Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*-
 * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

/*
 * Allwinner thermal sensor controller
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/reboot.h>
#include <sys/module.h>
#include <sys/cpu.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>

#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/nvmem/nvmem.h>

#include <arm/allwinner/aw_sid.h>

#include "cpufreq_if.h"
#include "nvmem_if.h"

#define	THS_CTRL0		0x00
#define	THS_CTRL1		0x04
#define	 ADC_CALI_EN		(1 << 17)
#define	THS_CTRL2		0x40
#define	 SENSOR_ACQ1_SHIFT	16
#define	 SENSOR2_EN		(1 << 2)
#define	 SENSOR1_EN		(1 << 1)
#define	 SENSOR0_EN		(1 << 0)
#define	THS_INTC		0x44
#define	 THS_THERMAL_PER_SHIFT	12
#define	THS_INTS		0x48
#define	 THS2_DATA_IRQ_STS	(1 << 10)
#define	 THS1_DATA_IRQ_STS	(1 << 9)
#define	 THS0_DATA_IRQ_STS	(1 << 8)
#define	 SHUT_INT2_STS		(1 << 6)
#define	 SHUT_INT1_STS		(1 << 5)
#define	 SHUT_INT0_STS		(1 << 4)
#define	 ALARM_INT2_STS		(1 << 2)
#define	 ALARM_INT1_STS		(1 << 1)
#define	 ALARM_INT0_STS		(1 << 0)
#define	THS_ALARM0_CTRL		0x50
#define	 ALARM_T_HOT_MASK	0xfff
#define	 ALARM_T_HOT_SHIFT	16
#define	 ALARM_T_HYST_MASK	0xfff
#define	 ALARM_T_HYST_SHIFT	0
#define	THS_SHUTDOWN0_CTRL	0x60
#define	 SHUT_T_HOT_MASK	0xfff
#define	 SHUT_T_HOT_SHIFT	16
#define	THS_FILTER		0x70
#define	THS_CALIB0		0x74
#define	THS_CALIB1		0x78
#define	THS_DATA0		0x80
#define	THS_DATA1		0x84
#define	THS_DATA2		0x88
#define	 DATA_MASK		0xfff

#define	A83T_CLK_RATE		24000000
#define	A83T_ADC_ACQUIRE_TIME	23	/* 24Mhz/(23 + 1) = 1us */
#define	A83T_THERMAL_PER	1	/* 4096 * (1 + 1) / 24Mhz = 341 us */
#define	A83T_FILTER		0x5	/* Filter enabled, avg of 4 */
#define	A83T_TEMP_BASE		2719000
#define	A83T_TEMP_MUL		1000
#define	A83T_TEMP_DIV		14186

#define	A64_CLK_RATE		4000000
#define	A64_ADC_ACQUIRE_TIME	400	/* 4Mhz/(400 + 1) = 100 us */
#define	A64_THERMAL_PER		24	/* 4096 * (24 + 1) / 4Mhz = 25.6 ms */
#define	A64_FILTER		0x6	/* Filter enabled, avg of 8 */
#define	A64_TEMP_BASE		2170000
#define	A64_TEMP_MUL		1000
#define	A64_TEMP_DIV		8560

#define	H3_CLK_RATE		4000000
#define	H3_ADC_ACQUIRE_TIME	0x3f
#define	H3_THERMAL_PER		401
#define	H3_FILTER		0x6	/* Filter enabled, avg of 8 */
#define	H3_TEMP_BASE		217
#define	H3_TEMP_MUL		1000
#define	H3_TEMP_DIV		8253
#define	H3_TEMP_MINUS		1794000
#define	H3_INIT_ALARM		90	/* degC */
#define	H3_INIT_SHUT		105	/* degC */

#define	H5_CLK_RATE		24000000
#define	H5_ADC_ACQUIRE_TIME	479	/* 24Mhz/479 = 20us */
#define	H5_THERMAL_PER		58	/* 4096 * (58 + 1) / 24Mhz = 10ms */
#define	H5_FILTER		0x6	/* Filter enabled, avg of 8 */
#define	H5_TEMP_BASE		233832448
#define	H5_TEMP_MUL		124885
#define	H5_TEMP_DIV		20
#define	H5_TEMP_BASE_CPU	271581184
#define	H5_TEMP_MUL_CPU		152253
#define	H5_TEMP_BASE_GPU	289406976
#define	H5_TEMP_MUL_GPU		166724
#define	H5_INIT_CPU_ALARM	80	/* degC */
#define	H5_INIT_CPU_SHUT	96	/* degC */
#define	H5_INIT_GPU_ALARM	84	/* degC */
#define	H5_INIT_GPU_SHUT	100	/* degC */

#define	TEMP_C_TO_K		273
#define	SENSOR_ENABLE_ALL	(SENSOR0_EN|SENSOR1_EN|SENSOR2_EN)
#define	SHUT_INT_ALL		(SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS)
#define	ALARM_INT_ALL		(ALARM_INT0_STS)

#define	MAX_SENSORS	3
#define	MAX_CF_LEVELS	64

#define	THROTTLE_ENABLE_DEFAULT	1

/* Enable thermal throttling */
static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT;
TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable);

struct aw_thermal_sensor {
	const char		*name;
	const char		*desc;
	int			init_alarm;
	int			init_shut;
};

struct aw_thermal_config {
	struct aw_thermal_sensor	sensors[MAX_SENSORS];
	int				nsensors;
	uint64_t			clk_rate;
	uint32_t			adc_acquire_time;
	int				adc_cali_en;
	uint32_t			filter;
	uint32_t			thermal_per;
	int				(*to_temp)(uint32_t, int);
	uint32_t			(*to_reg)(int, int);
	int				temp_base;
	int				temp_mul;
	int				temp_div;
	int				calib0, calib1;
	uint32_t			calib0_mask, calib1_mask;
};

static int
a83t_to_temp(uint32_t val, int sensor)
{
	return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV);
}

static const struct aw_thermal_config a83t_config = {
	.nsensors = 3,
	.sensors = {
		[0] = {
			.name = "cluster0",
			.desc = "CPU cluster 0 temperature",
		},
		[1] = {
			.name = "cluster1",
			.desc = "CPU cluster 1 temperature",
		},
		[2] = {
			.name = "gpu",
			.desc = "GPU temperature",
		},
	},
	.clk_rate = A83T_CLK_RATE,
	.adc_acquire_time = A83T_ADC_ACQUIRE_TIME,
	.adc_cali_en = 1,
	.filter = A83T_FILTER,
	.thermal_per = A83T_THERMAL_PER,
	.to_temp = a83t_to_temp,
	.calib0_mask = 0xffffffff,
	.calib1_mask = 0xffff,
};

static int
a64_to_temp(uint32_t val, int sensor)
{
	return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV);
}

static const struct aw_thermal_config a64_config = {
	.nsensors = 3,
	.sensors = {
		[0] = {
			.name = "cpu",
			.desc = "CPU temperature",
		},
		[1] = {
			.name = "gpu1",
			.desc = "GPU temperature 1",
		},
		[2] = {
			.name = "gpu2",
			.desc = "GPU temperature 2",
		},
	},
	.clk_rate = A64_CLK_RATE,
	.adc_acquire_time = A64_ADC_ACQUIRE_TIME,
	.adc_cali_en = 1,
	.filter = A64_FILTER,
	.thermal_per = A64_THERMAL_PER,
	.to_temp = a64_to_temp,
	.calib0_mask = 0xffffffff,
	.calib1_mask = 0xffff,
};

static int
h3_to_temp(uint32_t val, int sensor)
{
	return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV));
}

static uint32_t
h3_to_reg(int val, int sensor)
{
	return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL);
}

static const struct aw_thermal_config h3_config = {
	.nsensors = 1,
	.sensors = {
		[0] = {
			.name = "cpu",
			.desc = "CPU temperature",
			.init_alarm = H3_INIT_ALARM,
			.init_shut = H3_INIT_SHUT,
		},
	},
	.clk_rate = H3_CLK_RATE,
	.adc_acquire_time = H3_ADC_ACQUIRE_TIME,
	.adc_cali_en = 1,
	.filter = H3_FILTER,
	.thermal_per = H3_THERMAL_PER,
	.to_temp = h3_to_temp,
	.to_reg = h3_to_reg,
	.calib0_mask = 0xffffffff,
};

static int
h5_to_temp(uint32_t val, int sensor)
{
	int tmp;

	/* Temp is lower than 70 degrees */
	if (val > 0x500) {
		tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL);
		tmp >>= H5_TEMP_DIV;
		return (tmp);
	}

	if (sensor == 0)
		tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU);
	else if (sensor == 1)
		tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU);
	else {
		printf("Unknown sensor %d\n", sensor);
		return (val);
	}

	tmp >>= H5_TEMP_DIV;
	return (tmp);
}

static uint32_t
h5_to_reg(int val, int sensor)
{
	int tmp;

	if (val < 70) {
		tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV);
		tmp /= H5_TEMP_MUL;
	} else {
		if (sensor == 0) {
			tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV);
			tmp /= H5_TEMP_MUL_CPU;
		} else if (sensor == 1) {
			tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV);
			tmp /= H5_TEMP_MUL_GPU;
		} else {
			printf("Unknown sensor %d\n", sensor);
			return (val);
		}
	}

	return ((uint32_t)tmp);
}

static const struct aw_thermal_config h5_config = {
	.nsensors = 2,
	.sensors = {
		[0] = {
			.name = "cpu",
			.desc = "CPU temperature",
			.init_alarm = H5_INIT_CPU_ALARM,
			.init_shut = H5_INIT_CPU_SHUT,
		},
		[1] = {
			.name = "gpu",
			.desc = "GPU temperature",
			.init_alarm = H5_INIT_GPU_ALARM,
			.init_shut = H5_INIT_GPU_SHUT,
		},
	},
	.clk_rate = H5_CLK_RATE,
	.adc_acquire_time = H5_ADC_ACQUIRE_TIME,
	.filter = H5_FILTER,
	.thermal_per = H5_THERMAL_PER,
	.to_temp = h5_to_temp,
	.to_reg = h5_to_reg,
	.calib0_mask = 0xffffffff,
};

static struct ofw_compat_data compat_data[] = {
	{ "allwinner,sun8i-a83t-ths",	(uintptr_t)&a83t_config },
	{ "allwinner,sun8i-h3-ths",	(uintptr_t)&h3_config },
	{ "allwinner,sun50i-a64-ths",	(uintptr_t)&a64_config },
	{ "allwinner,sun50i-h5-ths",	(uintptr_t)&h5_config },
	{ NULL,				(uintptr_t)NULL }
};

#define	THS_CONF(d)		\
	(void *)ofw_bus_search_compatible((d), compat_data)->ocd_data

struct aw_thermal_softc {
	device_t			dev;
	struct resource			*res[2];
	struct aw_thermal_config	*conf;

	struct task			cf_task;
	int				throttle;
	int				min_freq;
	struct cf_level			levels[MAX_CF_LEVELS];
	eventhandler_tag		cf_pre_tag;

	clk_t				clk_apb;
	clk_t				clk_ths;
};

static struct resource_spec aw_thermal_spec[] = {
	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
	{ -1, 0 }
};

#define	RD4(sc, reg)		bus_read_4((sc)->res[0], (reg))
#define	WR4(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))

static int
aw_thermal_init(struct aw_thermal_softc *sc)
{
	phandle_t node;
	uint32_t calib[2];
	int error;

	node = ofw_bus_get_node(sc->dev);
	if (nvmem_get_cell_len(node, "calibration") > sizeof(calib)) {
		device_printf(sc->dev, "calibration nvmem cell is too large\n");
		return (ENXIO);
	}
	error = nvmem_read_cell_by_name(node, "calibration",
	    (void *)&calib, nvmem_get_cell_len(node, "calibration"));
	/* Read calibration settings from EFUSE */
	if (error != 0) {
		device_printf(sc->dev, "Cannot read THS efuse\n");
		return (error);
	}

	calib[0] &= sc->conf->calib0_mask;
	calib[1] &= sc->conf->calib1_mask;

	/* Write calibration settings to thermal controller */
	if (calib[0] != 0)
		WR4(sc, THS_CALIB0, calib[0]);
	if (calib[1] != 0)
		WR4(sc, THS_CALIB1, calib[1]);

	/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */
	WR4(sc, THS_CTRL1, ADC_CALI_EN);
	WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time);
	WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT);

	/* Set thermal period */
	WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT);

	/* Enable average filter */
	WR4(sc, THS_FILTER, sc->conf->filter);

	/* Enable interrupts */
	WR4(sc, THS_INTS, RD4(sc, THS_INTS));
	WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL);

	/* Enable sensors */
	WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL);

	return (0);
}

static int
aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor)
{
	uint32_t val;

	val = RD4(sc, THS_DATA0 + (sensor * 4));

	return (sc->conf->to_temp(val, sensor));
}

static int
aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor)
{
	uint32_t val;

	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
	val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK;

	return (sc->conf->to_temp(val, sensor));
}

static void
aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp)
{
	uint32_t val;

	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
	val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT);
	val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT);
	WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val);
}

static int
aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor)
{
	uint32_t val;

	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
	val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK;

	return (sc->conf->to_temp(val, sensor));
}

static int
aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor)
{
	uint32_t val;

	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
	val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK;

	return (sc->conf->to_temp(val, sensor));
}

static void
aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp)
{
	uint32_t val;

	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
	val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT);
	val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT);
	WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val);
}

static int
aw_thermal_sysctl(SYSCTL_HANDLER_ARGS)
{
	struct aw_thermal_softc *sc;
	int sensor, val;

	sc = arg1;
	sensor = arg2;

	val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K;

	return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
}

static void
aw_thermal_throttle(struct aw_thermal_softc *sc, int enable)
{
	device_t cf_dev;
	int count, error;

	if (enable == sc->throttle)
		return;

	if (enable != 0) {
		/* Set the lowest available frequency */
		cf_dev = devclass_get_device(devclass_find("cpufreq"), 0);
		if (cf_dev == NULL)
			return;
		count = MAX_CF_LEVELS;
		error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count);
		if (error != 0 || count == 0)
			return;
		sc->min_freq = sc->levels[count - 1].total_set.freq;
		error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1],
		    CPUFREQ_PRIO_USER);
		if (error != 0)
			return;
	}

	sc->throttle = enable;
}

static void
aw_thermal_cf_task(void *arg, int pending)
{
	struct aw_thermal_softc *sc;

	sc = arg;

	aw_thermal_throttle(sc, 1);
}

static void
aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status)
{
	struct aw_thermal_softc *sc;
	int temp_cur, temp_alarm;

	sc = arg;

	if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 ||
	    level->total_set.freq == sc->min_freq)
		return;

	temp_cur = aw_thermal_gettemp(sc, 0);
	temp_alarm = aw_thermal_getalarm(sc, 0);

	if (temp_cur < temp_alarm)
		aw_thermal_throttle(sc, 0);
	else
		*status = ENXIO;
}

static void
aw_thermal_intr(void *arg)
{
	struct aw_thermal_softc *sc;
	device_t dev;
	uint32_t ints;

	dev = arg;
	sc = device_get_softc(dev);

	ints = RD4(sc, THS_INTS);
	WR4(sc, THS_INTS, ints);

	if ((ints & SHUT_INT_ALL) != 0) {
		device_printf(dev,
		    "WARNING - current temperature exceeds safe limits\n");
		shutdown_nice(RB_POWEROFF);
	}

	if ((ints & ALARM_INT_ALL) != 0)
		taskqueue_enqueue(taskqueue_thread, &sc->cf_task);
}

static int
aw_thermal_probe(device_t dev)
{
	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (THS_CONF(dev) == NULL)
		return (ENXIO);

	device_set_desc(dev, "Allwinner Thermal Sensor Controller");
	return (BUS_PROBE_DEFAULT);
}

static int
aw_thermal_attach(device_t dev)
{
	struct aw_thermal_softc *sc;
	hwreset_t rst;
	int i, error;
	void *ih;

	sc = device_get_softc(dev);
	sc->dev = dev;
	rst = NULL;
	ih = NULL;

	sc->conf = THS_CONF(dev);
	TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc);

	if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) {
		device_printf(dev, "cannot allocate resources for device\n");
		return (ENXIO);
	}

	if (clk_get_by_ofw_name(dev, 0, "bus", &sc->clk_apb) == 0) {
		error = clk_enable(sc->clk_apb);
		if (error != 0) {
			device_printf(dev, "cannot enable apb clock\n");
			goto fail;
		}
	}

	if (clk_get_by_ofw_name(dev, 0, "mod", &sc->clk_ths) == 0) {
		error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0);
		if (error != 0) {
			device_printf(dev, "cannot set ths clock rate\n");
			goto fail;
		}
		error = clk_enable(sc->clk_ths);
		if (error != 0) {
			device_printf(dev, "cannot enable ths clock\n");
			goto fail;
		}
	}

	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
		error = hwreset_deassert(rst);
		if (error != 0) {
			device_printf(dev, "cannot de-assert reset\n");
			goto fail;
		}
	}

	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
	    NULL, aw_thermal_intr, dev, &ih);
	if (error != 0) {
		device_printf(dev, "cannot setup interrupt handler\n");
		goto fail;
	}

	for (i = 0; i < sc->conf->nsensors; i++) {
		if (sc->conf->sensors[i].init_alarm > 0)
			aw_thermal_setalarm(sc, i,
			    sc->conf->sensors[i].init_alarm);
		if (sc->conf->sensors[i].init_shut > 0)
			aw_thermal_setshut(sc, i,
			    sc->conf->sensors[i].init_shut);
	}

	if (aw_thermal_init(sc) != 0)
		goto fail;

	for (i = 0; i < sc->conf->nsensors; i++)
		SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
		    OID_AUTO, sc->conf->sensors[i].name,
		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
		    sc, i, aw_thermal_sysctl, "IK0",
		    sc->conf->sensors[i].desc);

	if (bootverbose)
		for (i = 0; i < sc->conf->nsensors; i++) {
			device_printf(dev,
			    "%s: alarm %dC hyst %dC shut %dC\n",
			    sc->conf->sensors[i].name,
			    aw_thermal_getalarm(sc, i),
			    aw_thermal_gethyst(sc, i),
			    aw_thermal_getshut(sc, i));
		}

	sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
	    aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST);

	return (0);

fail:
	if (ih != NULL)
		bus_teardown_intr(dev, sc->res[1], ih);
	if (rst != NULL)
		hwreset_release(rst);
	if (sc->clk_apb != NULL)
		clk_release(sc->clk_apb);
	if (sc->clk_ths != NULL)
		clk_release(sc->clk_ths);
	bus_release_resources(dev, aw_thermal_spec, sc->res);

	return (ENXIO);
}

static device_method_t aw_thermal_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		aw_thermal_probe),
	DEVMETHOD(device_attach,	aw_thermal_attach),

	DEVMETHOD_END
};

static driver_t aw_thermal_driver = {
	"aw_thermal",
	aw_thermal_methods,
	sizeof(struct aw_thermal_softc),
};

static devclass_t aw_thermal_devclass;

DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, aw_thermal_devclass,
    0, 0);
MODULE_VERSION(aw_thermal, 1);
MODULE_DEPEND(aw_thermal, aw_sid, 1, 1, 1);
SIMPLEBUS_PNP_INFO(compat_data);