHMm<"shm.h", 0x31, I64>;
let ry = 0, DecoderMethod = "DecodeStoreASI64" in
defm SHMB : SHMm<"shm.b", 0x31, I64>;

//===----------------------------------------------------------------------===//
// Instructions for CodeGenOnly
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matchings
//===----------------------------------------------------------------------===//

// Small immediates.
def : Pat<(i32 simm7:$val), (OR32im (LO7 $val), 0)>;
def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
// Medium immediates.
def : Pat<(i32 simm32:$val), (LEA32zii 0, 0, (LO32 $val))>;
def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
def : Pat<(i64 uimm32:$val), (ANDrm (LEAzii 0, 0, (LO32 $val)), !add(32, 64))>;
// Arbitrary immediates.
def : Pat<(i64 lozero:$val),
          (LEASLzii 0, 0, (HI32 imm:$val))>;
def : Pat<(i64 lomsbzero:$val),
          (LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
def : Pat<(i64 imm:$val),
          (LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
                    (HI32 imm:$val))>;

// floating point
def : Pat<(f32 fpimm:$val),
          (EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>;
def : Pat<(f64 fplozero:$val),
          (LEASLzii 0, 0, (HIFP32 $val))>;
def : Pat<(f64 fplomsbzero:$val),
          (LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
def : Pat<(f64 fpimm:$val),
          (LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
                    (HIFP32 $val))>;

// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are unused.

// TODO Use standard expansion for shift-based lowering of sext_inreg

// Cast to i1
def : Pat<(sext_inreg I32:$src, i1),
          (SRAWSXri (SLAWSXri $src, 31), 31)>;
def : Pat<(sext_inreg I64:$src, i1),
          (SRALri (SLLri $src, 63), 63)>;

// Cast to i8
def : Pat<(sext_inreg I32:$src, i8),
          (SRAWSXri (SLAWSXri $src, 24), 24)>;
def : Pat<(sext_inreg I64:$src, i8),
          (SRALri (SLLri $src, 56), 56)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
          (EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xff),
          (AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(56, 64))>;

// Cast to i16
def : Pat<(sext_inreg I32:$src, i16),
          (SRAWSXri (SLAWSXri $src, 16), 16)>;
def : Pat<(sext_inreg I64:$src, i16),
          (SRALri (SLLri $src, 48), 48)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
          (EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xffff),
          (AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(48, 64))>;

// Cast to i32
def : Pat<(i32 (trunc i64:$src)),
          (ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0)>;
def : Pat<(i32 (fp_to_sint I64:$reg)), (CVTWDSXr RD_RZ, $reg)>;
def : Pat<(i32 (fp_to_sint F32:$reg)), (CVTWSSXr RD_RZ, $reg)>;

// Cast to i64
def : Pat<(sext_inreg I64:$src, i32),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            (ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0), sub_i32)>;
def : Pat<(i64 (sext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWSXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (zext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWZXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (fp_to_sint f32:$sy)), (CVTLDr RD_RZ, (CVTDSr $sy))>;
def : Pat<(i64 (fp_to_sint I64:$reg)), (CVTLDr RD_RZ, $reg)>;

// Cast to f32
def : Pat<(f32 (sint_to_fp i64:$sy)), (CVTSDr (CVTDLr i64:$sy))>;

def : Pat<(i64 (anyext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $sy, sub_i32)>;


// extload, sextload and zextload stuff
multiclass EXT64m<SDPatternOperator from,
                  SDPatternOperator torri,
                  SDPatternOperator torii,
                  SDPatternOperator tozri,
                  SDPatternOperator tozii> {
  def : Pat<(i64 (from ADDRrri:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torri MEMrri:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRrii:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torii MEMrii:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRzri:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozri MEMzri:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRzii:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozii MEMzii:$addr),
                           sub_i32)>;
}
defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;

// anyextload
multiclass EXT32m<SDPatternOperator from,
                  SDPatternOperator torri,
                  SDPatternOperator torii,
                  SDPatternOperator tozri,
                  SDPatternOperator tozii> {
  def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
  def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
  def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
  def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;

// truncstore
multiclass TRUNC64m<SDPatternOperator from,
                    SDPatternOperator torri,
                    SDPatternOperator torii,
                    SDPatternOperator tozri,
                    SDPatternOperator tozii> {
  def : Pat<(from i64:$src, ADDRrri:$addr),
            (torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRrii:$addr),
            (torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRzri:$addr),
            (tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRzii:$addr),
            (tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;

// Address calculation and its optimization
def : Pat<(VEhi tglobaladdr:$in), (LEASLzii 0, 0, tglobaladdr:$in)>;
def : Pat<(VElo tglobaladdr:$in),
          (ANDrm (LEAzii 0, 0, tglobaladdr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaladdr:$in1), (VElo tglobaladdr:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, tglobaladdr:$in2), !add(32, 64)), 0,
                    (tglobaladdr:$in1))>;

// GlobalTLS address calculation and its optimization
def : Pat<(VEhi tglobaltlsaddr:$in), (LEASLzii 0, 0, tglobaltlsaddr:$in)>;
def : Pat<(VElo tglobaltlsaddr:$in),
          (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaltlsaddr:$in1), (VElo tglobaltlsaddr:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in2), !add(32, 64)), 0,
                    (tglobaltlsaddr:$in1))>;

// Address calculation and its optimization
def : Pat<(VEhi texternalsym:$in), (LEASLzii 0, 0, texternalsym:$in)>;
def : Pat<(VElo texternalsym:$in),
          (ANDrm (LEAzii 0, 0, texternalsym:$in), !add(32, 64))>;
def : Pat<(add (VEhi texternalsym:$in1), (VElo texternalsym:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, texternalsym:$in2), !add(32, 64)), 0,
                    (texternalsym:$in1))>;

// Branches
def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>;

// brcc
// integer brcc
multiclass BRCCIm<ValueType ty, SDPatternOperator BrOpNode1,
                 SDPatternOperator BrOpNode2,
                 SDPatternOperator CmpOpNode1,
                 SDPatternOperator CmpOpNode2> {
  def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr),
            (BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>;
  def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>;
  def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr),
            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l),
                       bb:$addr)>;
  def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>;
}
defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>;
defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>;

// floating point brcc
multiclass BRCCFm<ValueType ty, SDPatternOperator BrOpNode1,
                 SDPatternOperator BrOpNode2> {
  def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr),
            (BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>;
  def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>;
}
defm : BRCCFm<f32, BRCFSrr, BRCFSir>;
defm : BRCCFm<f64, BRCFDrr, BRCFDir>;

//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//

// GETGOT for PIC
let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
  def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
}

// GETFUNPLT for PIC
let hasSideEffects = 0 in
def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
                       "$dst, $addr",
                       [(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;

def : Pat<(GetFunPLT tglobaladdr:$dst),
          (GETFUNPLT tglobaladdr:$dst)>;
def : Pat<(GetFunPLT texternalsym:$dst),
          (GETFUNPLT texternalsym:$dst)>;

// GETTLSADDR for TLS
let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
                        "# GETTLSADDR $addr",
                        [(GetTLSAddr tglobaltlsaddr:$addr)] >;

def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
          (GETTLSADDR tglobaltlsaddr:$dst)>;

let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
                              "# ADJCALLSTACKDOWN $amt, $amt2",
                              [(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                            "# ADJCALLSTACKUP $amt1",
                            [(callseq_end timm:$amt1, timm:$amt2)]>;
}

let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
def EXTEND_STACK : Pseudo<(outs), (ins),
                          "# EXTEND STACK",
                          []>;
let  hasSideEffects = 0 in
def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
                                "# EXTEND STACK GUARD",
                                []>;

// Dynamic stack allocation yields a __llvm_grow_stack for VE targets.
// These calls are needed to probe the stack when allocating more over
// %s8 (%sl - stack limit).

let Uses = [SX11], hasSideEffects = 1 in
def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins),
                         "# GET STACK TOP",
                         [(set iPTR:$dst, (GetStackTop))]>;
// SETCC pattern matches
//
//   CMP  %tmp, lhs, rhs     ; compare lhs and rhs
//   or   %res, 0, (0)1      ; initialize by 0
//   CMOV %res, (63)0, %tmp  ; set 1 if %tmp is true

def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrm (icond2cc $cond),
                       (CMPSLrr i64:$LHS, i64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrm (icond2cc $cond),
                       (CMPULrr i64:$LHS, i64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrm (icond2cc $cond),
                       (CMPSWSXrr i32:$LHS, i32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrm (icond2cc $cond),
                       (CMPUWrr i32:$LHS, i32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc f64:$LHS, f64:$RHS, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrm (fcond2cc $cond),
                       (FCMPDrr f64:$LHS, f64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc f32:$LHS, f32:$RHS, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrm (fcond2cc $cond),
                       (FCMPSrr f32:$LHS, f32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

// Special SELECTCC pattern matches
// Use min/max for better performance.
//
//   MAX/MIN  %res, %lhs, %rhs

def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGT)),
          (FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGT)),
          (FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGT)),
          (MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGT)),
          (MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGE)),
          (FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGE)),
          (FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGE)),
          (MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGE)),
          (MAXSWSXrr $LHS, $RHS)>;

def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLT)),
          (FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLT)),
          (FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLT)),
          (MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLT)),
          (MINSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLE)),
          (FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLE)),
          (FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLE)),
          (MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLE)),
          (MINSWSXrr $LHS, $RHS)>;

// Generic SELECTCC pattern matches
//
//   CMP  %tmp, %l, %r       ; compare %l and %r
//   or   %res, %f, (0)1     ; initialize by %f
//   CMOV %res, %t, %tmp     ; set %t if %tmp is true

// selectcc for i64 result
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCSIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCUIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCSIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCUIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f32:$l, f32:$r, i64:$t, i64:$f, cond:$cond)),
          (CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f64:$l, f64:$r, i64:$t, i64:$f, cond:$cond)),
          (CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;

// selectcc for i32 result
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPSWSXrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPUWrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPSLrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPULrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc f32:$l, f32:$r, i32:$t, i32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrr (fcond2cc $cond),
                       (FCMPSrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc f64:$l, f64:$r, i32:$t, i32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrr (fcond2cc $cond),
                       (FCMPDrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;

// selectcc for f64 result
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCSIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCUIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCSIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCUIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f32:$l, f32:$r, f64:$t, f64:$f, cond:$cond)),
          (CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f64:$l, f64:$r, f64:$t, f64:$f, cond:$cond)),
          (CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;

// selectcc for f32 result
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPSWSXrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPUWrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPSLrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPULrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc f32:$l, f32:$r, f32:$t, f32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrr (fcond2cc $cond),
                       (FCMPSrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc f64:$l, f64:$r, f32:$t, f32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrr (fcond2cc $cond),
                       (FCMPDrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;

// Generic SELECT pattern matches
// Use cmov.w for all cases since %pred holds i32.
//
//   CMOV.w.ne %res, %tval, %tmp  ; set tval if %tmp is true

def : Pat<(i64 (select i32:$pred, i64:$t, i64:$f)),
          (CMOVWrr CC_INE, $pred, $t, $f)>;

def : Pat<(i32 (select i32:$pred, i32:$t, i32:$f)),
          (EXTRACT_SUBREG
              (CMOVWrr CC_INE, $pred,
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;

def : Pat<(f64 (select i32:$pred, f64:$t, f64:$f)),
          (CMOVWrr CC_INE, $pred, $t, $f)>;

def : Pat<(f32 (select i32:$pred, f32:$t, f32:$f)),
          (EXTRACT_SUBREG
            (CMOVWrr CC_INE, $pred,
                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32),
                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
            sub_f32)>;

// bitconvert
def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>;

def : Pat<(i32 (bitconvert f32:$op)),
          (EXTRACT_SUBREG (SRALri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $op, sub_f32), 32), sub_i32)>;
def : Pat<(f32 (bitconvert i32:$op)),
          (EXTRACT_SUBREG (SLLri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $op, sub_i32), 32), sub_f32)>;

// Bits operations pattern matchings.
def : Pat<(i32 (ctpop i32:$src)),
          (EXTRACT_SUBREG (PCNTr (ANDrm (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64))), sub_i32)>;
def : Pat<(i32 (ctlz i32:$src)),
          (EXTRACT_SUBREG (LDZr (SLLri (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), 32)), sub_i32)>;
def : Pat<(i64 (bswap i64:$src)),
          (BSWPri $src, 0)>;
def : Pat<(i32 (bswap i32:$src)),
          (EXTRACT_SUBREG (BSWPri (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), 1), sub_i32)>;

// Several special pattern matches to optimize code

def : Pat<(i32 (and i32:$lhs, 0xff)),
          (AND32rm $lhs, !add(56, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffff)),
          (AND32rm $lhs, !add(48, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffffffff)),
          (AND32rm $lhs, !add(32, 64))>;