Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 * Copyright (c) 2004-2006 Voltaire, Inc. All rights reserved.
 * Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved.
 * Copyright (c) 1996-2003 Intel Corporation. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * Abstract:
 *	This file contains ivector and isvector implementations.
 *
 */

#if HAVE_CONFIG_H
#  include <config.h>
#endif				/* HAVE_CONFIG_H */

#include <stdlib.h>
#include <string.h>
#include <complib/cl_vector.h>

/*
 * Define the maximum size for array pages in an cl_vector_t.
 * This size is in objects, not bytes.
 */
#define SVEC_MAX_PAGE_SIZE 0x1000

/*
 * cl_vector_copy_general
 *
 * Description:
 *	copy operator used when size of the user object doesn't fit one of the
 *	other optimized copy functions.
 *
 * Inputs:
 *	p_src - source for copy
 *
 * Outputs:
 *	p_dest - destination for copy
 *
 * Returns:
 *	None
 *
 */
static void cl_vector_copy_general(OUT void *const p_dest,
				   IN const void *const p_src,
				   IN const size_t size)
{
	memcpy(p_dest, p_src, size);
}

/*
 * cl_vector_copy8
 *
 * Description:
 *	copy operator used when the user structure is only 8 bits long.
 *
 * Inputs:
 *	p_src - source for copy
 *
 * Outputs:
 *	p_dest - destination for copy
 *
 * Returns:
 *	None
 *
 */
static void cl_vector_copy8(OUT void *const p_dest,
			    IN const void *const p_src, IN const size_t size)
{
	CL_ASSERT(size == sizeof(uint8_t));
	UNUSED_PARAM(size);

	*(uint8_t *) p_dest = *(uint8_t *) p_src;
}

/*
 * cl_vector_copy16
 *
 * Description:
 *	copy operator used when the user structure is only 16 bits long.
 *
 * Inputs:
 *	p_src - source for copy
 *
 * Outputs:
 *	p_dest - destination for copy
 *
 * Returns:
 *	None
 *
 */
void cl_vector_copy16(OUT void *const p_dest,
		      IN const void *const p_src, IN const size_t size)
{
	CL_ASSERT(size == sizeof(uint16_t));
	UNUSED_PARAM(size);

	*(uint16_t *) p_dest = *(uint16_t *) p_src;
}

/*
 * cl_vector_copy32
 *
 * Description:
 *	copy operator used when the user structure is only 32 bits long.
 *
 * Inputs:
 *	p_src - source for copy
 *
 * Outputs:
 *	p_dest - destination for copy
 *
 * Returns:
 *	None
 *
 */
void cl_vector_copy32(OUT void *const p_dest,
		      IN const void *const p_src, IN const size_t size)
{
	CL_ASSERT(size == sizeof(uint32_t));
	UNUSED_PARAM(size);

	*(uint32_t *) p_dest = *(uint32_t *) p_src;
}

/*
 * cl_vector_copy64
 *
 * Description:
 *	copy operator used when the user structure is only 64 bits long.
 *
 * Inputs:
 *	p_src - source for copy
 *
 * Outputs:
 *	p_dest - destination for copy
 *
 * Returns:
 *	None
 *
 */
void cl_vector_copy64(OUT void *const p_dest,
		      IN const void *const p_src, IN const size_t size)
{
	CL_ASSERT(size == sizeof(uint64_t));
	UNUSED_PARAM(size);

	*(uint64_t *) p_dest = *(uint64_t *) p_src;
}

void cl_vector_construct(IN cl_vector_t * const p_vector)
{
	CL_ASSERT(p_vector);

	memset(p_vector, 0, sizeof(cl_vector_t));

	p_vector->state = CL_UNINITIALIZED;
}

cl_status_t cl_vector_init(IN cl_vector_t * const p_vector,
			   IN const size_t min_size, IN const size_t grow_size,
			   IN const size_t element_size,
			   IN cl_pfn_vec_init_t pfn_init OPTIONAL,
			   IN cl_pfn_vec_dtor_t pfn_dtor OPTIONAL,
			   IN const void *const context)
{
	cl_status_t status = CL_SUCCESS;

	CL_ASSERT(p_vector);
	CL_ASSERT(element_size);

	cl_vector_construct(p_vector);

	p_vector->grow_size = grow_size;
	p_vector->element_size = element_size;
	p_vector->pfn_init = pfn_init;
	p_vector->pfn_dtor = pfn_dtor;
	p_vector->context = context;

	/*
	 * Try to choose a smart copy operator
	 * someday, we could simply let the users pass one in
	 */
	switch (element_size) {
	case sizeof(uint8_t):
		p_vector->pfn_copy = cl_vector_copy8;
		break;

	case sizeof(uint16_t):
		p_vector->pfn_copy = cl_vector_copy16;
		break;

	case sizeof(uint32_t):
		p_vector->pfn_copy = cl_vector_copy32;
		break;

	case sizeof(uint64_t):
		p_vector->pfn_copy = cl_vector_copy64;
		break;

	default:
		p_vector->pfn_copy = cl_vector_copy_general;
		break;
	}

	/*
	 * Set the state to initialized so that the call to set_size
	 * doesn't assert.
	 */
	p_vector->state = CL_INITIALIZED;

	/* Initialize the allocation list */
	cl_qlist_init(&p_vector->alloc_list);

	/* get the storage needed by the user */
	if (min_size) {
		status = cl_vector_set_size(p_vector, min_size);
		if (status != CL_SUCCESS)
			cl_vector_destroy(p_vector);
	}

	return (status);
}

void cl_vector_destroy(IN cl_vector_t * const p_vector)
{
	size_t i;
	void *p_element;

	CL_ASSERT(p_vector);
	CL_ASSERT(cl_is_state_valid(p_vector->state));

	/* Call the user's destructor for each element in the array. */
	if (p_vector->state == CL_INITIALIZED) {
		if (p_vector->pfn_dtor) {
			for (i = 0; i < p_vector->size; i++) {
				p_element = p_vector->p_ptr_array[i];
				/* Sanity check! */
				CL_ASSERT(p_element);
				p_vector->pfn_dtor(p_element,
						   (void *)p_vector->context);
			}
		}

		/* Deallocate the pages */
		while (!cl_is_qlist_empty(&p_vector->alloc_list))
			free(cl_qlist_remove_head(&p_vector->alloc_list));

		/* Destroy the page vector. */
		if (p_vector->p_ptr_array) {
			free(p_vector->p_ptr_array);
			p_vector->p_ptr_array = NULL;
		}
	}

	p_vector->state = CL_UNINITIALIZED;
}

cl_status_t cl_vector_at(IN const cl_vector_t * const p_vector,
			 IN const size_t index, OUT void *const p_element)
{
	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);

	/* Range check */
	if (index >= p_vector->size)
		return (CL_INVALID_PARAMETER);

	cl_vector_get(p_vector, index, p_element);
	return (CL_SUCCESS);
}

cl_status_t cl_vector_set(IN cl_vector_t * const p_vector,
			  IN const size_t index, IN void *const p_element)
{
	cl_status_t status;
	void *p_dest;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);
	CL_ASSERT(p_element);

	/* Determine if the vector has room for this element. */
	if (index >= p_vector->size) {
		/* Resize to accomodate the given index. */
		status = cl_vector_set_size(p_vector, index + 1);

		/* Check for failure on or before the given index. */
		if ((status != CL_SUCCESS) && (p_vector->size < index))
			return (status);
	}

	/* At this point, the array is guaranteed to be big enough */
	p_dest = cl_vector_get_ptr(p_vector, index);
	/* Sanity check! */
	CL_ASSERT(p_dest);

	/* Copy the data into the array */
	p_vector->pfn_copy(p_dest, p_element, p_vector->element_size);

	return (CL_SUCCESS);
}

cl_status_t cl_vector_set_capacity(IN cl_vector_t * const p_vector,
				   IN const size_t new_capacity)
{
	size_t new_elements;
	size_t alloc_size;
	size_t i;
	cl_list_item_t *p_buf;
	void *p_new_ptr_array;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);

	/* Do we have to do anything here? */
	if (new_capacity <= p_vector->capacity) {
		/* Nope */
		return (CL_SUCCESS);
	}

	/* Allocate our pointer array. */
	p_new_ptr_array = malloc(new_capacity * sizeof(void *));
	if (!p_new_ptr_array)
		return (CL_INSUFFICIENT_MEMORY);
	else
		memset(p_new_ptr_array, 0, new_capacity * sizeof(void *));

	if (p_vector->p_ptr_array) {
		/* Copy the old pointer array into the new. */
		memcpy(p_new_ptr_array, p_vector->p_ptr_array,
		       p_vector->capacity * sizeof(void *));

		/* Free the old pointer array. */
		free(p_vector->p_ptr_array);
	}

	/* Set the new array. */
	p_vector->p_ptr_array = p_new_ptr_array;

	/*
	 * We have to add capacity to the array.  Determine how many
	 * elements to add.
	 */
	new_elements = new_capacity - p_vector->capacity;
	/* Determine the allocation size for the new array elements. */
	alloc_size = new_elements * p_vector->element_size;

	p_buf = (cl_list_item_t *) malloc(alloc_size + sizeof(cl_list_item_t));
	if (!p_buf)
		return (CL_INSUFFICIENT_MEMORY);
	else
		memset(p_buf, 0, alloc_size + sizeof(cl_list_item_t));

	cl_qlist_insert_tail(&p_vector->alloc_list, p_buf);
	/* Advance the buffer pointer past the list item. */
	p_buf++;

	for (i = p_vector->capacity; i < new_capacity; i++) {
		p_vector->p_ptr_array[i] = p_buf;
		/* Move the buffer pointer to the next element. */
		p_buf = (void *)(((uint8_t *) p_buf) + p_vector->element_size);
	}

	/* Update the vector with the new capactity. */
	p_vector->capacity = new_capacity;

	return (CL_SUCCESS);
}

cl_status_t cl_vector_set_size(IN cl_vector_t * const p_vector,
			       IN const size_t size)
{
	cl_status_t status;
	size_t new_capacity;
	size_t index;
	void *p_element;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);

	/* Check to see if the requested size is the same as the existing size. */
	if (size == p_vector->size)
		return (CL_SUCCESS);

	/* Determine if the vector has room for this element. */
	if (size >= p_vector->capacity) {
		if (!p_vector->grow_size)
			return (CL_INSUFFICIENT_MEMORY);

		/* Calculate the new capacity, taking into account the grow size. */
		new_capacity = size;
		if (size % p_vector->grow_size) {
			/* Round up to nearest grow_size boundary. */
			new_capacity += p_vector->grow_size -
			    (size % p_vector->grow_size);
		}

		status = cl_vector_set_capacity(p_vector, new_capacity);
		if (status != CL_SUCCESS)
			return (status);
	}

	/* Are we growing the array and need to invoke an initializer callback? */
	if (size > p_vector->size && p_vector->pfn_init) {
		for (index = p_vector->size; index < size; index++) {
			/* Get a pointer to this element */
			p_element = cl_vector_get_ptr(p_vector, index);

			/* Call the user's initializer and trap failures. */
			status =
			    p_vector->pfn_init(p_element,
					       (void *)p_vector->context);
			if (status != CL_SUCCESS) {
				/* Call the destructor for this object */
				if (p_vector->pfn_dtor)
					p_vector->pfn_dtor(p_element,
							   (void *)p_vector->
							   context);

				/* Return the failure status to the caller. */
				return (status);
			}

			/* The array just grew by one element */
			p_vector->size++;
		}
	} else if (p_vector->pfn_dtor) {
		/* The array is shrinking and there is a destructor to invoke. */
		for (index = size; index < p_vector->size; index++) {
			/* compute the address of the new elements */
			p_element = cl_vector_get_ptr(p_vector, index);
			/* call the user's destructor */
			p_vector->pfn_dtor(p_element,
					   (void *)p_vector->context);
		}
	}

	p_vector->size = size;
	return (CL_SUCCESS);
}

cl_status_t cl_vector_set_min_size(IN cl_vector_t * const p_vector,
				   IN const size_t min_size)
{
	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);

	if (min_size > p_vector->size) {
		/* We have to resize the array */
		return (cl_vector_set_size(p_vector, min_size));
	}

	/* We didn't have to do anything */
	return (CL_SUCCESS);
}

void cl_vector_apply_func(IN const cl_vector_t * const p_vector,
			  IN cl_pfn_vec_apply_t pfn_callback,
			  IN const void *const context)
{
	size_t i;
	void *p_element;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);
	CL_ASSERT(pfn_callback);

	for (i = 0; i < p_vector->size; i++) {
		p_element = cl_vector_get_ptr(p_vector, i);
		pfn_callback(i, p_element, (void *)context);
	}
}

size_t cl_vector_find_from_start(IN const cl_vector_t * const p_vector,
				 IN cl_pfn_vec_find_t pfn_callback,
				 IN const void *const context)
{
	size_t i;
	void *p_element;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);
	CL_ASSERT(pfn_callback);

	for (i = 0; i < p_vector->size; i++) {
		p_element = cl_vector_get_ptr(p_vector, i);
		/* Invoke the callback */
		if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS)
			break;
	}
	return (i);
}

size_t cl_vector_find_from_end(IN const cl_vector_t * const p_vector,
			       IN cl_pfn_vec_find_t pfn_callback,
			       IN const void *const context)
{
	size_t i;
	void *p_element;

	CL_ASSERT(p_vector);
	CL_ASSERT(p_vector->state == CL_INITIALIZED);
	CL_ASSERT(pfn_callback);

	i = p_vector->size;

	while (i) {
		/* Get a pointer to the element in the array. */
		p_element = cl_vector_get_ptr(p_vector, --i);
		CL_ASSERT(p_element);

		/* Invoke the callback for the current element. */
		if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS)
			return (i);
	}

	return (p_vector->size);
}