Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//

#include "VPlan.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>

using namespace llvm;
extern cl::opt<bool> EnableVPlanNativePath;

#define DEBUG_TYPE "vplan"

raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
  const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
  VPSlotTracker SlotTracker(
      (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
  V.print(OS, SlotTracker);
  return OS;
}

void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
  if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
    Instr->print(OS, SlotTracker);
  else
    printAsOperand(OS, SlotTracker);
}

// Get the top-most entry block of \p Start. This is the entry block of the
// containing VPlan. This function is templated to support both const and non-const blocks
template <typename T> static T *getPlanEntry(T *Start) {
  T *Next = Start;
  T *Current = Start;
  while ((Next = Next->getParent()))
    Current = Next;

  SmallSetVector<T *, 8> WorkList;
  WorkList.insert(Current);

  for (unsigned i = 0; i < WorkList.size(); i++) {
    T *Current = WorkList[i];
    if (Current->getNumPredecessors() == 0)
      return Current;
    auto &Predecessors = Current->getPredecessors();
    WorkList.insert(Predecessors.begin(), Predecessors.end());
  }

  llvm_unreachable("VPlan without any entry node without predecessors");
}

VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }

const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }

/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
  const VPBlockBase *Block = this;
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getEntry();
  return cast<VPBasicBlock>(Block);
}

VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
  VPBlockBase *Block = this;
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getEntry();
  return cast<VPBasicBlock>(Block);
}

void VPBlockBase::setPlan(VPlan *ParentPlan) {
  assert(ParentPlan->getEntry() == this &&
         "Can only set plan on its entry block.");
  Plan = ParentPlan;
}

/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
  const VPBlockBase *Block = this;
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getExit();
  return cast<VPBasicBlock>(Block);
}

VPBasicBlock *VPBlockBase::getExitBasicBlock() {
  VPBlockBase *Block = this;
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getExit();
  return cast<VPBasicBlock>(Block);
}

VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
  if (!Successors.empty() || !Parent)
    return this;
  assert(Parent->getExit() == this &&
         "Block w/o successors not the exit of its parent.");
  return Parent->getEnclosingBlockWithSuccessors();
}

VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
  if (!Predecessors.empty() || !Parent)
    return this;
  assert(Parent->getEntry() == this &&
         "Block w/o predecessors not the entry of its parent.");
  return Parent->getEnclosingBlockWithPredecessors();
}

void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
  SmallVector<VPBlockBase *, 8> Blocks;
  for (VPBlockBase *Block : depth_first(Entry))
    Blocks.push_back(Block);

  for (VPBlockBase *Block : Blocks)
    delete Block;
}

BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
  // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
  // Pred stands for Predessor. Prev stands for Previous - last visited/created.
  BasicBlock *PrevBB = CFG.PrevBB;
  BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
                                         PrevBB->getParent(), CFG.LastBB);
  LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');

  // Hook up the new basic block to its predecessors.
  for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
    VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
    auto &PredVPSuccessors = PredVPBB->getSuccessors();
    BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];

    // In outer loop vectorization scenario, the predecessor BBlock may not yet
    // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
    // vectorization. We do not encounter this case in inner loop vectorization
    // as we start out by building a loop skeleton with the vector loop header
    // and latch blocks. As a result, we never enter this function for the
    // header block in the non VPlan-native path.
    if (!PredBB) {
      assert(EnableVPlanNativePath &&
             "Unexpected null predecessor in non VPlan-native path");
      CFG.VPBBsToFix.push_back(PredVPBB);
      continue;
    }

    assert(PredBB && "Predecessor basic-block not found building successor.");
    auto *PredBBTerminator = PredBB->getTerminator();
    LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
    if (isa<UnreachableInst>(PredBBTerminator)) {
      assert(PredVPSuccessors.size() == 1 &&
             "Predecessor ending w/o branch must have single successor.");
      PredBBTerminator->eraseFromParent();
      BranchInst::Create(NewBB, PredBB);
    } else {
      assert(PredVPSuccessors.size() == 2 &&
             "Predecessor ending with branch must have two successors.");
      unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
      assert(!PredBBTerminator->getSuccessor(idx) &&
             "Trying to reset an existing successor block.");
      PredBBTerminator->setSuccessor(idx, NewBB);
    }
  }
  return NewBB;
}

void VPBasicBlock::execute(VPTransformState *State) {
  bool Replica = State->Instance &&
                 !(State->Instance->Part == 0 && State->Instance->Lane == 0);
  VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
  VPBlockBase *SingleHPred = nullptr;
  BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.

  // 1. Create an IR basic block, or reuse the last one if possible.
  // The last IR basic block is reused, as an optimization, in three cases:
  // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
  // B. when the current VPBB has a single (hierarchical) predecessor which
  //    is PrevVPBB and the latter has a single (hierarchical) successor; and
  // C. when the current VPBB is an entry of a region replica - where PrevVPBB
  //    is the exit of this region from a previous instance, or the predecessor
  //    of this region.
  if (PrevVPBB && /* A */
      !((SingleHPred = getSingleHierarchicalPredecessor()) &&
        SingleHPred->getExitBasicBlock() == PrevVPBB &&
        PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
      !(Replica && getPredecessors().empty())) {       /* C */
    NewBB = createEmptyBasicBlock(State->CFG);
    State->Builder.SetInsertPoint(NewBB);
    // Temporarily terminate with unreachable until CFG is rewired.
    UnreachableInst *Terminator = State->Builder.CreateUnreachable();
    State->Builder.SetInsertPoint(Terminator);
    // Register NewBB in its loop. In innermost loops its the same for all BB's.
    Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
    L->addBasicBlockToLoop(NewBB, *State->LI);
    State->CFG.PrevBB = NewBB;
  }

  // 2. Fill the IR basic block with IR instructions.
  LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
                    << " in BB:" << NewBB->getName() << '\n');

  State->CFG.VPBB2IRBB[this] = NewBB;
  State->CFG.PrevVPBB = this;

  for (VPRecipeBase &Recipe : Recipes)
    Recipe.execute(*State);

  VPValue *CBV;
  if (EnableVPlanNativePath && (CBV = getCondBit())) {
    Value *IRCBV = CBV->getUnderlyingValue();
    assert(IRCBV && "Unexpected null underlying value for condition bit");

    // Condition bit value in a VPBasicBlock is used as the branch selector. In
    // the VPlan-native path case, since all branches are uniform we generate a
    // branch instruction using the condition value from vector lane 0 and dummy
    // successors. The successors are fixed later when the successor blocks are
    // visited.
    Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
    NewCond = State->Builder.CreateExtractElement(NewCond,
                                                  State->Builder.getInt32(0));

    // Replace the temporary unreachable terminator with the new conditional
    // branch.
    auto *CurrentTerminator = NewBB->getTerminator();
    assert(isa<UnreachableInst>(CurrentTerminator) &&
           "Expected to replace unreachable terminator with conditional "
           "branch.");
    auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
    CondBr->setSuccessor(0, nullptr);
    ReplaceInstWithInst(CurrentTerminator, CondBr);
  }

  LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
}

void VPRegionBlock::execute(VPTransformState *State) {
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);

  if (!isReplicator()) {
    // Visit the VPBlocks connected to "this", starting from it.
    for (VPBlockBase *Block : RPOT) {
      if (EnableVPlanNativePath) {
        // The inner loop vectorization path does not represent loop preheader
        // and exit blocks as part of the VPlan. In the VPlan-native path, skip
        // vectorizing loop preheader block. In future, we may replace this
        // check with the check for loop preheader.
        if (Block->getNumPredecessors() == 0)
          continue;

        // Skip vectorizing loop exit block. In future, we may replace this
        // check with the check for loop exit.
        if (Block->getNumSuccessors() == 0)
          continue;
      }

      LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
      Block->execute(State);
    }
    return;
  }

  assert(!State->Instance && "Replicating a Region with non-null instance.");

  // Enter replicating mode.
  State->Instance = {0, 0};

  for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
    State->Instance->Part = Part;
    for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
      State->Instance->Lane = Lane;
      // Visit the VPBlocks connected to \p this, starting from it.
      for (VPBlockBase *Block : RPOT) {
        LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
        Block->execute(State);
      }
    }
  }

  // Exit replicating mode.
  State->Instance.reset();
}

void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insert(InsertPos->getIterator(), this);
}

void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
}

void VPRecipeBase::removeFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  getParent()->getRecipeList().remove(getIterator());
  Parent = nullptr;
}

iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  return getParent()->getRecipeList().erase(getIterator());
}

void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
  removeFromParent();
  insertAfter(InsertPos);
}

void VPInstruction::generateInstruction(VPTransformState &State,
                                        unsigned Part) {
  IRBuilder<> &Builder = State.Builder;

  if (Instruction::isBinaryOp(getOpcode())) {
    Value *A = State.get(getOperand(0), Part);
    Value *B = State.get(getOperand(1), Part);
    Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
    State.set(this, V, Part);
    return;
  }

  switch (getOpcode()) {
  case VPInstruction::Not: {
    Value *A = State.get(getOperand(0), Part);
    Value *V = Builder.CreateNot(A);
    State.set(this, V, Part);
    break;
  }
  case VPInstruction::ICmpULE: {
    Value *IV = State.get(getOperand(0), Part);
    Value *TC = State.get(getOperand(1), Part);
    Value *V = Builder.CreateICmpULE(IV, TC);
    State.set(this, V, Part);
    break;
  }
  case Instruction::Select: {
    Value *Cond = State.get(getOperand(0), Part);
    Value *Op1 = State.get(getOperand(1), Part);
    Value *Op2 = State.get(getOperand(2), Part);
    Value *V = Builder.CreateSelect(Cond, Op1, Op2);
    State.set(this, V, Part);
    break;
  }
  case VPInstruction::ActiveLaneMask: {
    // Get first lane of vector induction variable.
    Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
    // Get first lane of backedge-taken-count.
    Value *ScalarBTC = State.get(getOperand(1), {Part, 0});

    auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
    auto *PredTy = FixedVectorType::get(Int1Ty, State.VF);
    Instruction *Call = Builder.CreateIntrinsic(
        Intrinsic::get_active_lane_mask, {PredTy, ScalarBTC->getType()},
        {VIVElem0, ScalarBTC}, nullptr, "active.lane.mask");
    State.set(this, Call, Part);
    break;
  }
  default:
    llvm_unreachable("Unsupported opcode for instruction");
  }
}

void VPInstruction::execute(VPTransformState &State) {
  assert(!State.Instance && "VPInstruction executing an Instance");
  for (unsigned Part = 0; Part < State.UF; ++Part)
    generateInstruction(State, Part);
}

void VPInstruction::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"EMIT ";
  print(O, SlotTracker);
}

void VPInstruction::print(raw_ostream &O) const {
  VPSlotTracker SlotTracker(getParent()->getPlan());
  print(O, SlotTracker);
}

void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
  if (hasResult()) {
    printAsOperand(O, SlotTracker);
    O << " = ";
  }

  switch (getOpcode()) {
  case VPInstruction::Not:
    O << "not";
    break;
  case VPInstruction::ICmpULE:
    O << "icmp ule";
    break;
  case VPInstruction::SLPLoad:
    O << "combined load";
    break;
  case VPInstruction::SLPStore:
    O << "combined store";
    break;
  case VPInstruction::ActiveLaneMask:
    O << "active lane mask";
    break;

  default:
    O << Instruction::getOpcodeName(getOpcode());
  }

  for (const VPValue *Operand : operands()) {
    O << " ";
    Operand->printAsOperand(O, SlotTracker);
  }
}

/// Generate the code inside the body of the vectorized loop. Assumes a single
/// LoopVectorBody basic-block was created for this. Introduce additional
/// basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
  // -1. Check if the backedge taken count is needed, and if so build it.
  if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
    Value *TC = State->TripCount;
    IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
    auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
                                   "trip.count.minus.1");
    auto VF = State->VF;
    Value *VTCMO =
        VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
    for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
      State->set(BackedgeTakenCount, VTCMO, Part);
  }

  // 0. Set the reverse mapping from VPValues to Values for code generation.
  for (auto &Entry : Value2VPValue)
    State->VPValue2Value[Entry.second] = Entry.first;

  BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
  BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
  assert(VectorHeaderBB && "Loop preheader does not have a single successor.");

  // 1. Make room to generate basic-blocks inside loop body if needed.
  BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
      VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
  Loop *L = State->LI->getLoopFor(VectorHeaderBB);
  L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
  // Remove the edge between Header and Latch to allow other connections.
  // Temporarily terminate with unreachable until CFG is rewired.
  // Note: this asserts the generated code's assumption that
  // getFirstInsertionPt() can be dereferenced into an Instruction.
  VectorHeaderBB->getTerminator()->eraseFromParent();
  State->Builder.SetInsertPoint(VectorHeaderBB);
  UnreachableInst *Terminator = State->Builder.CreateUnreachable();
  State->Builder.SetInsertPoint(Terminator);

  // 2. Generate code in loop body.
  State->CFG.PrevVPBB = nullptr;
  State->CFG.PrevBB = VectorHeaderBB;
  State->CFG.LastBB = VectorLatchBB;

  for (VPBlockBase *Block : depth_first(Entry))
    Block->execute(State);

  // Setup branch terminator successors for VPBBs in VPBBsToFix based on
  // VPBB's successors.
  for (auto VPBB : State->CFG.VPBBsToFix) {
    assert(EnableVPlanNativePath &&
           "Unexpected VPBBsToFix in non VPlan-native path");
    BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
    assert(BB && "Unexpected null basic block for VPBB");

    unsigned Idx = 0;
    auto *BBTerminator = BB->getTerminator();

    for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
      VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
      BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
      ++Idx;
    }
  }

  // 3. Merge the temporary latch created with the last basic-block filled.
  BasicBlock *LastBB = State->CFG.PrevBB;
  // Connect LastBB to VectorLatchBB to facilitate their merge.
  assert((EnableVPlanNativePath ||
          isa<UnreachableInst>(LastBB->getTerminator())) &&
         "Expected InnerLoop VPlan CFG to terminate with unreachable");
  assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
         "Expected VPlan CFG to terminate with branch in NativePath");
  LastBB->getTerminator()->eraseFromParent();
  BranchInst::Create(VectorLatchBB, LastBB);

  // Merge LastBB with Latch.
  bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
  (void)Merged;
  assert(Merged && "Could not merge last basic block with latch.");
  VectorLatchBB = LastBB;

  // We do not attempt to preserve DT for outer loop vectorization currently.
  if (!EnableVPlanNativePath)
    updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
                        L->getExitBlock());
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void VPlan::dump() const { dbgs() << *this << '\n'; }
#endif

void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
                                BasicBlock *LoopLatchBB,
                                BasicBlock *LoopExitBB) {
  BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
  assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
  // The vector body may be more than a single basic-block by this point.
  // Update the dominator tree information inside the vector body by propagating
  // it from header to latch, expecting only triangular control-flow, if any.
  BasicBlock *PostDomSucc = nullptr;
  for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
    // Get the list of successors of this block.
    std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
    assert(Succs.size() <= 2 &&
           "Basic block in vector loop has more than 2 successors.");
    PostDomSucc = Succs[0];
    if (Succs.size() == 1) {
      assert(PostDomSucc->getSinglePredecessor() &&
             "PostDom successor has more than one predecessor.");
      DT->addNewBlock(PostDomSucc, BB);
      continue;
    }
    BasicBlock *InterimSucc = Succs[1];
    if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
      PostDomSucc = Succs[1];
      InterimSucc = Succs[0];
    }
    assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
           "One successor of a basic block does not lead to the other.");
    assert(InterimSucc->getSinglePredecessor() &&
           "Interim successor has more than one predecessor.");
    assert(PostDomSucc->hasNPredecessors(2) &&
           "PostDom successor has more than two predecessors.");
    DT->addNewBlock(InterimSucc, BB);
    DT->addNewBlock(PostDomSucc, BB);
  }
  // Latch block is a new dominator for the loop exit.
  DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));
}

const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
  return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
         Twine(getOrCreateBID(Block));
}

const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
  const std::string &Name = Block->getName();
  if (!Name.empty())
    return Name;
  return "VPB" + Twine(getOrCreateBID(Block));
}

void VPlanPrinter::dump() {
  Depth = 1;
  bumpIndent(0);
  OS << "digraph VPlan {\n";
  OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
  if (!Plan.getName().empty())
    OS << "\\n" << DOT::EscapeString(Plan.getName());
  if (Plan.BackedgeTakenCount) {
    OS << ", where:\\n";
    Plan.BackedgeTakenCount->print(OS, SlotTracker);
    OS << " := BackedgeTakenCount";
  }
  OS << "\"]\n";
  OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
  OS << "edge [fontname=Courier, fontsize=30]\n";
  OS << "compound=true\n";

  for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
    dumpBlock(Block);

  OS << "}\n";
}

void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
  if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
    dumpBasicBlock(BasicBlock);
  else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    dumpRegion(Region);
  else
    llvm_unreachable("Unsupported kind of VPBlock.");
}

void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
                            bool Hidden, const Twine &Label) {
  // Due to "dot" we print an edge between two regions as an edge between the
  // exit basic block and the entry basic of the respective regions.
  const VPBlockBase *Tail = From->getExitBasicBlock();
  const VPBlockBase *Head = To->getEntryBasicBlock();
  OS << Indent << getUID(Tail) << " -> " << getUID(Head);
  OS << " [ label=\"" << Label << '\"';
  if (Tail != From)
    OS << " ltail=" << getUID(From);
  if (Head != To)
    OS << " lhead=" << getUID(To);
  if (Hidden)
    OS << "; splines=none";
  OS << "]\n";
}

void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
  auto &Successors = Block->getSuccessors();
  if (Successors.size() == 1)
    drawEdge(Block, Successors.front(), false, "");
  else if (Successors.size() == 2) {
    drawEdge(Block, Successors.front(), false, "T");
    drawEdge(Block, Successors.back(), false, "F");
  } else {
    unsigned SuccessorNumber = 0;
    for (auto *Successor : Successors)
      drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
  }
}

void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
  OS << Indent << getUID(BasicBlock) << " [label =\n";
  bumpIndent(1);
  OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
  bumpIndent(1);

  // Dump the block predicate.
  const VPValue *Pred = BasicBlock->getPredicate();
  if (Pred) {
    OS << " +\n" << Indent << " \"BlockPredicate: ";
    if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
      PredI->printAsOperand(OS, SlotTracker);
      OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
         << ")\\l\"";
    } else
      Pred->printAsOperand(OS, SlotTracker);
  }

  for (const VPRecipeBase &Recipe : *BasicBlock) {
    OS << " +\n" << Indent;
    Recipe.print(OS, Indent, SlotTracker);
    OS << "\\l\"";
  }

  // Dump the condition bit.
  const VPValue *CBV = BasicBlock->getCondBit();
  if (CBV) {
    OS << " +\n" << Indent << " \"CondBit: ";
    if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
      CBI->printAsOperand(OS, SlotTracker);
      OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
    } else {
      CBV->printAsOperand(OS, SlotTracker);
      OS << "\"";
    }
  }

  bumpIndent(-2);
  OS << "\n" << Indent << "]\n";
  dumpEdges(BasicBlock);
}

void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
  OS << Indent << "subgraph " << getUID(Region) << " {\n";
  bumpIndent(1);
  OS << Indent << "fontname=Courier\n"
     << Indent << "label=\""
     << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
     << DOT::EscapeString(Region->getName()) << "\"\n";
  // Dump the blocks of the region.
  assert(Region->getEntry() && "Region contains no inner blocks.");
  for (const VPBlockBase *Block : depth_first(Region->getEntry()))
    dumpBlock(Block);
  bumpIndent(-1);
  OS << Indent << "}\n";
  dumpEdges(Region);
}

void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
  std::string IngredientString;
  raw_string_ostream RSO(IngredientString);
  if (auto *Inst = dyn_cast<Instruction>(V)) {
    if (!Inst->getType()->isVoidTy()) {
      Inst->printAsOperand(RSO, false);
      RSO << " = ";
    }
    RSO << Inst->getOpcodeName() << " ";
    unsigned E = Inst->getNumOperands();
    if (E > 0) {
      Inst->getOperand(0)->printAsOperand(RSO, false);
      for (unsigned I = 1; I < E; ++I)
        Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
    }
  } else // !Inst
    V->printAsOperand(RSO, false);
  RSO.flush();
  O << DOT::EscapeString(IngredientString);
}

void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient);
}

void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient)
    << (InvariantCond ? " (condition is loop invariant)" : "");
}

void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN\\l\"";
  O << "\"  " << VPlanIngredient(&Ingredient);
}

void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
                                          VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-INDUCTION";
  if (Trunc) {
    O << "\\l\"";
    O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
    O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
  } else
    O << " " << VPlanIngredient(IV);
}

void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-GEP ";
  O << (IsPtrLoopInvariant ? "Inv" : "Var");
  size_t IndicesNumber = IsIndexLoopInvariant.size();
  for (size_t I = 0; I < IndicesNumber; ++I)
    O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
  O << "\\l\"";
  O << " +\n" << Indent << "\"  " << VPlanIngredient(GEP);
}

void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
}

void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"BLEND ";
  Phi->printAsOperand(O, false);
  O << " =";
  if (getNumIncomingValues() == 1) {
    // Not a User of any mask: not really blending, this is a
    // single-predecessor phi.
    O << " ";
    getIncomingValue(0)->printAsOperand(O, SlotTracker);
  } else {
    for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
      O << " ";
      getIncomingValue(I)->printAsOperand(O, SlotTracker);
      O << "/";
      getMask(I)->printAsOperand(O, SlotTracker);
    }
  }
}

void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
    << VPlanIngredient(Ingredient);
  if (AlsoPack)
    O << " (S->V)";
}

void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst);
}

void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
                                           VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN " << VPlanIngredient(&Instr);
  O << ", ";
  getAddr()->printAsOperand(O, SlotTracker);
  VPValue *Mask = getMask();
  if (Mask) {
    O << ", ";
    Mask->printAsOperand(O, SlotTracker);
  }
}

void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
  Value *CanonicalIV = State.CanonicalIV;
  Type *STy = CanonicalIV->getType();
  IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
  auto VF = State.VF;
  Value *VStart = VF == 1
                      ? CanonicalIV
                      : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
    SmallVector<Constant *, 8> Indices;
    for (unsigned Lane = 0; Lane < VF; ++Lane)
      Indices.push_back(ConstantInt::get(STy, Part * VF + Lane));
    // If VF == 1, there is only one iteration in the loop above, thus the
    // element pushed back into Indices is ConstantInt::get(STy, Part)
    Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices);
    // Add the consecutive indices to the vector value.
    Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
    State.set(getVPValue(), CanonicalVectorIV, Part);
  }
}

void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
                                     VPSlotTracker &SlotTracker) const {
  O << "\"EMIT ";
  getVPValue()->printAsOperand(O, SlotTracker);
  O << " = WIDEN-CANONICAL-INDUCTION";
}

template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);

void VPValue::replaceAllUsesWith(VPValue *New) {
  for (VPUser *User : users())
    for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
      if (User->getOperand(I) == this)
        User->setOperand(I, New);
}

void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
  if (const Value *UV = getUnderlyingValue()) {
    OS << "ir<";
    UV->printAsOperand(OS, false);
    OS << ">";
    return;
  }

  unsigned Slot = Tracker.getSlot(this);
  if (Slot == unsigned(-1))
    OS << "<badref>";
  else
    OS << "vp<%" << Tracker.getSlot(this) << ">";
}

void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
                                          Old2NewTy &Old2New,
                                          InterleavedAccessInfo &IAI) {
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
  for (VPBlockBase *Base : RPOT) {
    visitBlock(Base, Old2New, IAI);
  }
}

void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
                                         InterleavedAccessInfo &IAI) {
  if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
    for (VPRecipeBase &VPI : *VPBB) {
      assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
      auto *VPInst = cast<VPInstruction>(&VPI);
      auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
      auto *IG = IAI.getInterleaveGroup(Inst);
      if (!IG)
        continue;

      auto NewIGIter = Old2New.find(IG);
      if (NewIGIter == Old2New.end())
        Old2New[IG] = new InterleaveGroup<VPInstruction>(
            IG->getFactor(), IG->isReverse(), IG->getAlign());

      if (Inst == IG->getInsertPos())
        Old2New[IG]->setInsertPos(VPInst);

      InterleaveGroupMap[VPInst] = Old2New[IG];
      InterleaveGroupMap[VPInst]->insertMember(
          VPInst, IG->getIndex(Inst),
          Align(IG->isReverse() ? (-1) * int(IG->getFactor())
                                : IG->getFactor()));
    }
  } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    visitRegion(Region, Old2New, IAI);
  else
    llvm_unreachable("Unsupported kind of VPBlock.");
}

VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
                                                 InterleavedAccessInfo &IAI) {
  Old2NewTy Old2New;
  visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
}

void VPSlotTracker::assignSlot(const VPValue *V) {
  assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
  const Value *UV = V->getUnderlyingValue();
  if (UV)
    return;
  const auto *VPI = dyn_cast<VPInstruction>(V);
  if (VPI && !VPI->hasResult())
    return;

  Slots[V] = NextSlot++;
}

void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
  if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
    assignSlots(Region);
  else
    assignSlots(cast<VPBasicBlock>(VPBB));
}

void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
  for (const VPBlockBase *Block : RPOT)
    assignSlots(Block);
}

void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
  for (const VPRecipeBase &Recipe : *VPBB) {
    if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
      assignSlot(VPI);
    else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
      assignSlot(VPIV->getVPValue());
  }
}

void VPSlotTracker::assignSlots(const VPlan &Plan) {

  for (const VPValue *V : Plan.VPExternalDefs)
    assignSlot(V);

  for (auto &E : Plan.Value2VPValue)
    if (!isa<VPInstruction>(E.second))
      assignSlot(E.second);

  for (const VPValue *V : Plan.VPCBVs)
    assignSlot(V);

  if (Plan.BackedgeTakenCount)
    assignSlot(Plan.BackedgeTakenCount);

  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
  for (const VPBlockBase *Block : RPOT)
    assignSlots(Block);
}