Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
///////////////////////////////////////////////////////////////////////////////
//
/// \file       index.c
/// \brief      Handling of .xz Indexes and some other Stream information
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "index.h"
#include "stream_flags_common.h"


/// \brief      How many Records to allocate at once
///
/// This should be big enough to avoid making lots of tiny allocations
/// but small enough to avoid too much unused memory at once.
#define INDEX_GROUP_SIZE 512


/// \brief      How many Records can be allocated at once at maximum
#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))


/// \brief      Base structure for index_stream and index_group structures
typedef struct index_tree_node_s index_tree_node;
struct index_tree_node_s {
	/// Uncompressed start offset of this Stream (relative to the
	/// beginning of the file) or Block (relative to the beginning
	/// of the Stream)
	lzma_vli uncompressed_base;

	/// Compressed start offset of this Stream or Block
	lzma_vli compressed_base;

	index_tree_node *parent;
	index_tree_node *left;
	index_tree_node *right;
};


/// \brief      AVL tree to hold index_stream or index_group structures
typedef struct {
	/// Root node
	index_tree_node *root;

	/// Leftmost node. Since the tree will be filled sequentially,
	/// this won't change after the first node has been added to
	/// the tree.
	index_tree_node *leftmost;

	/// The rightmost node in the tree. Since the tree is filled
	/// sequentially, this is always the node where to add the new data.
	index_tree_node *rightmost;

	/// Number of nodes in the tree
	uint32_t count;

} index_tree;


typedef struct {
	lzma_vli uncompressed_sum;
	lzma_vli unpadded_sum;
} index_record;


typedef struct {
	/// Every Record group is part of index_stream.groups tree.
	index_tree_node node;

	/// Number of Blocks in this Stream before this group.
	lzma_vli number_base;

	/// Number of Records that can be put in records[].
	size_t allocated;

	/// Index of the last Record in use.
	size_t last;

	/// The sizes in this array are stored as cumulative sums relative
	/// to the beginning of the Stream. This makes it possible to
	/// use binary search in lzma_index_locate().
	///
	/// Note that the cumulative summing is done specially for
	/// unpadded_sum: The previous value is rounded up to the next
	/// multiple of four before adding the Unpadded Size of the new
	/// Block. The total encoded size of the Blocks in the Stream
	/// is records[last].unpadded_sum in the last Record group of
	/// the Stream.
	///
	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
	/// The total encoded size of these Blocks is 184.
	///
	/// This is a flexible array, because it makes easy to optimize
	/// memory usage in case someone concatenates many Streams that
	/// have only one or few Blocks.
	index_record records[];

} index_group;


typedef struct {
	/// Every index_stream is a node in the tree of Streams.
	index_tree_node node;

	/// Number of this Stream (first one is 1)
	uint32_t number;

	/// Total number of Blocks before this Stream
	lzma_vli block_number_base;

	/// Record groups of this Stream are stored in a tree.
	/// It's a T-tree with AVL-tree balancing. There are
	/// INDEX_GROUP_SIZE Records per node by default.
	/// This keeps the number of memory allocations reasonable
	/// and finding a Record is fast.
	index_tree groups;

	/// Number of Records in this Stream
	lzma_vli record_count;

	/// Size of the List of Records field in this Stream. This is used
	/// together with record_count to calculate the size of the Index
	/// field and thus the total size of the Stream.
	lzma_vli index_list_size;

	/// Stream Flags of this Stream. This is meaningful only if
	/// the Stream Flags have been told us with lzma_index_stream_flags().
	/// Initially stream_flags.version is set to UINT32_MAX to indicate
	/// that the Stream Flags are unknown.
	lzma_stream_flags stream_flags;

	/// Amount of Stream Padding after this Stream. This defaults to
	/// zero and can be set with lzma_index_stream_padding().
	lzma_vli stream_padding;

} index_stream;


struct lzma_index_s {
	/// AVL-tree containing the Stream(s). Often there is just one
	/// Stream, but using a tree keeps lookups fast even when there
	/// are many concatenated Streams.
	index_tree streams;

	/// Uncompressed size of all the Blocks in the Stream(s)
	lzma_vli uncompressed_size;

	/// Total size of all the Blocks in the Stream(s)
	lzma_vli total_size;

	/// Total number of Records in all Streams in this lzma_index
	lzma_vli record_count;

	/// Size of the List of Records field if all the Streams in this
	/// lzma_index were packed into a single Stream (makes it simpler to
	/// take many .xz files and combine them into a single Stream).
	///
	/// This value together with record_count is needed to calculate
	/// Backward Size that is stored into Stream Footer.
	lzma_vli index_list_size;

	/// How many Records to allocate at once in lzma_index_append().
	/// This defaults to INDEX_GROUP_SIZE but can be overridden with
	/// lzma_index_prealloc().
	size_t prealloc;

	/// Bitmask indicating what integrity check types have been used
	/// as set by lzma_index_stream_flags(). The bit of the last Stream
	/// is not included here, since it is possible to change it by
	/// calling lzma_index_stream_flags() again.
	uint32_t checks;
};


static void
index_tree_init(index_tree *tree)
{
	tree->root = NULL;
	tree->leftmost = NULL;
	tree->rightmost = NULL;
	tree->count = 0;
	return;
}


/// Helper for index_tree_end()
static void
index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
		void (*free_func)(void *node, const lzma_allocator *allocator))
{
	// The tree won't ever be very huge, so recursion should be fine.
	// 20 levels in the tree is likely quite a lot already in practice.
	if (node->left != NULL)
		index_tree_node_end(node->left, allocator, free_func);

	if (node->right != NULL)
		index_tree_node_end(node->right, allocator, free_func);

	free_func(node, allocator);
	return;
}


/// Free the memory allocated for a tree. Each node is freed using the
/// given free_func which is either &lzma_free or &index_stream_end.
/// The latter is used to free the Record groups from each index_stream
/// before freeing the index_stream itself.
static void
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
		void (*free_func)(void *node, const lzma_allocator *allocator))
{
	assert(free_func != NULL);

	if (tree->root != NULL)
		index_tree_node_end(tree->root, allocator, free_func);

	return;
}


/// Add a new node to the tree. node->uncompressed_base and
/// node->compressed_base must have been set by the caller already.
static void
index_tree_append(index_tree *tree, index_tree_node *node)
{
	node->parent = tree->rightmost;
	node->left = NULL;
	node->right = NULL;

	++tree->count;

	// Handle the special case of adding the first node.
	if (tree->root == NULL) {
		tree->root = node;
		tree->leftmost = node;
		tree->rightmost = node;
		return;
	}

	// The tree is always filled sequentially.
	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
	assert(tree->rightmost->compressed_base < node->compressed_base);

	// Add the new node after the rightmost node. It's the correct
	// place due to the reason above.
	tree->rightmost->right = node;
	tree->rightmost = node;

	// Balance the AVL-tree if needed. We don't need to keep the balance
	// factors in nodes, because we always fill the tree sequentially,
	// and thus know the state of the tree just by looking at the node
	// count. From the node count we can calculate how many steps to go
	// up in the tree to find the rotation root.
	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
	if (up != 0) {
		// Locate the root node for the rotation.
		up = ctz32(tree->count) + 2;
		do {
			node = node->parent;
		} while (--up > 0);

		// Rotate left using node as the rotation root.
		index_tree_node *pivot = node->right;

		if (node->parent == NULL) {
			tree->root = pivot;
		} else {
			assert(node->parent->right == node);
			node->parent->right = pivot;
		}

		pivot->parent = node->parent;

		node->right = pivot->left;
		if (node->right != NULL)
			node->right->parent = node;

		pivot->left = node;
		node->parent = pivot;
	}

	return;
}


/// Get the next node in the tree. Return NULL if there are no more nodes.
static void *
index_tree_next(const index_tree_node *node)
{
	if (node->right != NULL) {
		node = node->right;
		while (node->left != NULL)
			node = node->left;

		return (void *)(node);
	}

	while (node->parent != NULL && node->parent->right == node)
		node = node->parent;

	return (void *)(node->parent);
}


/// Locate a node that contains the given uncompressed offset. It is
/// caller's job to check that target is not bigger than the uncompressed
/// size of the tree (the last node would be returned in that case still).
static void *
index_tree_locate(const index_tree *tree, lzma_vli target)
{
	const index_tree_node *result = NULL;
	const index_tree_node *node = tree->root;

	assert(tree->leftmost == NULL
			|| tree->leftmost->uncompressed_base == 0);

	// Consecutive nodes may have the same uncompressed_base.
	// We must pick the rightmost one.
	while (node != NULL) {
		if (node->uncompressed_base > target) {
			node = node->left;
		} else {
			result = node;
			node = node->right;
		}
	}

	return (void *)(result);
}


/// Allocate and initialize a new Stream using the given base offsets.
static index_stream *
index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
		uint32_t stream_number, lzma_vli block_number_base,
		const lzma_allocator *allocator)
{
	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
	if (s == NULL)
		return NULL;

	s->node.uncompressed_base = uncompressed_base;
	s->node.compressed_base = compressed_base;
	s->node.parent = NULL;
	s->node.left = NULL;
	s->node.right = NULL;

	s->number = stream_number;
	s->block_number_base = block_number_base;

	index_tree_init(&s->groups);

	s->record_count = 0;
	s->index_list_size = 0;
	s->stream_flags.version = UINT32_MAX;
	s->stream_padding = 0;

	return s;
}


/// Free the memory allocated for a Stream and its Record groups.
static void
index_stream_end(void *node, const lzma_allocator *allocator)
{
	index_stream *s = node;
	index_tree_end(&s->groups, allocator, &lzma_free);
	lzma_free(s, allocator);
	return;
}


static lzma_index *
index_init_plain(const lzma_allocator *allocator)
{
	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
	if (i != NULL) {
		index_tree_init(&i->streams);
		i->uncompressed_size = 0;
		i->total_size = 0;
		i->record_count = 0;
		i->index_list_size = 0;
		i->prealloc = INDEX_GROUP_SIZE;
		i->checks = 0;
	}

	return i;
}


extern LZMA_API(lzma_index *)
lzma_index_init(const lzma_allocator *allocator)
{
	lzma_index *i = index_init_plain(allocator);
	if (i == NULL)
		return NULL;

	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
	if (s == NULL) {
		lzma_free(i, allocator);
		return NULL;
	}

	index_tree_append(&i->streams, &s->node);

	return i;
}


extern LZMA_API(void)
lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
{
	// NOTE: If you modify this function, check also the bottom
	// of lzma_index_cat().
	if (i != NULL) {
		index_tree_end(&i->streams, allocator, &index_stream_end);
		lzma_free(i, allocator);
	}

	return;
}


extern void
lzma_index_prealloc(lzma_index *i, lzma_vli records)
{
	if (records > PREALLOC_MAX)
		records = PREALLOC_MAX;

	i->prealloc = (size_t)(records);
	return;
}


extern LZMA_API(uint64_t)
lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
{
	// This calculates an upper bound that is only a little bit
	// bigger than the exact maximum memory usage with the given
	// parameters.

	// Typical malloc() overhead is 2 * sizeof(void *) but we take
	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
	// instead would give too inaccurate estimate.
	const size_t alloc_overhead = 4 * sizeof(void *);

	// Amount of memory needed for each Stream base structures.
	// We assume that every Stream has at least one Block and
	// thus at least one group.
	const size_t stream_base = sizeof(index_stream)
			+ sizeof(index_group) + 2 * alloc_overhead;

	// Amount of memory needed per group.
	const size_t group_base = sizeof(index_group)
			+ INDEX_GROUP_SIZE * sizeof(index_record)
			+ alloc_overhead;

	// Number of groups. There may actually be more, but that overhead
	// has been taken into account in stream_base already.
	const lzma_vli groups
			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;

	// Memory used by index_stream and index_group structures.
	const uint64_t streams_mem = streams * stream_base;
	const uint64_t groups_mem = groups * group_base;

	// Memory used by the base structure.
	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;

	// Validate the arguments and catch integer overflows.
	// Maximum number of Streams is "only" UINT32_MAX, because
	// that limit is used by the tree containing the Streams.
	const uint64_t limit = UINT64_MAX - index_base;
	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
			|| streams > limit / stream_base
			|| groups > limit / group_base
			|| limit - streams_mem < groups_mem)
		return UINT64_MAX;

	return index_base + streams_mem + groups_mem;
}


extern LZMA_API(uint64_t)
lzma_index_memused(const lzma_index *i)
{
	return lzma_index_memusage(i->streams.count, i->record_count);
}


extern LZMA_API(lzma_vli)
lzma_index_block_count(const lzma_index *i)
{
	return i->record_count;
}


extern LZMA_API(lzma_vli)
lzma_index_stream_count(const lzma_index *i)
{
	return i->streams.count;
}


extern LZMA_API(lzma_vli)
lzma_index_size(const lzma_index *i)
{
	return index_size(i->record_count, i->index_list_size);
}


extern LZMA_API(lzma_vli)
lzma_index_total_size(const lzma_index *i)
{
	return i->total_size;
}


extern LZMA_API(lzma_vli)
lzma_index_stream_size(const lzma_index *i)
{
	// Stream Header + Blocks + Index + Stream Footer
	return LZMA_STREAM_HEADER_SIZE + i->total_size
			+ index_size(i->record_count, i->index_list_size)
			+ LZMA_STREAM_HEADER_SIZE;
}


static lzma_vli
index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
		lzma_vli record_count, lzma_vli index_list_size,
		lzma_vli stream_padding)
{
	// Earlier Streams and Stream Paddings + Stream Header
	// + Blocks + Index + Stream Footer + Stream Padding
	//
	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
	// when this function is used in lzma_index_append().
	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
			+ stream_padding + vli_ceil4(unpadded_sum);
	if (file_size > LZMA_VLI_MAX)
		return LZMA_VLI_UNKNOWN;

	// The same applies here.
	file_size += index_size(record_count, index_list_size);
	if (file_size > LZMA_VLI_MAX)
		return LZMA_VLI_UNKNOWN;

	return file_size;
}


extern LZMA_API(lzma_vli)
lzma_index_file_size(const lzma_index *i)
{
	const index_stream *s = (const index_stream *)(i->streams.rightmost);
	const index_group *g = (const index_group *)(s->groups.rightmost);
	return index_file_size(s->node.compressed_base,
			g == NULL ? 0 : g->records[g->last].unpadded_sum,
			s->record_count, s->index_list_size,
			s->stream_padding);
}


extern LZMA_API(lzma_vli)
lzma_index_uncompressed_size(const lzma_index *i)
{
	return i->uncompressed_size;
}


extern LZMA_API(uint32_t)
lzma_index_checks(const lzma_index *i)
{
	uint32_t checks = i->checks;

	// Get the type of the Check of the last Stream too.
	const index_stream *s = (const index_stream *)(i->streams.rightmost);
	if (s->stream_flags.version != UINT32_MAX)
		checks |= UINT32_C(1) << s->stream_flags.check;

	return checks;
}


extern uint32_t
lzma_index_padding_size(const lzma_index *i)
{
	return (LZMA_VLI_C(4) - index_size_unpadded(
			i->record_count, i->index_list_size)) & 3;
}


extern LZMA_API(lzma_ret)
lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
{
	if (i == NULL || stream_flags == NULL)
		return LZMA_PROG_ERROR;

	// Validate the Stream Flags.
	return_if_error(lzma_stream_flags_compare(
			stream_flags, stream_flags));

	index_stream *s = (index_stream *)(i->streams.rightmost);
	s->stream_flags = *stream_flags;

	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
{
	if (i == NULL || stream_padding > LZMA_VLI_MAX
			|| (stream_padding & 3) != 0)
		return LZMA_PROG_ERROR;

	index_stream *s = (index_stream *)(i->streams.rightmost);

	// Check that the new value won't make the file grow too big.
	const lzma_vli old_stream_padding = s->stream_padding;
	s->stream_padding = 0;
	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
		s->stream_padding = old_stream_padding;
		return LZMA_DATA_ERROR;
	}

	s->stream_padding = stream_padding;
	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
		lzma_vli unpadded_size, lzma_vli uncompressed_size)
{
	// Validate.
	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
			|| unpadded_size > UNPADDED_SIZE_MAX
			|| uncompressed_size > LZMA_VLI_MAX)
		return LZMA_PROG_ERROR;

	index_stream *s = (index_stream *)(i->streams.rightmost);
	index_group *g = (index_group *)(s->groups.rightmost);

	const lzma_vli compressed_base = g == NULL ? 0
			: vli_ceil4(g->records[g->last].unpadded_sum);
	const lzma_vli uncompressed_base = g == NULL ? 0
			: g->records[g->last].uncompressed_sum;
	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
			+ lzma_vli_size(uncompressed_size);

	// Check that the file size will stay within limits.
	if (index_file_size(s->node.compressed_base,
			compressed_base + unpadded_size, s->record_count + 1,
			s->index_list_size + index_list_size_add,
			s->stream_padding) == LZMA_VLI_UNKNOWN)
		return LZMA_DATA_ERROR;

	// The size of the Index field must not exceed the maximum value
	// that can be stored in the Backward Size field.
	if (index_size(i->record_count + 1,
			i->index_list_size + index_list_size_add)
			> LZMA_BACKWARD_SIZE_MAX)
		return LZMA_DATA_ERROR;

	if (g != NULL && g->last + 1 < g->allocated) {
		// There is space in the last group at least for one Record.
		++g->last;
	} else {
		// We need to allocate a new group.
		g = lzma_alloc(sizeof(index_group)
				+ i->prealloc * sizeof(index_record),
				allocator);
		if (g == NULL)
			return LZMA_MEM_ERROR;

		g->last = 0;
		g->allocated = i->prealloc;

		// Reset prealloc so that if the application happens to
		// add new Records, the allocation size will be sane.
		i->prealloc = INDEX_GROUP_SIZE;

		// Set the start offsets of this group.
		g->node.uncompressed_base = uncompressed_base;
		g->node.compressed_base = compressed_base;
		g->number_base = s->record_count + 1;

		// Add the new group to the Stream.
		index_tree_append(&s->groups, &g->node);
	}

	// Add the new Record to the group.
	g->records[g->last].uncompressed_sum
			= uncompressed_base + uncompressed_size;
	g->records[g->last].unpadded_sum
			= compressed_base + unpadded_size;

	// Update the totals.
	++s->record_count;
	s->index_list_size += index_list_size_add;

	i->total_size += vli_ceil4(unpadded_size);
	i->uncompressed_size += uncompressed_size;
	++i->record_count;
	i->index_list_size += index_list_size_add;

	return LZMA_OK;
}


/// Structure to pass info to index_cat_helper()
typedef struct {
	/// Uncompressed size of the destination
	lzma_vli uncompressed_size;

	/// Compressed file size of the destination
	lzma_vli file_size;

	/// Same as above but for Block numbers
	lzma_vli block_number_add;

	/// Number of Streams that were in the destination index before we
	/// started appending new Streams from the source index. This is
	/// used to fix the Stream numbering.
	uint32_t stream_number_add;

	/// Destination index' Stream tree
	index_tree *streams;

} index_cat_info;


/// Add the Stream nodes from the source index to dest using recursion.
/// Simplest iterative traversal of the source tree wouldn't work, because
/// we update the pointers in nodes when moving them to the destination tree.
static void
index_cat_helper(const index_cat_info *info, index_stream *this)
{
	index_stream *left = (index_stream *)(this->node.left);
	index_stream *right = (index_stream *)(this->node.right);

	if (left != NULL)
		index_cat_helper(info, left);

	this->node.uncompressed_base += info->uncompressed_size;
	this->node.compressed_base += info->file_size;
	this->number += info->stream_number_add;
	this->block_number_base += info->block_number_add;
	index_tree_append(info->streams, &this->node);

	if (right != NULL)
		index_cat_helper(info, right);

	return;
}


extern LZMA_API(lzma_ret)
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
		const lzma_allocator *allocator)
{
	const lzma_vli dest_file_size = lzma_index_file_size(dest);

	// Check that we don't exceed the file size limits.
	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
			|| dest->uncompressed_size + src->uncompressed_size
				> LZMA_VLI_MAX)
		return LZMA_DATA_ERROR;

	// Check that the encoded size of the combined lzma_indexes stays
	// within limits. In theory, this should be done only if we know
	// that the user plans to actually combine the Streams and thus
	// construct a single Index (probably rare). However, exceeding
	// this limit is quite theoretical, so we do this check always
	// to simplify things elsewhere.
	{
		const lzma_vli dest_size = index_size_unpadded(
				dest->record_count, dest->index_list_size);
		const lzma_vli src_size = index_size_unpadded(
				src->record_count, src->index_list_size);
		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
			return LZMA_DATA_ERROR;
	}

	// Optimize the last group to minimize memory usage. Allocation has
	// to be done before modifying dest or src.
	{
		index_stream *s = (index_stream *)(dest->streams.rightmost);
		index_group *g = (index_group *)(s->groups.rightmost);
		if (g != NULL && g->last + 1 < g->allocated) {
			assert(g->node.left == NULL);
			assert(g->node.right == NULL);

			index_group *newg = lzma_alloc(sizeof(index_group)
					+ (g->last + 1)
					* sizeof(index_record),
					allocator);
			if (newg == NULL)
				return LZMA_MEM_ERROR;

			newg->node = g->node;
			newg->allocated = g->last + 1;
			newg->last = g->last;
			newg->number_base = g->number_base;

			memcpy(newg->records, g->records, newg->allocated
					* sizeof(index_record));

			if (g->node.parent != NULL) {
				assert(g->node.parent->right == &g->node);
				g->node.parent->right = &newg->node;
			}

			if (s->groups.leftmost == &g->node) {
				assert(s->groups.root == &g->node);
				s->groups.leftmost = &newg->node;
				s->groups.root = &newg->node;
			}

			assert(s->groups.rightmost == &g->node);
			s->groups.rightmost = &newg->node;

			lzma_free(g, allocator);

			// NOTE: newg isn't leaked here because
			// newg == (void *)&newg->node.
		}
	}

	// Add all the Streams from src to dest. Update the base offsets
	// of each Stream from src.
	const index_cat_info info = {
		.uncompressed_size = dest->uncompressed_size,
		.file_size = dest_file_size,
		.stream_number_add = dest->streams.count,
		.block_number_add = dest->record_count,
		.streams = &dest->streams,
	};
	index_cat_helper(&info, (index_stream *)(src->streams.root));

	// Update info about all the combined Streams.
	dest->uncompressed_size += src->uncompressed_size;
	dest->total_size += src->total_size;
	dest->record_count += src->record_count;
	dest->index_list_size += src->index_list_size;
	dest->checks = lzma_index_checks(dest) | src->checks;

	// There's nothing else left in src than the base structure.
	lzma_free(src, allocator);

	return LZMA_OK;
}


/// Duplicate an index_stream.
static index_stream *
index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
{
	// Catch a somewhat theoretical integer overflow.
	if (src->record_count > PREALLOC_MAX)
		return NULL;

	// Allocate and initialize a new Stream.
	index_stream *dest = index_stream_init(src->node.compressed_base,
			src->node.uncompressed_base, src->number,
			src->block_number_base, allocator);
	if (dest == NULL)
		return NULL;

	// Copy the overall information.
	dest->record_count = src->record_count;
	dest->index_list_size = src->index_list_size;
	dest->stream_flags = src->stream_flags;
	dest->stream_padding = src->stream_padding;

	// Return if there are no groups to duplicate.
	if (src->groups.leftmost == NULL)
		return dest;

	// Allocate memory for the Records. We put all the Records into
	// a single group. It's simplest and also tends to make
	// lzma_index_locate() a little bit faster with very big Indexes.
	index_group *destg = lzma_alloc(sizeof(index_group)
			+ src->record_count * sizeof(index_record),
			allocator);
	if (destg == NULL) {
		index_stream_end(dest, allocator);
		return NULL;
	}

	// Initialize destg.
	destg->node.uncompressed_base = 0;
	destg->node.compressed_base = 0;
	destg->number_base = 1;
	destg->allocated = src->record_count;
	destg->last = src->record_count - 1;

	// Go through all the groups in src and copy the Records into destg.
	const index_group *srcg = (const index_group *)(src->groups.leftmost);
	size_t i = 0;
	do {
		memcpy(destg->records + i, srcg->records,
				(srcg->last + 1) * sizeof(index_record));
		i += srcg->last + 1;
		srcg = index_tree_next(&srcg->node);
	} while (srcg != NULL);

	assert(i == destg->allocated);

	// Add the group to the new Stream.
	index_tree_append(&dest->groups, &destg->node);

	return dest;
}


extern LZMA_API(lzma_index *)
lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
{
	// Allocate the base structure (no initial Stream).
	lzma_index *dest = index_init_plain(allocator);
	if (dest == NULL)
		return NULL;

	// Copy the totals.
	dest->uncompressed_size = src->uncompressed_size;
	dest->total_size = src->total_size;
	dest->record_count = src->record_count;
	dest->index_list_size = src->index_list_size;

	// Copy the Streams and the groups in them.
	const index_stream *srcstream
			= (const index_stream *)(src->streams.leftmost);
	do {
		index_stream *deststream = index_dup_stream(
				srcstream, allocator);
		if (deststream == NULL) {
			lzma_index_end(dest, allocator);
			return NULL;
		}

		index_tree_append(&dest->streams, &deststream->node);

		srcstream = index_tree_next(&srcstream->node);
	} while (srcstream != NULL);

	return dest;
}


/// Indexing for lzma_index_iter.internal[]
enum {
	ITER_INDEX,
	ITER_STREAM,
	ITER_GROUP,
	ITER_RECORD,
	ITER_METHOD,
};


/// Values for lzma_index_iter.internal[ITER_METHOD].s
enum {
	ITER_METHOD_NORMAL,
	ITER_METHOD_NEXT,
	ITER_METHOD_LEFTMOST,
};


static void
iter_set_info(lzma_index_iter *iter)
{
	const lzma_index *i = iter->internal[ITER_INDEX].p;
	const index_stream *stream = iter->internal[ITER_STREAM].p;
	const index_group *group = iter->internal[ITER_GROUP].p;
	const size_t record = iter->internal[ITER_RECORD].s;

	// lzma_index_iter.internal must not contain a pointer to the last
	// group in the index, because that may be reallocated by
	// lzma_index_cat().
	if (group == NULL) {
		// There are no groups.
		assert(stream->groups.root == NULL);
		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;

	} else if (i->streams.rightmost != &stream->node
			|| stream->groups.rightmost != &group->node) {
		// The group is not not the last group in the index.
		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;

	} else if (stream->groups.leftmost != &group->node) {
		// The group isn't the only group in the Stream, thus we
		// know that it must have a parent group i.e. it's not
		// the root node.
		assert(stream->groups.root != &group->node);
		assert(group->node.parent->right == &group->node);
		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
		iter->internal[ITER_GROUP].p = group->node.parent;

	} else {
		// The Stream has only one group.
		assert(stream->groups.root == &group->node);
		assert(group->node.parent == NULL);
		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
		iter->internal[ITER_GROUP].p = NULL;
	}

	// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
	// internally.
	iter->stream.number = stream->number;
	iter->stream.block_count = stream->record_count;
	iter->stream.compressed_offset = stream->node.compressed_base;
	iter->stream.uncompressed_offset = stream->node.uncompressed_base;

	// iter->stream.flags will be NULL if the Stream Flags haven't been
	// set with lzma_index_stream_flags().
	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
			? NULL : &stream->stream_flags;
	iter->stream.padding = stream->stream_padding;

	if (stream->groups.rightmost == NULL) {
		// Stream has no Blocks.
		iter->stream.compressed_size = index_size(0, 0)
				+ 2 * LZMA_STREAM_HEADER_SIZE;
		iter->stream.uncompressed_size = 0;
	} else {
		const index_group *g = (const index_group *)(
				stream->groups.rightmost);

		// Stream Header + Stream Footer + Index + Blocks
		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
				+ index_size(stream->record_count,
					stream->index_list_size)
				+ vli_ceil4(g->records[g->last].unpadded_sum);
		iter->stream.uncompressed_size
				= g->records[g->last].uncompressed_sum;
	}

	if (group != NULL) {
		iter->block.number_in_stream = group->number_base + record;
		iter->block.number_in_file = iter->block.number_in_stream
				+ stream->block_number_base;

		iter->block.compressed_stream_offset
				= record == 0 ? group->node.compressed_base
				: vli_ceil4(group->records[
					record - 1].unpadded_sum);
		iter->block.uncompressed_stream_offset
				= record == 0 ? group->node.uncompressed_base
				: group->records[record - 1].uncompressed_sum;

		iter->block.uncompressed_size
				= group->records[record].uncompressed_sum
				- iter->block.uncompressed_stream_offset;
		iter->block.unpadded_size
				= group->records[record].unpadded_sum
				- iter->block.compressed_stream_offset;
		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);

		iter->block.compressed_stream_offset
				+= LZMA_STREAM_HEADER_SIZE;

		iter->block.compressed_file_offset
				= iter->block.compressed_stream_offset
				+ iter->stream.compressed_offset;
		iter->block.uncompressed_file_offset
				= iter->block.uncompressed_stream_offset
				+ iter->stream.uncompressed_offset;
	}

	return;
}


extern LZMA_API(void)
lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
{
	iter->internal[ITER_INDEX].p = i;
	lzma_index_iter_rewind(iter);
	return;
}


extern LZMA_API(void)
lzma_index_iter_rewind(lzma_index_iter *iter)
{
	iter->internal[ITER_STREAM].p = NULL;
	iter->internal[ITER_GROUP].p = NULL;
	iter->internal[ITER_RECORD].s = 0;
	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
	return;
}


extern LZMA_API(lzma_bool)
lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
{
	// Catch unsupported mode values.
	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
		return true;

	const lzma_index *i = iter->internal[ITER_INDEX].p;
	const index_stream *stream = iter->internal[ITER_STREAM].p;
	const index_group *group = NULL;
	size_t record = iter->internal[ITER_RECORD].s;

	// If we are being asked for the next Stream, leave group to NULL
	// so that the rest of the this function thinks that this Stream
	// has no groups and will thus go to the next Stream.
	if (mode != LZMA_INDEX_ITER_STREAM) {
		// Get the pointer to the current group. See iter_set_inf()
		// for explanation.
		switch (iter->internal[ITER_METHOD].s) {
		case ITER_METHOD_NORMAL:
			group = iter->internal[ITER_GROUP].p;
			break;

		case ITER_METHOD_NEXT:
			group = index_tree_next(iter->internal[ITER_GROUP].p);
			break;

		case ITER_METHOD_LEFTMOST:
			group = (const index_group *)(
					stream->groups.leftmost);
			break;
		}
	}

again:
	if (stream == NULL) {
		// We at the beginning of the lzma_index.
		// Locate the first Stream.
		stream = (const index_stream *)(i->streams.leftmost);
		if (mode >= LZMA_INDEX_ITER_BLOCK) {
			// Since we are being asked to return information
			// about the first a Block, skip Streams that have
			// no Blocks.
			while (stream->groups.leftmost == NULL) {
				stream = index_tree_next(&stream->node);
				if (stream == NULL)
					return true;
			}
		}

		// Start from the first Record in the Stream.
		group = (const index_group *)(stream->groups.leftmost);
		record = 0;

	} else if (group != NULL && record < group->last) {
		// The next Record is in the same group.
		++record;

	} else {
		// This group has no more Records or this Stream has
		// no Blocks at all.
		record = 0;

		// If group is not NULL, this Stream has at least one Block
		// and thus at least one group. Find the next group.
		if (group != NULL)
			group = index_tree_next(&group->node);

		if (group == NULL) {
			// This Stream has no more Records. Find the next
			// Stream. If we are being asked to return information
			// about a Block, we skip empty Streams.
			do {
				stream = index_tree_next(&stream->node);
				if (stream == NULL)
					return true;
			} while (mode >= LZMA_INDEX_ITER_BLOCK
					&& stream->groups.leftmost == NULL);

			group = (const index_group *)(
					stream->groups.leftmost);
		}
	}

	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
		// We need to look for the next Block again if this Block
		// is empty.
		if (record == 0) {
			if (group->node.uncompressed_base
					== group->records[0].uncompressed_sum)
				goto again;
		} else if (group->records[record - 1].uncompressed_sum
				== group->records[record].uncompressed_sum) {
			goto again;
		}
	}

	iter->internal[ITER_STREAM].p = stream;
	iter->internal[ITER_GROUP].p = group;
	iter->internal[ITER_RECORD].s = record;

	iter_set_info(iter);

	return false;
}


extern LZMA_API(lzma_bool)
lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
{
	const lzma_index *i = iter->internal[ITER_INDEX].p;

	// If the target is past the end of the file, return immediately.
	if (i->uncompressed_size <= target)
		return true;

	// Locate the Stream containing the target offset.
	const index_stream *stream = index_tree_locate(&i->streams, target);
	assert(stream != NULL);
	target -= stream->node.uncompressed_base;

	// Locate the group containing the target offset.
	const index_group *group = index_tree_locate(&stream->groups, target);
	assert(group != NULL);

	// Use binary search to locate the exact Record. It is the first
	// Record whose uncompressed_sum is greater than target.
	// This is because we want the rightmost Record that fullfills the
	// search criterion. It is possible that there are empty Blocks;
	// we don't want to return them.
	size_t left = 0;
	size_t right = group->last;

	while (left < right) {
		const size_t pos = left + (right - left) / 2;
		if (group->records[pos].uncompressed_sum <= target)
			left = pos + 1;
		else
			right = pos;
	}

	iter->internal[ITER_STREAM].p = stream;
	iter->internal[ITER_GROUP].p = group;
	iter->internal[ITER_RECORD].s = left;

	iter_set_info(iter);

	return false;
}