Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*-
 * Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * i.MX6 Synchronous Serial Interface (SSI)
 *
 * Chapter 61, i.MX 6Dual/6Quad Applications Processor Reference Manual,
 * Rev. 1, 04/2013
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <sys/timetc.h>

#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>
#include <mixer_if.h>

#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>

#include <arm/freescale/imx/imx6_sdma.h>
#include <arm/freescale/imx/imx6_anatopvar.h>
#include <arm/freescale/imx/imx_ccmvar.h>

#define	READ4(_sc, _reg)	\
	bus_space_read_4(_sc->bst, _sc->bsh, _reg)
#define	WRITE4(_sc, _reg, _val)	\
	bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val)

#define	SSI_NCHANNELS	1
#define	DMAS_TOTAL	8

/* i.MX6 SSI registers */

#define	SSI_STX0	0x00 /* Transmit Data Register n */
#define	SSI_STX1	0x04 /* Transmit Data Register n */
#define	SSI_SRX0	0x08 /* Receive Data Register n */
#define	SSI_SRX1	0x0C /* Receive Data Register n */
#define	SSI_SCR		0x10 /* Control Register */
#define	 SCR_I2S_MODE_S	5    /* I2S Mode Select. */
#define	 SCR_I2S_MODE_M	0x3
#define	 SCR_SYN	(1 << 4)
#define	 SCR_NET       	(1 << 3)  /* Network mode */
#define	 SCR_RE		(1 << 2)  /* Receive Enable. */
#define	 SCR_TE		(1 << 1)  /* Transmit Enable. */
#define	 SCR_SSIEN	(1 << 0)  /* SSI Enable */
#define	SSI_SISR	0x14      /* Interrupt Status Register */
#define	SSI_SIER	0x18      /* Interrupt Enable Register */
#define	 SIER_RDMAE	(1 << 22) /* Receive DMA Enable. */
#define	 SIER_RIE	(1 << 21) /* Receive Interrupt Enable. */
#define	 SIER_TDMAE	(1 << 20) /* Transmit DMA Enable. */
#define	 SIER_TIE	(1 << 19) /* Transmit Interrupt Enable. */
#define	 SIER_TDE0IE	(1 << 12) /* Transmit Data Register Empty 0. */
#define	 SIER_TUE0IE	(1 << 8)  /* Transmitter Underrun Error 0. */
#define	 SIER_TFE0IE	(1 << 0)  /* Transmit FIFO Empty 0 IE. */
#define	SSI_STCR	0x1C	  /* Transmit Configuration Register */
#define	 STCR_TXBIT0	(1 << 9)  /* Transmit Bit 0 shift MSB/LSB */
#define	 STCR_TFEN1	(1 << 8)  /* Transmit FIFO Enable 1. */
#define	 STCR_TFEN0	(1 << 7)  /* Transmit FIFO Enable 0. */
#define	 STCR_TFDIR	(1 << 6)  /* Transmit Frame Direction. */
#define	 STCR_TXDIR	(1 << 5)  /* Transmit Clock Direction. */
#define	 STCR_TSHFD	(1 << 4)  /* Transmit Shift Direction. */
#define	 STCR_TSCKP	(1 << 3)  /* Transmit Clock Polarity. */
#define	 STCR_TFSI	(1 << 2)  /* Transmit Frame Sync Invert. */
#define	 STCR_TFSL	(1 << 1)  /* Transmit Frame Sync Length. */
#define	 STCR_TEFS	(1 << 0)  /* Transmit Early Frame Sync. */
#define	SSI_SRCR	0x20      /* Receive Configuration Register */
#define	SSI_STCCR	0x24      /* Transmit Clock Control Register */
#define	 STCCR_DIV2	(1 << 18) /* Divide By 2. */
#define	 STCCR_PSR	(1 << 17) /* Divide clock by 8. */
#define	 WL3_WL0_S	13
#define	 WL3_WL0_M	0xf
#define	 DC4_DC0_S	8
#define	 DC4_DC0_M	0x1f
#define	 PM7_PM0_S	0
#define	 PM7_PM0_M	0xff
#define	SSI_SRCCR	0x28	/* Receive Clock Control Register */
#define	SSI_SFCSR	0x2C	/* FIFO Control/Status Register */
#define	 SFCSR_RFWM1_S	20	/* Receive FIFO Empty WaterMark 1 */
#define	 SFCSR_RFWM1_M	0xf
#define	 SFCSR_TFWM1_S	16	/* Transmit FIFO Empty WaterMark 1 */
#define	 SFCSR_TFWM1_M	0xf
#define	 SFCSR_RFWM0_S	4	/* Receive FIFO Empty WaterMark 0 */
#define	 SFCSR_RFWM0_M	0xf
#define	 SFCSR_TFWM0_S	0	/* Transmit FIFO Empty WaterMark 0 */
#define	 SFCSR_TFWM0_M	0xf
#define	SSI_SACNT	0x38	/* AC97 Control Register */
#define	SSI_SACADD	0x3C	/* AC97 Command Address Register */
#define	SSI_SACDAT	0x40	/* AC97 Command Data Register */
#define	SSI_SATAG	0x44	/* AC97 Tag Register */
#define	SSI_STMSK	0x48	/* Transmit Time Slot Mask Register */
#define	SSI_SRMSK	0x4C	/* Receive Time Slot Mask Register */
#define	SSI_SACCST	0x50	/* AC97 Channel Status Register */
#define	SSI_SACCEN	0x54	/* AC97 Channel Enable Register */
#define	SSI_SACCDIS	0x58	/* AC97 Channel Disable Register */

static MALLOC_DEFINE(M_SSI, "ssi", "ssi audio");

uint32_t ssi_dma_intr(void *arg, int chn);

struct ssi_rate {
	uint32_t speed;
	uint32_t mfi; /* PLL4 Multiplication Factor Integer */
	uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
	uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
	/* More dividers to configure can be added here */
};

static struct ssi_rate rate_map[] = {
	{ 192000, 49, 152, 1000 }, /* PLL4 49.152 Mhz */
	/* TODO: add more frequences */
	{ 0, 0 },
};

/*
 *  i.MX6 example bit clock formula
 *
 *  BCLK = 2 channels * 192000 hz * 24 bit = 9216000 hz = 
 *     (24000000 * (49 + 152/1000.0) / 4 / 4 / 2 / 2 / 2 / 1 / 1)
 *             ^     ^     ^      ^    ^   ^   ^   ^   ^   ^   ^
 *             |     |     |      |    |   |   |   |   |   |   |
 *  Fref ------/     |     |      |    |   |   |   |   |   |   |
 *  PLL4 div select -/     |      |    |   |   |   |   |   |   |
 *  PLL4 num --------------/      |    |   |   |   |   |   |   |
 *  PLL4 denom -------------------/    |   |   |   |   |   |   |
 *  PLL4 post div ---------------------/   |   |   |   |   |   |
 *  CCM ssi pre div (CCM_CS1CDR) ----------/   |   |   |   |   |
 *  CCM ssi post div (CCM_CS1CDR) -------------/   |   |   |   |
 *  SSI PM7_PM0_S ---------------------------------/   |   |   |
 *  SSI Fixed divider ---------------------------------/   |   |
 *  SSI DIV2 ----------------------------------------------/   |
 *  SSI PSR (prescaler /1 or /8) ------------------------------/
 *
 *  MCLK (Master clock) depends on DAC, usually BCLK * 4
 */

struct sc_info {
	struct resource		*res[2];
	bus_space_tag_t		bst;
	bus_space_handle_t	bsh;
	device_t		dev;
	struct mtx		*lock;
	void			*ih;
	int			pos;
	int			dma_size;
	bus_dma_tag_t		dma_tag;
	bus_dmamap_t		dma_map;
	bus_addr_t		buf_base_phys;
	uint32_t		*buf_base;
	struct sdma_conf	*conf;
	struct ssi_rate		*sr;
	struct sdma_softc	*sdma_sc;
	uint32_t		sdma_ev_rx;
	uint32_t		sdma_ev_tx;
	int			sdma_channel;
};

/* Channel registers */
struct sc_chinfo {
	struct snd_dbuf		*buffer;
	struct pcm_channel	*channel;
	struct sc_pcminfo	*parent;

	/* Channel information */
	uint32_t	dir;
	uint32_t	format;

	/* Flags */
	uint32_t	run;
};

/* PCM device private data */
struct sc_pcminfo {
	device_t		dev;
	uint32_t		(*ih)(struct sc_pcminfo *scp);
	uint32_t		chnum;
	struct sc_chinfo	chan[SSI_NCHANNELS];
	struct sc_info		*sc;
};

static struct resource_spec ssi_spec[] = {
	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
	{ -1, 0 }
};

static int setup_dma(struct sc_pcminfo *scp);
static void setup_ssi(struct sc_info *);
static void ssi_configure_clock(struct sc_info *);

/*
 * Mixer interface.
 */

static int
ssimixer_init(struct snd_mixer *m)
{
	struct sc_pcminfo *scp;
	struct sc_info *sc;
	int mask;

	scp = mix_getdevinfo(m);
	sc = scp->sc;

	if (sc == NULL)
		return -1;

	mask = SOUND_MASK_PCM;
	mask |= SOUND_MASK_VOLUME;

	snd_mtxlock(sc->lock);
	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
	mix_setdevs(m, mask);
	snd_mtxunlock(sc->lock);

	return (0);
}

static int
ssimixer_set(struct snd_mixer *m, unsigned dev,
    unsigned left, unsigned right)
{
	struct sc_pcminfo *scp;

	scp = mix_getdevinfo(m);

	/* Here we can configure hardware volume on our DAC */

#if 1
	device_printf(scp->dev, "ssimixer_set() %d %d\n",
	    left, right);
#endif

	return (0);
}

static kobj_method_t ssimixer_methods[] = {
	KOBJMETHOD(mixer_init,      ssimixer_init),
	KOBJMETHOD(mixer_set,       ssimixer_set),
	KOBJMETHOD_END
};
MIXER_DECLARE(ssimixer);

/*
 * Channel interface.
 */

static void *
ssichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
    struct pcm_channel *c, int dir)
{
	struct sc_pcminfo *scp;
	struct sc_chinfo *ch;
	struct sc_info *sc;

	scp = (struct sc_pcminfo *)devinfo;
	sc = scp->sc;

	snd_mtxlock(sc->lock);
	ch = &scp->chan[0];
	ch->dir = dir;
	ch->run = 0;
	ch->buffer = b;
	ch->channel = c;
	ch->parent = scp;
	snd_mtxunlock(sc->lock);

	if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
		device_printf(scp->dev, "Can't setup sndbuf.\n");
		return NULL;
	}

	return ch;
}

static int
ssichan_free(kobj_t obj, void *data)
{
	struct sc_chinfo *ch = data;
	struct sc_pcminfo *scp = ch->parent;
	struct sc_info *sc = scp->sc;

#if 0
	device_printf(scp->dev, "ssichan_free()\n");
#endif

	snd_mtxlock(sc->lock);
	/* TODO: free channel buffer */
	snd_mtxunlock(sc->lock);

	return (0);
}

static int
ssichan_setformat(kobj_t obj, void *data, uint32_t format)
{
	struct sc_chinfo *ch = data;

	ch->format = format;

	return (0);
}

static uint32_t
ssichan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
	struct sc_pcminfo *scp;
	struct sc_chinfo *ch;
	struct ssi_rate *sr;
	struct sc_info *sc;
	int threshold;
	int i;

	ch = data;
	scp = ch->parent;
	sc = scp->sc;

	sr = NULL;

	/* First look for equal frequency. */
	for (i = 0; rate_map[i].speed != 0; i++) {
		if (rate_map[i].speed == speed)
			sr = &rate_map[i];
	}

	/* If no match, just find nearest. */
	if (sr == NULL) {
		for (i = 0; rate_map[i].speed != 0; i++) {
			sr = &rate_map[i];
			threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
			    ((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
			if (speed < threshold)
				break;
		}
	}

	sc->sr = sr;

	ssi_configure_clock(sc);

	return (sr->speed);
}

static void
ssi_configure_clock(struct sc_info *sc)
{
	struct ssi_rate *sr;

	sr = sc->sr;

	pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);

	/* Configure other dividers here, if any */
}

static uint32_t
ssichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
	struct sc_chinfo *ch = data;
	struct sc_pcminfo *scp = ch->parent;
	struct sc_info *sc = scp->sc;

	sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);

	setup_dma(scp);

	return (sndbuf_getblksz(ch->buffer));
}

uint32_t
ssi_dma_intr(void *arg, int chn)
{
	struct sc_pcminfo *scp;
	struct sdma_conf *conf;
	struct sc_chinfo *ch;
	struct sc_info *sc;
	int bufsize;

	scp = arg;
	ch = &scp->chan[0];
	sc = scp->sc;
	conf = sc->conf;

	bufsize = sndbuf_getsize(ch->buffer);

	sc->pos += conf->period;
	if (sc->pos >= bufsize)
		sc->pos -= bufsize;

	if (ch->run)
		chn_intr(ch->channel);

	return (0);
}

static int
find_sdma_controller(struct sc_info *sc)
{
	struct sdma_softc *sdma_sc;
	phandle_t node, sdma_node;
	device_t sdma_dev;
	pcell_t dts_value[DMAS_TOTAL];
	int len;

	if ((node = ofw_bus_get_node(sc->dev)) == -1)
		return (ENXIO);

	if ((len = OF_getproplen(node, "dmas")) <= 0)
		return (ENXIO);

	if (len != sizeof(dts_value)) {
		device_printf(sc->dev,
		    "\"dmas\" property length is invalid: %d (expected %d)",
		    len, sizeof(dts_value));
		return (ENXIO);
	}

	OF_getencprop(node, "dmas", dts_value, sizeof(dts_value));

	sc->sdma_ev_rx = dts_value[1];
	sc->sdma_ev_tx = dts_value[5];

	sdma_node = OF_node_from_xref(dts_value[0]);

	sdma_sc = NULL;

	sdma_dev = devclass_get_device(devclass_find("sdma"), 0);
	if (sdma_dev)
		sdma_sc = device_get_softc(sdma_dev);

	if (sdma_sc == NULL) {
		device_printf(sc->dev, "No sDMA found. Can't operate\n");
		return (ENXIO);
	}

	sc->sdma_sc = sdma_sc;

	return (0);
};

static int
setup_dma(struct sc_pcminfo *scp)
{
	struct sdma_conf *conf;
	struct sc_chinfo *ch;
	struct sc_info *sc;
	int fmt;

	ch = &scp->chan[0];
	sc = scp->sc;
	conf = sc->conf;

	conf->ih = ssi_dma_intr;
	conf->ih_user = scp;
	conf->saddr = sc->buf_base_phys;
	conf->daddr = rman_get_start(sc->res[0]) + SSI_STX0;
	conf->event = sc->sdma_ev_tx; /* SDMA TX event */
	conf->period = sndbuf_getblksz(ch->buffer);
	conf->num_bd = sndbuf_getblkcnt(ch->buffer);

	/*
	 * Word Length
	 * Can be 32, 24, 16 or 8 for sDMA.
	 *
	 * SSI supports 24 at max.
	 */

	fmt = sndbuf_getfmt(ch->buffer);

	if (fmt & AFMT_16BIT) {
		conf->word_length = 16;
		conf->command = CMD_2BYTES;
	} else if (fmt & AFMT_24BIT) {
		conf->word_length = 24;
		conf->command = CMD_3BYTES;
	} else {
		device_printf(sc->dev, "Unknown format\n");
		return (-1);
	}

	return (0);
}

static int
ssi_start(struct sc_pcminfo *scp)
{
	struct sc_info *sc;
	int reg;

	sc = scp->sc;

	if (sdma_configure(sc->sdma_channel, sc->conf) != 0) {
		device_printf(sc->dev, "Can't configure sDMA\n");
		return (-1);
	}

	/* Enable DMA interrupt */
	reg = (SIER_TDMAE);
	WRITE4(sc, SSI_SIER, reg);

	sdma_start(sc->sdma_channel);

	return (0);
}

static int
ssi_stop(struct sc_pcminfo *scp)
{
	struct sc_info *sc;
	int reg;

	sc = scp->sc;

	reg = READ4(sc, SSI_SIER);
	reg &= ~(SIER_TDMAE);
	WRITE4(sc, SSI_SIER, reg);

	sdma_stop(sc->sdma_channel);

	bzero(sc->buf_base, sc->dma_size);

	return (0);
}

static int
ssichan_trigger(kobj_t obj, void *data, int go)
{
	struct sc_pcminfo *scp;
	struct sc_chinfo *ch;
	struct sc_info *sc;

	ch = data;
	scp = ch->parent;
	sc = scp->sc;

	snd_mtxlock(sc->lock);

	switch (go) {
	case PCMTRIG_START:
#if 0
		device_printf(scp->dev, "trigger start\n");
#endif
		ch->run = 1;

		ssi_start(scp);

		break;

	case PCMTRIG_STOP:
	case PCMTRIG_ABORT:
#if 0
		device_printf(scp->dev, "trigger stop or abort\n");
#endif
		ch->run = 0;

		ssi_stop(scp);

		break;
	}

	snd_mtxunlock(sc->lock);

	return (0);
}

static uint32_t
ssichan_getptr(kobj_t obj, void *data)
{
	struct sc_pcminfo *scp;
	struct sc_chinfo *ch;
	struct sc_info *sc;

	ch = data;
	scp = ch->parent;
	sc = scp->sc;

	return (sc->pos);
}

static uint32_t ssi_pfmt[] = {
	SND_FORMAT(AFMT_S24_LE, 2, 0),
	0
};

static struct pcmchan_caps ssi_pcaps = {44100, 192000, ssi_pfmt, 0};

static struct pcmchan_caps *
ssichan_getcaps(kobj_t obj, void *data)
{

	return (&ssi_pcaps);
}

static kobj_method_t ssichan_methods[] = {
	KOBJMETHOD(channel_init,         ssichan_init),
	KOBJMETHOD(channel_free,         ssichan_free),
	KOBJMETHOD(channel_setformat,    ssichan_setformat),
	KOBJMETHOD(channel_setspeed,     ssichan_setspeed),
	KOBJMETHOD(channel_setblocksize, ssichan_setblocksize),
	KOBJMETHOD(channel_trigger,      ssichan_trigger),
	KOBJMETHOD(channel_getptr,       ssichan_getptr),
	KOBJMETHOD(channel_getcaps,      ssichan_getcaps),
	KOBJMETHOD_END
};
CHANNEL_DECLARE(ssichan);

static int
ssi_probe(device_t dev)
{

	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (!ofw_bus_is_compatible(dev, "fsl,imx6q-ssi"))
		return (ENXIO);

	device_set_desc(dev, "i.MX6 Synchronous Serial Interface (SSI)");
	return (BUS_PROBE_DEFAULT);
}

static void
ssi_intr(void *arg)
{
	struct sc_pcminfo *scp;
	struct sc_chinfo *ch;
	struct sc_info *sc;

	scp = arg;
	sc = scp->sc;
	ch = &scp->chan[0];

	/* We don't use SSI interrupt */
#if 0
	device_printf(sc->dev, "SSI Intr 0x%08x\n",
	    READ4(sc, SSI_SISR));
#endif
}

static void
setup_ssi(struct sc_info *sc)
{
	int reg;

	reg = READ4(sc, SSI_STCCR);
	reg &= ~(WL3_WL0_M << WL3_WL0_S);
	reg |= (0xb << WL3_WL0_S); /* 24 bit */
	reg &= ~(DC4_DC0_M << DC4_DC0_S);
	reg |= (1 << DC4_DC0_S); /* 2 words per frame */
	reg &= ~(STCCR_DIV2); /* Divide by 1 */
	reg &= ~(STCCR_PSR); /* Divide by 1 */
	reg &= ~(PM7_PM0_M << PM7_PM0_S);
	reg |= (1 << PM7_PM0_S); /* Divide by 2 */
	WRITE4(sc, SSI_STCCR, reg);

	reg = READ4(sc, SSI_SFCSR);
	reg &= ~(SFCSR_TFWM0_M << SFCSR_TFWM0_S);
	reg |= (8 << SFCSR_TFWM0_S); /* empty slots */
	WRITE4(sc, SSI_SFCSR, reg);

	reg = READ4(sc, SSI_STCR);
	reg |= (STCR_TFEN0);
	reg &= ~(STCR_TFEN1);
	reg &= ~(STCR_TSHFD); /* MSB */
	reg |= (STCR_TXBIT0);
	reg |= (STCR_TXDIR | STCR_TFDIR);
	reg |= (STCR_TSCKP); /* falling edge */
	reg |= (STCR_TFSI);
	reg &= ~(STCR_TFSI); /* active high frame sync */
	reg &= ~(STCR_TFSL);
	reg |= STCR_TEFS;
	WRITE4(sc, SSI_STCR, reg);

	reg = READ4(sc, SSI_SCR);
	reg &= ~(SCR_I2S_MODE_M << SCR_I2S_MODE_S); /* Not master */
	reg |= (SCR_SSIEN | SCR_TE);
	reg |= (SCR_NET);
	reg |= (SCR_SYN);
	WRITE4(sc, SSI_SCR, reg);
}

static void
ssi_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
	bus_addr_t *addr;

	if (err)
		return;

	addr = (bus_addr_t*)arg;
	*addr = segs[0].ds_addr;
}

static int
ssi_attach(device_t dev)
{
	char status[SND_STATUSLEN];
	struct sc_pcminfo *scp;
	struct sc_info *sc;
	int err;

	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
	sc->dev = dev;
	sc->sr = &rate_map[0];
	sc->pos = 0;
	sc->conf = malloc(sizeof(struct sdma_conf), M_DEVBUF, M_WAITOK | M_ZERO);

	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "ssi softc");
	if (sc->lock == NULL) {
		device_printf(dev, "Can't create mtx\n");
		return (ENXIO);
	}

	if (bus_alloc_resources(dev, ssi_spec, sc->res)) {
		device_printf(dev, "could not allocate resources\n");
		return (ENXIO);
	}

	/* Memory interface */
	sc->bst = rman_get_bustag(sc->res[0]);
	sc->bsh = rman_get_bushandle(sc->res[0]);

	/* SDMA */
	if (find_sdma_controller(sc)) {
		device_printf(dev, "could not find active SDMA\n");
		return (ENXIO);
	}

	/* Setup PCM */
	scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
	scp->sc = sc;
	scp->dev = dev;

	/*
	 * Maximum possible DMA buffer.
	 * Will be used partially to match 24 bit word.
	 */
	sc->dma_size = 131072;

	/*
	 * Must use dma_size boundary as modulo feature required.
	 * Modulo feature allows setup circular buffer.
	 */

	err = bus_dma_tag_create(
	    bus_get_dma_tag(sc->dev),
	    4, sc->dma_size,		/* alignment, boundary */
	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
	    BUS_SPACE_MAXADDR,		/* highaddr */
	    NULL, NULL,			/* filter, filterarg */
	    sc->dma_size, 1,		/* maxsize, nsegments */
	    sc->dma_size, 0,		/* maxsegsize, flags */
	    NULL, NULL,			/* lockfunc, lockarg */
	    &sc->dma_tag);

	err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
	if (err) {
		device_printf(dev, "cannot allocate framebuffer\n");
		return (ENXIO);
	}

	err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
	    sc->dma_size, ssi_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
	if (err) {
		device_printf(dev, "cannot load DMA map\n");
		return (ENXIO);
	}

	bzero(sc->buf_base, sc->dma_size);

	/* Setup interrupt handler */
	err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
	    NULL, ssi_intr, scp, &sc->ih);
	if (err) {
		device_printf(dev, "Unable to alloc interrupt resource.\n");
		return (ENXIO);
	}

	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);

	err = pcm_register(dev, scp, 1, 0);
	if (err) {
		device_printf(dev, "Can't register pcm.\n");
		return (ENXIO);
	}

	scp->chnum = 0;
	pcm_addchan(dev, PCMDIR_PLAY, &ssichan_class, scp);
	scp->chnum++;

	snprintf(status, SND_STATUSLEN, "at simplebus");
	pcm_setstatus(dev, status);

	mixer_init(dev, &ssimixer_class, scp);
	setup_ssi(sc);

	imx_ccm_ssi_configure(dev);

	sc->sdma_channel = sdma_alloc();
	if (sc->sdma_channel < 0) {
		device_printf(sc->dev, "Can't get sDMA channel\n");
		return (1);
	}

	return (0);
}

static device_method_t ssi_pcm_methods[] = {
	DEVMETHOD(device_probe,		ssi_probe),
	DEVMETHOD(device_attach,	ssi_attach),
	{ 0, 0 }
};

static driver_t ssi_pcm_driver = {
	"pcm",
	ssi_pcm_methods,
	PCM_SOFTC_SIZE,
};

DRIVER_MODULE(ssi, simplebus, ssi_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(ssi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_DEPEND(ssi, sdma, 0, 0, 0);
MODULE_VERSION(ssi, 1);