Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 jump, return, call, and related instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//  Control Flow Instructions.
//

// Return instructions.
//
// The X86retflag return instructions are variadic because we may add ST0 and
// ST1 arguments when returning values on the x87 stack.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
                    "ret{w}", []>, OpSize16;
  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
                    "ret{w}\t$amt", []>, OpSize16;
  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{l|f}", []>, OpSize32;
  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{w|f}", []>, OpSize16;
  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{l|f}\t$amt", []>, OpSize32;
  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{w|f}\t$amt", []>, OpSize16;

  // The machine return from interrupt instruction, but sometimes we need to
  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
  // which expands to include an SP adjustment if necessary.
  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
               OpSize16;
  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
  let isCodeGenOnly = 1 in
  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
}

// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
                       "jmp\t$dst", [(br bb:$dst)]>;
  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
                          "jmp\t$dst", []>, OpSize16;
    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
                          "jmp\t$dst", []>, OpSize32;
  }
}

// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
    isCodeGenOnly = 1, ForceDisassemble = 1 in {
  def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
                        (ins brtarget8:$dst, ccode:$cond),
                        "j${cond}\t$dst",
                        [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>;
  let hasSideEffects = 0 in {
    def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget16:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, OpSize16, TB;
    def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget32:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, TB, OpSize32;
  }
}

def : InstAlias<"jo\t$dst",  (JCC_1 brtarget8:$dst,  0), 0>;
def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst,  1), 0>;
def : InstAlias<"jb\t$dst",  (JCC_1 brtarget8:$dst,  2), 0>;
def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst,  3), 0>;
def : InstAlias<"je\t$dst",  (JCC_1 brtarget8:$dst,  4), 0>;
def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst,  5), 0>;
def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst,  6), 0>;
def : InstAlias<"ja\t$dst",  (JCC_1 brtarget8:$dst,  7), 0>;
def : InstAlias<"js\t$dst",  (JCC_1 brtarget8:$dst,  8), 0>;
def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst,  9), 0>;
def : InstAlias<"jp\t$dst",  (JCC_1 brtarget8:$dst, 10), 0>;
def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
def : InstAlias<"jl\t$dst",  (JCC_1 brtarget8:$dst, 12), 0>;
def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
def : InstAlias<"jg\t$dst",  (JCC_1 brtarget8:$dst, 15), 0>;

// jcx/jecx/jrcx instructions.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
  // These are the 32-bit versions of this instruction for the asmparser.  In
  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
  // jecxz.
  let Uses = [CX] in
    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
  let Uses = [ECX] in
    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jecxz\t$dst", []>, AdSize32;

  let Uses = [RCX] in
    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
}

// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJump]>;
  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJumpLd]>;

  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJump]>;
  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJumpLd]>;

  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
                     Sched<[WriteJump]>;
  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
                     Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  // These are switched from TAILJMPr/m64_REX in MCInstLower.
  let isCodeGenOnly = 1, hasREX_WPrefix = 1 in {
    def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
    let mayLoad = 1 in
    def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;

  }

  // Non-tracking jumps for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize16, Sched<[WriteJump]>, NOTRACK;

    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize32, Sched<[WriteJump]>, NOTRACK;
    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
                      Sched<[WriteJump]>, NOTRACK;
    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
  }

  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
                            (ins i16imm:$off, i16imm:$seg),
                            "ljmp{w}\t$seg, $off", []>,
                            OpSize16, Sched<[WriteJump]>;
    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
                            (ins i32imm:$off, i16imm:$seg),
                            "ljmp{l}\t$seg, $off", []>,
                            OpSize32, Sched<[WriteJump]>;
  }
  let mayLoad = 1 in {
    def FARJMP64m  : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                        "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;

    let AsmVariantName = "att" in
    def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                       "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
    def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                       "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
  }
}

// Loop instructions
let SchedRW = [WriteJump] in {
def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
}

//===----------------------------------------------------------------------===//
//  Call Instructions...
//
let isCall = 1 in
  // All calls clobber the non-callee saved registers. ESP is marked as
  // a use to prevent stack-pointer assignments that appear immediately
  // before calls from potentially appearing dead. Uses for argument
  // registers are added manually.
  let Uses = [ESP, SSP] in {
    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
                           (outs), (ins i32imm_brtarget:$dst),
                           "call{l}\t$dst", []>, OpSize32,
                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    let hasSideEffects = 0 in
      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
                             (outs), (ins i16imm_brtarget:$dst),
                             "call{w}\t$dst", []>, OpSize16,
                        Sched<[WriteJump]>;
    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>;
    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
                        Requires<[Not64BitMode,NotUseIndirectThunkCalls]>,
                        Sched<[WriteJump]>;
    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
                        OpSize32,
                        Requires<[Not64BitMode,FavorMemIndirectCall,
                                  NotUseIndirectThunkCalls]>,
                        Sched<[WriteJumpLd]>;

    // Non-tracking calls for IBT, use with caution.
    let isCodeGenOnly = 1 in {
      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
    }

    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
                               (ins i16imm:$off, i16imm:$seg),
                               "lcall{w}\t$seg, $off", []>,
                               OpSize16, Sched<[WriteJump]>;
      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
                               (ins i32imm:$off, i16imm:$seg),
                               "lcall{l}\t$seg, $off", []>,
                               OpSize32, Sched<[WriteJump]>;
    }

    let mayLoad = 1 in {
      def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                          "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
      def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                          "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
    }
  }


// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [ESP, SSP] in {
  def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
                           []>, Sched<[WriteJumpLd]>;

  def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst),
                         []>, Sched<[WriteJump]>;

  def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                         []>, Sched<[WriteJump]>;
  let mayLoad = 1 in
  def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
                         []>, Sched<[WriteJumpLd]>;
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [ESP, EFLAGS, SSP] in {
  def TCRETURNdicc : PseudoI<(outs),
                     (ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond),
                     []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>;
}


//===----------------------------------------------------------------------===//
//  Call Instructions...
//

// RSP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
  // NOTE: this pattern doesn't match "X86call imm", because we do not know
  // that the offset between an arbitrary immediate and the call will fit in
  // the 32-bit pcrel field that we have.
  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
                        (outs), (ins i64i32imm_brtarget:$dst),
                        "call{q}\t$dst", []>, OpSize32,
                      Requires<[In64BitMode]>;
  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
                      Requires<[In64BitMode,NotUseIndirectThunkCalls]>;
  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
                      Requires<[In64BitMode,FavorMemIndirectCall,
                                NotUseIndirectThunkCalls]>;

  // Non-tracking calls for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
                      Requires<[In64BitMode]>, NOTRACK;
    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
                       "call{q}\t{*}$dst",
                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
  }

  let mayLoad = 1 in
  def FARCALL64m  : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                       "lcall{q}\t{*}$dst", []>;
}

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [RSP, SSP] in {
  def TCRETURNdi64   : PseudoI<(outs),
                               (ins i64i32imm_brtarget:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>;
  def TCRETURNri64   : PseudoI<(outs),
                               (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi64   : PseudoI<(outs),
                               (ins i64mem_TC:$dst, i32imm:$offset),
                               []>, Sched<[WriteJumpLd]>, NotMemoryFoldable;

  def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst),
                           []>, Sched<[WriteJump]>;

  def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                           []>, Sched<[WriteJump]>;

  let mayLoad = 1 in
  def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
                           []>, Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  let hasREX_WPrefix = 1 in {
    def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                                 []>, Sched<[WriteJump]>;

    let mayLoad = 1 in
    def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
                                 []>, Sched<[WriteJumpLd]>;
  }
}

let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
    Uses = [RSP, SSP],
    usesCustomInserter = 1,
    SchedRW = [WriteJump] in {
  def INDIRECT_THUNK_CALL32 :
    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
            Requires<[Not64BitMode,UseIndirectThunkCalls]>;

  def INDIRECT_THUNK_CALL64 :
    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
            Requires<[In64BitMode,UseIndirectThunkCalls]>;

  // Indirect thunk variant of indirect tail calls.
  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    def INDIRECT_THUNK_TCRETURN64 :
      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
    def INDIRECT_THUNK_TCRETURN32 :
      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
  }
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [RSP, EFLAGS, SSP] in {
  def TCRETURNdi64cc : PseudoI<(outs),
                           (ins i64i32imm_brtarget:$dst, i32imm:$offset,
                            i32imm:$cond), []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd64_CC : PseudoI<(outs),
                              (ins i64i32imm_brtarget:$dst, i32imm:$cond), []>;
}