Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements interprocedural passes which walk the
/// call-graph deducing and/or propagating function attributes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <cassert>
#include <iterator>
#include <map>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "functionattrs"

STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumReturned, "Number of arguments marked returned");
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
STATISTIC(NumNoFree, "Number of functions marked as nofree");

static cl::opt<bool> EnableNonnullArgPropagation(
    "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
    cl::desc("Try to propagate nonnull argument attributes from callsites to "
             "caller functions."));

static cl::opt<bool> DisableNoUnwindInference(
    "disable-nounwind-inference", cl::Hidden,
    cl::desc("Stop inferring nounwind attribute during function-attrs pass"));

static cl::opt<bool> DisableNoFreeInference(
    "disable-nofree-inference", cl::Hidden,
    cl::desc("Stop inferring nofree attribute during function-attrs pass"));

namespace {

using SCCNodeSet = SmallSetVector<Function *, 8>;

} // end anonymous namespace

/// Returns the memory access attribute for function F using AAR for AA results,
/// where SCCNodes is the current SCC.
///
/// If ThisBody is true, this function may examine the function body and will
/// return a result pertaining to this copy of the function. If it is false, the
/// result will be based only on AA results for the function declaration; it
/// will be assumed that some other (perhaps less optimized) version of the
/// function may be selected at link time.
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
                                                  AAResults &AAR,
                                                  const SCCNodeSet &SCCNodes) {
  FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
  if (MRB == FMRB_DoesNotAccessMemory)
    // Already perfect!
    return MAK_ReadNone;

  if (!ThisBody) {
    if (AliasAnalysis::onlyReadsMemory(MRB))
      return MAK_ReadOnly;

    if (AliasAnalysis::doesNotReadMemory(MRB))
      return MAK_WriteOnly;

    // Conservatively assume it reads and writes to memory.
    return MAK_MayWrite;
  }

  // Scan the function body for instructions that may read or write memory.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
    Instruction *I = &*II;

    // Some instructions can be ignored even if they read or write memory.
    // Detect these now, skipping to the next instruction if one is found.
    if (auto *Call = dyn_cast<CallBase>(I)) {
      // Ignore calls to functions in the same SCC, as long as the call sites
      // don't have operand bundles.  Calls with operand bundles are allowed to
      // have memory effects not described by the memory effects of the call
      // target.
      if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
          SCCNodes.count(Call->getCalledFunction()))
        continue;
      FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
      ModRefInfo MRI = createModRefInfo(MRB);

      // If the call doesn't access memory, we're done.
      if (isNoModRef(MRI))
        continue;

      if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
        // The call could access any memory. If that includes writes, note it.
        if (isModSet(MRI))
          WritesMemory = true;
        // If it reads, note it.
        if (isRefSet(MRI))
          ReadsMemory = true;
        continue;
      }

      // Check whether all pointer arguments point to local memory, and
      // ignore calls that only access local memory.
      for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) {
        Value *Arg = *CI;
        if (!Arg->getType()->isPtrOrPtrVectorTy())
          continue;

        AAMDNodes AAInfo;
        I->getAAMetadata(AAInfo);
        MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);

        // Skip accesses to local or constant memory as they don't impact the
        // externally visible mod/ref behavior.
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;

        if (isModSet(MRI))
          // Writes non-local memory.
          WritesMemory = true;
        if (isRefSet(MRI))
          // Ok, it reads non-local memory.
          ReadsMemory = true;
      }
      continue;
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      // Ignore non-volatile loads from local memory. (Atomic is okay here.)
      if (!LI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(LI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      // Ignore non-volatile stores to local memory. (Atomic is okay here.)
      if (!SI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(SI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
      // Ignore vaargs on local memory.
      MemoryLocation Loc = MemoryLocation::get(VI);
      if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
        continue;
    }

    // Any remaining instructions need to be taken seriously!  Check if they
    // read or write memory.
    //
    // Writes memory, remember that.
    WritesMemory |= I->mayWriteToMemory();

    // If this instruction may read memory, remember that.
    ReadsMemory |= I->mayReadFromMemory();
  }

  if (WritesMemory) { 
    if (!ReadsMemory)
      return MAK_WriteOnly;
    else
      return MAK_MayWrite;
  }

  return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
}

MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
                                                       AAResults &AAR) {
  return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
}

/// Deduce readonly/readnone attributes for the SCC.
template <typename AARGetterT>
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
  // Check if any of the functions in the SCC read or write memory.  If they
  // write memory then they can't be marked readnone or readonly.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (Function *F : SCCNodes) {
    // Call the callable parameter to look up AA results for this function.
    AAResults &AAR = AARGetter(*F);

    // Non-exact function definitions may not be selected at link time, and an
    // alternative version that writes to memory may be selected.  See the
    // comment on GlobalValue::isDefinitionExact for more details.
    switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
                                      AAR, SCCNodes)) {
    case MAK_MayWrite:
      return false;
    case MAK_ReadOnly:
      ReadsMemory = true;
      break;
    case MAK_WriteOnly:
      WritesMemory = true;
      break;
    case MAK_ReadNone:
      // Nothing to do!
      break;
    }
  }

  // If the SCC contains both functions that read and functions that write, then
  // we cannot add readonly attributes.
  if (ReadsMemory && WritesMemory)
    return false;

  // Success!  Functions in this SCC do not access memory, or only read memory.
  // Give them the appropriate attribute.
  bool MadeChange = false;

  for (Function *F : SCCNodes) {
    if (F->doesNotAccessMemory())
      // Already perfect!
      continue;

    if (F->onlyReadsMemory() && ReadsMemory)
      // No change.
      continue;

    if (F->doesNotReadMemory() && WritesMemory)
      continue;

    MadeChange = true;

    // Clear out any existing attributes.
    F->removeFnAttr(Attribute::ReadOnly);
    F->removeFnAttr(Attribute::ReadNone);
    F->removeFnAttr(Attribute::WriteOnly);

    if (!WritesMemory && !ReadsMemory) {
      // Clear out any "access range attributes" if readnone was deduced.
      F->removeFnAttr(Attribute::ArgMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
    }

    // Add in the new attribute.
    if (WritesMemory && !ReadsMemory)
      F->addFnAttr(Attribute::WriteOnly);
    else
      F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);

    if (WritesMemory && !ReadsMemory)
      ++NumWriteOnly;
    else if (ReadsMemory)
      ++NumReadOnly;
    else
      ++NumReadNone;
  }

  return MadeChange;
}

namespace {

/// For a given pointer Argument, this retains a list of Arguments of functions
/// in the same SCC that the pointer data flows into. We use this to build an
/// SCC of the arguments.
struct ArgumentGraphNode {
  Argument *Definition;
  SmallVector<ArgumentGraphNode *, 4> Uses;
};

class ArgumentGraph {
  // We store pointers to ArgumentGraphNode objects, so it's important that
  // that they not move around upon insert.
  using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;

  ArgumentMapTy ArgumentMap;

  // There is no root node for the argument graph, in fact:
  //   void f(int *x, int *y) { if (...) f(x, y); }
  // is an example where the graph is disconnected. The SCCIterator requires a
  // single entry point, so we maintain a fake ("synthetic") root node that
  // uses every node. Because the graph is directed and nothing points into
  // the root, it will not participate in any SCCs (except for its own).
  ArgumentGraphNode SyntheticRoot;

public:
  ArgumentGraph() { SyntheticRoot.Definition = nullptr; }

  using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  iterator begin() { return SyntheticRoot.Uses.begin(); }
  iterator end() { return SyntheticRoot.Uses.end(); }
  ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }

  ArgumentGraphNode *operator[](Argument *A) {
    ArgumentGraphNode &Node = ArgumentMap[A];
    Node.Definition = A;
    SyntheticRoot.Uses.push_back(&Node);
    return &Node;
  }
};

/// This tracker checks whether callees are in the SCC, and if so it does not
/// consider that a capture, instead adding it to the "Uses" list and
/// continuing with the analysis.
struct ArgumentUsesTracker : public CaptureTracker {
  ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}

  void tooManyUses() override { Captured = true; }

  bool captured(const Use *U) override {
    CallBase *CB = dyn_cast<CallBase>(U->getUser());
    if (!CB) {
      Captured = true;
      return true;
    }

    Function *F = CB->getCalledFunction();
    if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
      Captured = true;
      return true;
    }

    // Note: the callee and the two successor blocks *follow* the argument
    // operands.  This means there is no need to adjust UseIndex to account for
    // these.

    unsigned UseIndex =
        std::distance(const_cast<const Use *>(CB->arg_begin()), U);

    assert(UseIndex < CB->data_operands_size() &&
           "Indirect function calls should have been filtered above!");

    if (UseIndex >= CB->getNumArgOperands()) {
      // Data operand, but not a argument operand -- must be a bundle operand
      assert(CB->hasOperandBundles() && "Must be!");

      // CaptureTracking told us that we're being captured by an operand bundle
      // use.  In this case it does not matter if the callee is within our SCC
      // or not -- we've been captured in some unknown way, and we have to be
      // conservative.
      Captured = true;
      return true;
    }

    if (UseIndex >= F->arg_size()) {
      assert(F->isVarArg() && "More params than args in non-varargs call");
      Captured = true;
      return true;
    }

    Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
    return false;
  }

  // True only if certainly captured (used outside our SCC).
  bool Captured = false;

  // Uses within our SCC.
  SmallVector<Argument *, 4> Uses;

  const SCCNodeSet &SCCNodes;
};

} // end anonymous namespace

namespace llvm {

template <> struct GraphTraits<ArgumentGraphNode *> {
  using NodeRef = ArgumentGraphNode *;
  using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  static NodeRef getEntryNode(NodeRef A) { return A; }
  static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
};

template <>
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
  static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }

  static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
    return AG->begin();
  }

  static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
};

} // end namespace llvm

/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
static Attribute::AttrKind
determinePointerReadAttrs(Argument *A,
                          const SmallPtrSet<Argument *, 8> &SCCNodes) {
  SmallVector<Use *, 32> Worklist;
  SmallPtrSet<Use *, 32> Visited;

  // inalloca arguments are always clobbered by the call.
  if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
    return Attribute::None;

  bool IsRead = false;
  // We don't need to track IsWritten. If A is written to, return immediately.

  for (Use &U : A->uses()) {
    Visited.insert(&U);
    Worklist.push_back(&U);
  }

  while (!Worklist.empty()) {
    Use *U = Worklist.pop_back_val();
    Instruction *I = cast<Instruction>(U->getUser());

    switch (I->getOpcode()) {
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::AddrSpaceCast:
      // The original value is not read/written via this if the new value isn't.
      for (Use &UU : I->uses())
        if (Visited.insert(&UU).second)
          Worklist.push_back(&UU);
      break;

    case Instruction::Call:
    case Instruction::Invoke: {
      bool Captures = true;

      if (I->getType()->isVoidTy())
        Captures = false;

      auto AddUsersToWorklistIfCapturing = [&] {
        if (Captures)
          for (Use &UU : I->uses())
            if (Visited.insert(&UU).second)
              Worklist.push_back(&UU);
      };

      CallBase &CB = cast<CallBase>(*I);
      if (CB.doesNotAccessMemory()) {
        AddUsersToWorklistIfCapturing();
        continue;
      }

      Function *F = CB.getCalledFunction();
      if (!F) {
        if (CB.onlyReadsMemory()) {
          IsRead = true;
          AddUsersToWorklistIfCapturing();
          continue;
        }
        return Attribute::None;
      }

      // Note: the callee and the two successor blocks *follow* the argument
      // operands.  This means there is no need to adjust UseIndex to account
      // for these.

      unsigned UseIndex = std::distance(CB.arg_begin(), U);

      // U cannot be the callee operand use: since we're exploring the
      // transitive uses of an Argument, having such a use be a callee would
      // imply the call site is an indirect call or invoke; and we'd take the
      // early exit above.
      assert(UseIndex < CB.data_operands_size() &&
             "Data operand use expected!");

      bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands();

      if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
        assert(F->isVarArg() && "More params than args in non-varargs call");
        return Attribute::None;
      }

      Captures &= !CB.doesNotCapture(UseIndex);

      // Since the optimizer (by design) cannot see the data flow corresponding
      // to a operand bundle use, these cannot participate in the optimistic SCC
      // analysis.  Instead, we model the operand bundle uses as arguments in
      // call to a function external to the SCC.
      if (IsOperandBundleUse ||
          !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {

        // The accessors used on call site here do the right thing for calls and
        // invokes with operand bundles.

        if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
          return Attribute::None;
        if (!CB.doesNotAccessMemory(UseIndex))
          IsRead = true;
      }

      AddUsersToWorklistIfCapturing();
      break;
    }

    case Instruction::Load:
      // A volatile load has side effects beyond what readonly can be relied
      // upon.
      if (cast<LoadInst>(I)->isVolatile())
        return Attribute::None;

      IsRead = true;
      break;

    case Instruction::ICmp:
    case Instruction::Ret:
      break;

    default:
      return Attribute::None;
    }
  }

  return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
}

/// Deduce returned attributes for the SCC.
static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  // Check each function in turn, determining if an argument is always returned.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    if (F->getReturnType()->isVoidTy())
      continue;

    // There is nothing to do if an argument is already marked as 'returned'.
    if (llvm::any_of(F->args(),
                     [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
      continue;

    auto FindRetArg = [&]() -> Value * {
      Value *RetArg = nullptr;
      for (BasicBlock &BB : *F)
        if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
          // Note that stripPointerCasts should look through functions with
          // returned arguments.
          Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
          if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
            return nullptr;

          if (!RetArg)
            RetArg = RetVal;
          else if (RetArg != RetVal)
            return nullptr;
        }

      return RetArg;
    };

    if (Value *RetArg = FindRetArg()) {
      auto *A = cast<Argument>(RetArg);
      A->addAttr(Attribute::Returned);
      ++NumReturned;
      Changed = true;
    }
  }

  return Changed;
}

/// If a callsite has arguments that are also arguments to the parent function,
/// try to propagate attributes from the callsite's arguments to the parent's
/// arguments. This may be important because inlining can cause information loss
/// when attribute knowledge disappears with the inlined call.
static bool addArgumentAttrsFromCallsites(Function &F) {
  if (!EnableNonnullArgPropagation)
    return false;

  bool Changed = false;

  // For an argument attribute to transfer from a callsite to the parent, the
  // call must be guaranteed to execute every time the parent is called.
  // Conservatively, just check for calls in the entry block that are guaranteed
  // to execute.
  // TODO: This could be enhanced by testing if the callsite post-dominates the
  // entry block or by doing simple forward walks or backward walks to the
  // callsite.
  BasicBlock &Entry = F.getEntryBlock();
  for (Instruction &I : Entry) {
    if (auto *CB = dyn_cast<CallBase>(&I)) {
      if (auto *CalledFunc = CB->getCalledFunction()) {
        for (auto &CSArg : CalledFunc->args()) {
          if (!CSArg.hasNonNullAttr())
            continue;

          // If the non-null callsite argument operand is an argument to 'F'
          // (the caller) and the call is guaranteed to execute, then the value
          // must be non-null throughout 'F'.
          auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
          if (FArg && !FArg->hasNonNullAttr()) {
            FArg->addAttr(Attribute::NonNull);
            Changed = true;
          }
        }
      }
    }
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
  }

  return Changed;
}

static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
  assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
         && "Must be a Read attribute.");
  assert(A && "Argument must not be null.");

  // If the argument already has the attribute, nothing needs to be done.
  if (A->hasAttribute(R))
      return false;

  // Otherwise, remove potentially conflicting attribute, add the new one,
  // and update statistics.
  A->removeAttr(Attribute::WriteOnly);
  A->removeAttr(Attribute::ReadOnly);
  A->removeAttr(Attribute::ReadNone);
  A->addAttr(R);
  R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
  return true;
}

/// Deduce nocapture attributes for the SCC.
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  ArgumentGraph AG;

  // Check each function in turn, determining which pointer arguments are not
  // captured.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    Changed |= addArgumentAttrsFromCallsites(*F);

    // Functions that are readonly (or readnone) and nounwind and don't return
    // a value can't capture arguments. Don't analyze them.
    if (F->onlyReadsMemory() && F->doesNotThrow() &&
        F->getReturnType()->isVoidTy()) {
      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
           ++A) {
        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
          A->addAttr(Attribute::NoCapture);
          ++NumNoCapture;
          Changed = true;
        }
      }
      continue;
    }

    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
         ++A) {
      if (!A->getType()->isPointerTy())
        continue;
      bool HasNonLocalUses = false;
      if (!A->hasNoCaptureAttr()) {
        ArgumentUsesTracker Tracker(SCCNodes);
        PointerMayBeCaptured(&*A, &Tracker);
        if (!Tracker.Captured) {
          if (Tracker.Uses.empty()) {
            // If it's trivially not captured, mark it nocapture now.
            A->addAttr(Attribute::NoCapture);
            ++NumNoCapture;
            Changed = true;
          } else {
            // If it's not trivially captured and not trivially not captured,
            // then it must be calling into another function in our SCC. Save
            // its particulars for Argument-SCC analysis later.
            ArgumentGraphNode *Node = AG[&*A];
            for (Argument *Use : Tracker.Uses) {
              Node->Uses.push_back(AG[Use]);
              if (Use != &*A)
                HasNonLocalUses = true;
            }
          }
        }
        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
      }
      if (!HasNonLocalUses && !A->onlyReadsMemory()) {
        // Can we determine that it's readonly/readnone without doing an SCC?
        // Note that we don't allow any calls at all here, or else our result
        // will be dependent on the iteration order through the functions in the
        // SCC.
        SmallPtrSet<Argument *, 8> Self;
        Self.insert(&*A);
        Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
        if (R != Attribute::None)
          Changed = addReadAttr(A, R);
      }
    }
  }

  // The graph we've collected is partial because we stopped scanning for
  // argument uses once we solved the argument trivially. These partial nodes
  // show up as ArgumentGraphNode objects with an empty Uses list, and for
  // these nodes the final decision about whether they capture has already been
  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
  // captures.

  for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
    const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
    if (ArgumentSCC.size() == 1) {
      if (!ArgumentSCC[0]->Definition)
        continue; // synthetic root node

      // eg. "void f(int* x) { if (...) f(x); }"
      if (ArgumentSCC[0]->Uses.size() == 1 &&
          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
        Argument *A = ArgumentSCC[0]->Definition;
        A->addAttr(Attribute::NoCapture);
        ++NumNoCapture;
        Changed = true;
      }
      continue;
    }

    bool SCCCaptured = false;
    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *Node = *I;
      if (Node->Uses.empty()) {
        if (!Node->Definition->hasNoCaptureAttr())
          SCCCaptured = true;
      }
    }
    if (SCCCaptured)
      continue;

    SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
    // quickly looking up whether a given Argument is in this ArgumentSCC.
    for (ArgumentGraphNode *I : ArgumentSCC) {
      ArgumentSCCNodes.insert(I->Definition);
    }

    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *N = *I;
      for (ArgumentGraphNode *Use : N->Uses) {
        Argument *A = Use->Definition;
        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
          continue;
        SCCCaptured = true;
        break;
      }
    }
    if (SCCCaptured)
      continue;

    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      A->addAttr(Attribute::NoCapture);
      ++NumNoCapture;
      Changed = true;
    }

    // We also want to compute readonly/readnone. With a small number of false
    // negatives, we can assume that any pointer which is captured isn't going
    // to be provably readonly or readnone, since by definition we can't
    // analyze all uses of a captured pointer.
    //
    // The false negatives happen when the pointer is captured by a function
    // that promises readonly/readnone behaviour on the pointer, then the
    // pointer's lifetime ends before anything that writes to arbitrary memory.
    // Also, a readonly/readnone pointer may be returned, but returning a
    // pointer is capturing it.

    Attribute::AttrKind ReadAttr = Attribute::ReadNone;
    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
      if (K == Attribute::ReadNone)
        continue;
      if (K == Attribute::ReadOnly) {
        ReadAttr = Attribute::ReadOnly;
        continue;
      }
      ReadAttr = K;
      break;
    }

    if (ReadAttr != Attribute::None) {
      for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
        Argument *A = ArgumentSCC[i]->Definition;
        Changed = addReadAttr(A, ReadAttr);
      }
    }
  }

  return Changed;
}

/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    if (Constant *C = dyn_cast<Constant>(RetVal)) {
      if (!C->isNullValue() && !isa<UndefValue>(C))
        return false;

      continue;
    }

    if (isa<Argument>(RetVal))
      return false;

    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
      switch (RVI->getOpcode()) {
      // Extend the analysis by looking upwards.
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
      case Instruction::AddrSpaceCast:
        FlowsToReturn.insert(RVI->getOperand(0));
        continue;
      case Instruction::Select: {
        SelectInst *SI = cast<SelectInst>(RVI);
        FlowsToReturn.insert(SI->getTrueValue());
        FlowsToReturn.insert(SI->getFalseValue());
        continue;
      }
      case Instruction::PHI: {
        PHINode *PN = cast<PHINode>(RVI);
        for (Value *IncValue : PN->incoming_values())
          FlowsToReturn.insert(IncValue);
        continue;
      }

      // Check whether the pointer came from an allocation.
      case Instruction::Alloca:
        break;
      case Instruction::Call:
      case Instruction::Invoke: {
        CallBase &CB = cast<CallBase>(*RVI);
        if (CB.hasRetAttr(Attribute::NoAlias))
          break;
        if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
          break;
        LLVM_FALLTHROUGH;
      }
      default:
        return false; // Did not come from an allocation.
      }

    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
      return false;
  }

  return true;
}

/// Deduce noalias attributes for the SCC.
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
  // Check each function in turn, determining which functions return noalias
  // pointers.
  for (Function *F : SCCNodes) {
    // Already noalias.
    if (F->returnDoesNotAlias())
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate noalias return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    if (!isFunctionMallocLike(F, SCCNodes))
      return false;
  }

  bool MadeChange = false;
  for (Function *F : SCCNodes) {
    if (F->returnDoesNotAlias() ||
        !F->getReturnType()->isPointerTy())
      continue;

    F->setReturnDoesNotAlias();
    ++NumNoAlias;
    MadeChange = true;
  }

  return MadeChange;
}

/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
                            bool &Speculative) {
  assert(F->getReturnType()->isPointerTy() &&
         "nonnull only meaningful on pointer types");
  Speculative = false;

  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  auto &DL = F->getParent()->getDataLayout();

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    // If this value is locally known to be non-null, we're good
    if (isKnownNonZero(RetVal, DL))
      continue;

    // Otherwise, we need to look upwards since we can't make any local
    // conclusions.
    Instruction *RVI = dyn_cast<Instruction>(RetVal);
    if (!RVI)
      return false;
    switch (RVI->getOpcode()) {
    // Extend the analysis by looking upwards.
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::AddrSpaceCast:
      FlowsToReturn.insert(RVI->getOperand(0));
      continue;
    case Instruction::Select: {
      SelectInst *SI = cast<SelectInst>(RVI);
      FlowsToReturn.insert(SI->getTrueValue());
      FlowsToReturn.insert(SI->getFalseValue());
      continue;
    }
    case Instruction::PHI: {
      PHINode *PN = cast<PHINode>(RVI);
      for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        FlowsToReturn.insert(PN->getIncomingValue(i));
      continue;
    }
    case Instruction::Call:
    case Instruction::Invoke: {
      CallBase &CB = cast<CallBase>(*RVI);
      Function *Callee = CB.getCalledFunction();
      // A call to a node within the SCC is assumed to return null until
      // proven otherwise
      if (Callee && SCCNodes.count(Callee)) {
        Speculative = true;
        continue;
      }
      return false;
    }
    default:
      return false; // Unknown source, may be null
    };
    llvm_unreachable("should have either continued or returned");
  }

  return true;
}

/// Deduce nonnull attributes for the SCC.
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
  // Speculative that all functions in the SCC return only nonnull
  // pointers.  We may refute this as we analyze functions.
  bool SCCReturnsNonNull = true;

  bool MadeChange = false;

  // Check each function in turn, determining which functions return nonnull
  // pointers.
  for (Function *F : SCCNodes) {
    // Already nonnull.
    if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                        Attribute::NonNull))
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate nonnull return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    bool Speculative = false;
    if (isReturnNonNull(F, SCCNodes, Speculative)) {
      if (!Speculative) {
        // Mark the function eagerly since we may discover a function
        // which prevents us from speculating about the entire SCC
        LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
                          << " as nonnull\n");
        F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
        ++NumNonNullReturn;
        MadeChange = true;
      }
      continue;
    }
    // At least one function returns something which could be null, can't
    // speculate any more.
    SCCReturnsNonNull = false;
  }

  if (SCCReturnsNonNull) {
    for (Function *F : SCCNodes) {
      if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                          Attribute::NonNull) ||
          !F->getReturnType()->isPointerTy())
        continue;

      LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
      F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
      ++NumNonNullReturn;
      MadeChange = true;
    }
  }

  return MadeChange;
}

namespace {

/// Collects a set of attribute inference requests and performs them all in one
/// go on a single SCC Node. Inference involves scanning function bodies
/// looking for instructions that violate attribute assumptions.
/// As soon as all the bodies are fine we are free to set the attribute.
/// Customization of inference for individual attributes is performed by
/// providing a handful of predicates for each attribute.
class AttributeInferer {
public:
  /// Describes a request for inference of a single attribute.
  struct InferenceDescriptor {

    /// Returns true if this function does not have to be handled.
    /// General intent for this predicate is to provide an optimization
    /// for functions that do not need this attribute inference at all
    /// (say, for functions that already have the attribute).
    std::function<bool(const Function &)> SkipFunction;

    /// Returns true if this instruction violates attribute assumptions.
    std::function<bool(Instruction &)> InstrBreaksAttribute;

    /// Sets the inferred attribute for this function.
    std::function<void(Function &)> SetAttribute;

    /// Attribute we derive.
    Attribute::AttrKind AKind;

    /// If true, only "exact" definitions can be used to infer this attribute.
    /// See GlobalValue::isDefinitionExact.
    bool RequiresExactDefinition;

    InferenceDescriptor(Attribute::AttrKind AK,
                        std::function<bool(const Function &)> SkipFunc,
                        std::function<bool(Instruction &)> InstrScan,
                        std::function<void(Function &)> SetAttr,
                        bool ReqExactDef)
        : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
          SetAttribute(SetAttr), AKind(AK),
          RequiresExactDefinition(ReqExactDef) {}
  };

private:
  SmallVector<InferenceDescriptor, 4> InferenceDescriptors;

public:
  void registerAttrInference(InferenceDescriptor AttrInference) {
    InferenceDescriptors.push_back(AttrInference);
  }

  bool run(const SCCNodeSet &SCCNodes);
};

/// Perform all the requested attribute inference actions according to the
/// attribute predicates stored before.
bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
  SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
  // Go through all the functions in SCC and check corresponding attribute
  // assumptions for each of them. Attributes that are invalid for this SCC
  // will be removed from InferInSCC.
  for (Function *F : SCCNodes) {

    // No attributes whose assumptions are still valid - done.
    if (InferInSCC.empty())
      return false;

    // Check if our attributes ever need scanning/can be scanned.
    llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
      if (ID.SkipFunction(*F))
        return false;

      // Remove from further inference (invalidate) when visiting a function
      // that has no instructions to scan/has an unsuitable definition.
      return F->isDeclaration() ||
             (ID.RequiresExactDefinition && !F->hasExactDefinition());
    });

    // For each attribute still in InferInSCC that doesn't explicitly skip F,
    // set up the F instructions scan to verify assumptions of the attribute.
    SmallVector<InferenceDescriptor, 4> InferInThisFunc;
    llvm::copy_if(
        InferInSCC, std::back_inserter(InferInThisFunc),
        [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });

    if (InferInThisFunc.empty())
      continue;

    // Start instruction scan.
    for (Instruction &I : instructions(*F)) {
      llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
        if (!ID.InstrBreaksAttribute(I))
          return false;
        // Remove attribute from further inference on any other functions
        // because attribute assumptions have just been violated.
        llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
          return D.AKind == ID.AKind;
        });
        // Remove attribute from the rest of current instruction scan.
        return true;
      });

      if (InferInThisFunc.empty())
        break;
    }
  }

  if (InferInSCC.empty())
    return false;

  bool Changed = false;
  for (Function *F : SCCNodes)
    // At this point InferInSCC contains only functions that were either:
    //   - explicitly skipped from scan/inference, or
    //   - verified to have no instructions that break attribute assumptions.
    // Hence we just go and force the attribute for all non-skipped functions.
    for (auto &ID : InferInSCC) {
      if (ID.SkipFunction(*F))
        continue;
      Changed = true;
      ID.SetAttribute(*F);
    }
  return Changed;
}

} // end anonymous namespace

/// Helper for non-Convergent inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonConvergent(Instruction &I,
                                     const SCCNodeSet &SCCNodes) {
  const CallBase *CB = dyn_cast<CallBase>(&I);
  // Breaks non-convergent assumption if CS is a convergent call to a function
  // not in the SCC.
  return CB && CB->isConvergent() &&
         SCCNodes.count(CB->getCalledFunction()) == 0;
}

/// Helper for NoUnwind inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
  if (!I.mayThrow())
    return false;
  if (const auto *CI = dyn_cast<CallInst>(&I)) {
    if (Function *Callee = CI->getCalledFunction()) {
      // I is a may-throw call to a function inside our SCC. This doesn't
      // invalidate our current working assumption that the SCC is no-throw; we
      // just have to scan that other function.
      if (SCCNodes.count(Callee) > 0)
        return false;
    }
  }
  return true;
}

/// Helper for NoFree inference predicate InstrBreaksAttribute.
static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
  CallBase *CB = dyn_cast<CallBase>(&I);
  if (!CB)
    return false;

  Function *Callee = CB->getCalledFunction();
  if (!Callee)
    return true;

  if (Callee->doesNotFreeMemory())
    return false;

  if (SCCNodes.count(Callee) > 0)
    return false;

  return true;
}

/// Infer attributes from all functions in the SCC by scanning every
/// instruction for compliance to the attribute assumptions. Currently it
/// does:
///   - removal of Convergent attribute
///   - addition of NoUnwind attribute
///
/// Returns true if any changes to function attributes were made.
static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {

  AttributeInferer AI;

  // Request to remove the convergent attribute from all functions in the SCC
  // if every callsite within the SCC is not convergent (except for calls
  // to functions within the SCC).
  // Note: Removal of the attr from the callsites will happen in
  // InstCombineCalls separately.
  AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
      Attribute::Convergent,
      // Skip non-convergent functions.
      [](const Function &F) { return !F.isConvergent(); },
      // Instructions that break non-convergent assumption.
      [SCCNodes](Instruction &I) {
        return InstrBreaksNonConvergent(I, SCCNodes);
      },
      [](Function &F) {
        LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
                          << "\n");
        F.setNotConvergent();
      },
      /* RequiresExactDefinition= */ false});

  if (!DisableNoUnwindInference)
    // Request to infer nounwind attribute for all the functions in the SCC if
    // every callsite within the SCC is not throwing (except for calls to
    // functions within the SCC). Note that nounwind attribute suffers from
    // derefinement - results may change depending on how functions are
    // optimized. Thus it can be inferred only from exact definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoUnwind,
        // Skip non-throwing functions.
        [](const Function &F) { return F.doesNotThrow(); },
        // Instructions that break non-throwing assumption.
        [&SCCNodes](Instruction &I) {
          return InstrBreaksNonThrowing(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nounwind attr to fn " << F.getName() << "\n");
          F.setDoesNotThrow();
          ++NumNoUnwind;
        },
        /* RequiresExactDefinition= */ true});

  if (!DisableNoFreeInference)
    // Request to infer nofree attribute for all the functions in the SCC if
    // every callsite within the SCC does not directly or indirectly free
    // memory (except for calls to functions within the SCC). Note that nofree
    // attribute suffers from derefinement - results may change depending on
    // how functions are optimized. Thus it can be inferred only from exact
    // definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoFree,
        // Skip functions known not to free memory.
        [](const Function &F) { return F.doesNotFreeMemory(); },
        // Instructions that break non-deallocating assumption.
        [&SCCNodes](Instruction &I) {
          return InstrBreaksNoFree(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nofree attr to fn " << F.getName() << "\n");
          F.setDoesNotFreeMemory();
          ++NumNoFree;
        },
        /* RequiresExactDefinition= */ true});

  // Perform all the requested attribute inference actions.
  return AI.run(SCCNodes);
}

static bool setDoesNotRecurse(Function &F) {
  if (F.doesNotRecurse())
    return false;
  F.setDoesNotRecurse();
  ++NumNoRecurse;
  return true;
}

static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
  // Try and identify functions that do not recurse.

  // If the SCC contains multiple nodes we know for sure there is recursion.
  if (SCCNodes.size() != 1)
    return false;

  Function *F = *SCCNodes.begin();
  if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
    return false;

  // If all of the calls in F are identifiable and are to norecurse functions, F
  // is norecurse. This check also detects self-recursion as F is not currently
  // marked norecurse, so any called from F to F will not be marked norecurse.
  for (auto &BB : *F)
    for (auto &I : BB.instructionsWithoutDebug())
      if (auto *CB = dyn_cast<CallBase>(&I)) {
        Function *Callee = CB->getCalledFunction();
        if (!Callee || Callee == F || !Callee->doesNotRecurse())
          // Function calls a potentially recursive function.
          return false;
      }

  // Every call was to a non-recursive function other than this function, and
  // we have no indirect recursion as the SCC size is one. This function cannot
  // recurse.
  return setDoesNotRecurse(*F);
}

template <typename AARGetterT>
static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes,
                                   AARGetterT &&AARGetter,
                                   bool HasUnknownCall) {
  bool Changed = false;

  // Bail if the SCC only contains optnone functions.
  if (SCCNodes.empty())
    return Changed;

  Changed |= addArgumentReturnedAttrs(SCCNodes);
  Changed |= addReadAttrs(SCCNodes, AARGetter);
  Changed |= addArgumentAttrs(SCCNodes);

  // If we have no external nodes participating in the SCC, we can deduce some
  // more precise attributes as well.
  if (!HasUnknownCall) {
    Changed |= addNoAliasAttrs(SCCNodes);
    Changed |= addNonNullAttrs(SCCNodes);
    Changed |= inferAttrsFromFunctionBodies(SCCNodes);
    Changed |= addNoRecurseAttrs(SCCNodes);
  }

  return Changed;
}

PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
                                                  CGSCCAnalysisManager &AM,
                                                  LazyCallGraph &CG,
                                                  CGSCCUpdateResult &) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();

  // We pass a lambda into functions to wire them up to the analysis manager
  // for getting function analyses.
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };

  // Fill SCCNodes with the elements of the SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool HasUnknownCall = false;
  for (LazyCallGraph::Node &N : C) {
    Function &F = N.getFunction();
    if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) {
      // Treat any function we're trying not to optimize as if it were an
      // indirect call and omit it from the node set used below.
      HasUnknownCall = true;
      continue;
    }
    // Track whether any functions in this SCC have an unknown call edge.
    // Note: if this is ever a performance hit, we can common it with
    // subsequent routines which also do scans over the instructions of the
    // function.
    if (!HasUnknownCall)
      for (Instruction &I : instructions(F))
        if (auto *CB = dyn_cast<CallBase>(&I))
          if (!CB->getCalledFunction()) {
            HasUnknownCall = true;
            break;
          }

    SCCNodes.insert(&F);
  }

  if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
    return PreservedAnalyses::none();

  return PreservedAnalyses::all();
}

namespace {

struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
  // Pass identification, replacement for typeid
  static char ID;

  PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
    initializePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnSCC(CallGraphSCC &SCC) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AssumptionCacheTracker>();
    getAAResultsAnalysisUsage(AU);
    CallGraphSCCPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char PostOrderFunctionAttrsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                      "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                    "Deduce function attributes", false, false)

Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
  return new PostOrderFunctionAttrsLegacyPass();
}

template <typename AARGetterT>
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {

  // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
  // whether a given CallGraphNode is in this SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool ExternalNode = false;
  for (CallGraphNode *I : SCC) {
    Function *F = I->getFunction();
    if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
      // External node or function we're trying not to optimize - we both avoid
      // transform them and avoid leveraging information they provide.
      ExternalNode = true;
      continue;
    }

    SCCNodes.insert(F);
  }

  return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
}

bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;
  return runImpl(SCC, LegacyAARGetter(*this));
}

namespace {

struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
  // Pass identification, replacement for typeid
  static char ID;

  ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
    initializeReversePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<CallGraphWrapperPass>();
    AU.addPreserved<CallGraphWrapperPass>();
  }
};

} // end anonymous namespace

char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                      "Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                    "Deduce function attributes in RPO", false, false)

Pass *llvm::createReversePostOrderFunctionAttrsPass() {
  return new ReversePostOrderFunctionAttrsLegacyPass();
}

static bool addNoRecurseAttrsTopDown(Function &F) {
  // We check the preconditions for the function prior to calling this to avoid
  // the cost of building up a reversible post-order list. We assert them here
  // to make sure none of the invariants this relies on were violated.
  assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
  assert(!F.doesNotRecurse() &&
         "This function has already been deduced as norecurs!");
  assert(F.hasInternalLinkage() &&
         "Can only do top-down deduction for internal linkage functions!");

  // If F is internal and all of its uses are calls from a non-recursive
  // functions, then none of its calls could in fact recurse without going
  // through a function marked norecurse, and so we can mark this function too
  // as norecurse. Note that the uses must actually be calls -- otherwise
  // a pointer to this function could be returned from a norecurse function but
  // this function could be recursively (indirectly) called. Note that this
  // also detects if F is directly recursive as F is not yet marked as
  // a norecurse function.
  for (auto *U : F.users()) {
    auto *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    CallBase *CB = dyn_cast<CallBase>(I);
    if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
      return false;
  }
  return setDoesNotRecurse(F);
}

static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
  // We only have a post-order SCC traversal (because SCCs are inherently
  // discovered in post-order), so we accumulate them in a vector and then walk
  // it in reverse. This is simpler than using the RPO iterator infrastructure
  // because we need to combine SCC detection and the PO walk of the call
  // graph. We can also cheat egregiously because we're primarily interested in
  // synthesizing norecurse and so we can only save the singular SCCs as SCCs
  // with multiple functions in them will clearly be recursive.
  SmallVector<Function *, 16> Worklist;
  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    if (I->size() != 1)
      continue;

    Function *F = I->front()->getFunction();
    if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
        F->hasInternalLinkage())
      Worklist.push_back(F);
  }

  bool Changed = false;
  for (auto *F : llvm::reverse(Worklist))
    Changed |= addNoRecurseAttrsTopDown(*F);

  return Changed;
}

bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  return deduceFunctionAttributeInRPO(M, CG);
}

PreservedAnalyses
ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto &CG = AM.getResult<CallGraphAnalysis>(M);

  if (!deduceFunctionAttributeInRPO(M, CG))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<CallGraphAnalysis>();
  return PA;
}