Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
/***********************license start***************
 * Copyright (c) 2003-2012  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * cvmx-sso-defs.h
 *
 * Configuration and status register (CSR) type definitions for
 * Octeon sso.
 *
 * This file is auto generated. Do not edit.
 *
 * <hr>$Revision$<hr>
 *
 */
#ifndef __CVMX_SSO_DEFS_H__
#define __CVMX_SSO_DEFS_H__

#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ACTIVE_CYCLES CVMX_SSO_ACTIVE_CYCLES_FUNC()
static inline uint64_t CVMX_SSO_ACTIVE_CYCLES_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_ACTIVE_CYCLES not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010E8ull);
}
#else
#define CVMX_SSO_ACTIVE_CYCLES (CVMX_ADD_IO_SEG(0x00016700000010E8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_BIST_STAT CVMX_SSO_BIST_STAT_FUNC()
static inline uint64_t CVMX_SSO_BIST_STAT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_BIST_STAT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001078ull);
}
#else
#define CVMX_SSO_BIST_STAT (CVMX_ADD_IO_SEG(0x0001670000001078ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_CFG CVMX_SSO_CFG_FUNC()
static inline uint64_t CVMX_SSO_CFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_CFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001088ull);
}
#else
#define CVMX_SSO_CFG (CVMX_ADD_IO_SEG(0x0001670000001088ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_DS_PC CVMX_SSO_DS_PC_FUNC()
static inline uint64_t CVMX_SSO_DS_PC_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_DS_PC not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001070ull);
}
#else
#define CVMX_SSO_DS_PC (CVMX_ADD_IO_SEG(0x0001670000001070ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ERR CVMX_SSO_ERR_FUNC()
static inline uint64_t CVMX_SSO_ERR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_ERR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001038ull);
}
#else
#define CVMX_SSO_ERR (CVMX_ADD_IO_SEG(0x0001670000001038ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ERR_ENB CVMX_SSO_ERR_ENB_FUNC()
static inline uint64_t CVMX_SSO_ERR_ENB_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_ERR_ENB not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001030ull);
}
#else
#define CVMX_SSO_ERR_ENB (CVMX_ADD_IO_SEG(0x0001670000001030ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FIDX_ECC_CTL CVMX_SSO_FIDX_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_FIDX_ECC_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_FIDX_ECC_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010D0ull);
}
#else
#define CVMX_SSO_FIDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010D0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FIDX_ECC_ST CVMX_SSO_FIDX_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_FIDX_ECC_ST_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_FIDX_ECC_ST not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010D8ull);
}
#else
#define CVMX_SSO_FIDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010D8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FPAGE_CNT CVMX_SSO_FPAGE_CNT_FUNC()
static inline uint64_t CVMX_SSO_FPAGE_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_FPAGE_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001090ull);
}
#else
#define CVMX_SSO_FPAGE_CNT (CVMX_ADD_IO_SEG(0x0001670000001090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_GWE_CFG CVMX_SSO_GWE_CFG_FUNC()
static inline uint64_t CVMX_SSO_GWE_CFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_GWE_CFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001098ull);
}
#else
#define CVMX_SSO_GWE_CFG (CVMX_ADD_IO_SEG(0x0001670000001098ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IDX_ECC_CTL CVMX_SSO_IDX_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_IDX_ECC_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_IDX_ECC_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010C0ull);
}
#else
#define CVMX_SSO_IDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010C0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IDX_ECC_ST CVMX_SSO_IDX_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_IDX_ECC_ST_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_IDX_ECC_ST not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010C8ull);
}
#else
#define CVMX_SSO_IDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010C8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_IQ_CNTX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_IQ_CNTX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_IQ_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_COM_CNT CVMX_SSO_IQ_COM_CNT_FUNC()
static inline uint64_t CVMX_SSO_IQ_COM_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_IQ_COM_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001058ull);
}
#else
#define CVMX_SSO_IQ_COM_CNT (CVMX_ADD_IO_SEG(0x0001670000001058ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_INT CVMX_SSO_IQ_INT_FUNC()
static inline uint64_t CVMX_SSO_IQ_INT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_IQ_INT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001048ull);
}
#else
#define CVMX_SSO_IQ_INT (CVMX_ADD_IO_SEG(0x0001670000001048ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_INT_EN CVMX_SSO_IQ_INT_EN_FUNC()
static inline uint64_t CVMX_SSO_IQ_INT_EN_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_IQ_INT_EN not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001050ull);
}
#else
#define CVMX_SSO_IQ_INT_EN (CVMX_ADD_IO_SEG(0x0001670000001050ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_IQ_THRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_IQ_THRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_IQ_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_NOS_CNT CVMX_SSO_NOS_CNT_FUNC()
static inline uint64_t CVMX_SSO_NOS_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_NOS_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001040ull);
}
#else
#define CVMX_SSO_NOS_CNT (CVMX_ADD_IO_SEG(0x0001670000001040ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_NW_TIM CVMX_SSO_NW_TIM_FUNC()
static inline uint64_t CVMX_SSO_NW_TIM_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_NW_TIM not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001028ull);
}
#else
#define CVMX_SSO_NW_TIM (CVMX_ADD_IO_SEG(0x0001670000001028ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_OTH_ECC_CTL CVMX_SSO_OTH_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_OTH_ECC_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_OTH_ECC_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010B0ull);
}
#else
#define CVMX_SSO_OTH_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010B0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_OTH_ECC_ST CVMX_SSO_OTH_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_OTH_ECC_ST_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_OTH_ECC_ST not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010B8ull);
}
#else
#define CVMX_SSO_OTH_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010B8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PND_ECC_CTL CVMX_SSO_PND_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_PND_ECC_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_PND_ECC_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010A0ull);
}
#else
#define CVMX_SSO_PND_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010A0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PND_ECC_ST CVMX_SSO_PND_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_PND_ECC_ST_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_PND_ECC_ST not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010A8ull);
}
#else
#define CVMX_SSO_PND_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010A8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_PPX_GRP_MSK(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31)))))
		cvmx_warn("CVMX_SSO_PPX_GRP_MSK(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8;
}
#else
#define CVMX_SSO_PPX_GRP_MSK(offset) (CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_PPX_QOS_PRI(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31)))))
		cvmx_warn("CVMX_SSO_PPX_QOS_PRI(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8;
}
#else
#define CVMX_SSO_PPX_QOS_PRI(offset) (CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PP_STRICT CVMX_SSO_PP_STRICT_FUNC()
static inline uint64_t CVMX_SSO_PP_STRICT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_PP_STRICT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010E0ull);
}
#else
#define CVMX_SSO_PP_STRICT (CVMX_ADD_IO_SEG(0x00016700000010E0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_QOSX_RND(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_QOSX_RND(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_QOSX_RND(offset) (CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_QOS_THRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_QOS_THRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_QOS_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_QOS_WE CVMX_SSO_QOS_WE_FUNC()
static inline uint64_t CVMX_SSO_QOS_WE_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_QOS_WE not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001080ull);
}
#else
#define CVMX_SSO_QOS_WE (CVMX_ADD_IO_SEG(0x0001670000001080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RESET CVMX_SSO_RESET_FUNC()
static inline uint64_t CVMX_SSO_RESET_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_RESET not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00016700000010F0ull);
}
#else
#define CVMX_SSO_RESET (CVMX_ADD_IO_SEG(0x00016700000010F0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_RWQ_HEAD_PTRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_RWQ_HEAD_PTRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_RWQ_HEAD_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RWQ_POP_FPTR CVMX_SSO_RWQ_POP_FPTR_FUNC()
static inline uint64_t CVMX_SSO_RWQ_POP_FPTR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_RWQ_POP_FPTR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x000167000000C408ull);
}
#else
#define CVMX_SSO_RWQ_POP_FPTR (CVMX_ADD_IO_SEG(0x000167000000C408ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RWQ_PSH_FPTR CVMX_SSO_RWQ_PSH_FPTR_FUNC()
static inline uint64_t CVMX_SSO_RWQ_PSH_FPTR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_RWQ_PSH_FPTR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x000167000000C400ull);
}
#else
#define CVMX_SSO_RWQ_PSH_FPTR (CVMX_ADD_IO_SEG(0x000167000000C400ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_RWQ_TAIL_PTRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_RWQ_TAIL_PTRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_RWQ_TAIL_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_TS_PC CVMX_SSO_TS_PC_FUNC()
static inline uint64_t CVMX_SSO_TS_PC_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_TS_PC not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001068ull);
}
#else
#define CVMX_SSO_TS_PC (CVMX_ADD_IO_SEG(0x0001670000001068ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WA_COM_PC CVMX_SSO_WA_COM_PC_FUNC()
static inline uint64_t CVMX_SSO_WA_COM_PC_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_WA_COM_PC not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001060ull);
}
#else
#define CVMX_SSO_WA_COM_PC (CVMX_ADD_IO_SEG(0x0001670000001060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WA_PCX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_SSO_WA_PCX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_WA_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_INT CVMX_SSO_WQ_INT_FUNC()
static inline uint64_t CVMX_SSO_WQ_INT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_WQ_INT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001000ull);
}
#else
#define CVMX_SSO_WQ_INT (CVMX_ADD_IO_SEG(0x0001670000001000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WQ_INT_CNTX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
		cvmx_warn("CVMX_SSO_WQ_INT_CNTX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WQ_INT_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_INT_PC CVMX_SSO_WQ_INT_PC_FUNC()
static inline uint64_t CVMX_SSO_WQ_INT_PC_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_WQ_INT_PC not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001020ull);
}
#else
#define CVMX_SSO_WQ_INT_PC (CVMX_ADD_IO_SEG(0x0001670000001020ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WQ_INT_THRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
		cvmx_warn("CVMX_SSO_WQ_INT_THRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WQ_INT_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_IQ_DIS CVMX_SSO_WQ_IQ_DIS_FUNC()
static inline uint64_t CVMX_SSO_WQ_IQ_DIS_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
		cvmx_warn("CVMX_SSO_WQ_IQ_DIS not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001670000001010ull);
}
#else
#define CVMX_SSO_WQ_IQ_DIS (CVMX_ADD_IO_SEG(0x0001670000001010ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WS_PCX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
		cvmx_warn("CVMX_SSO_WS_PCX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WS_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8)
#endif

/**
 * cvmx_sso_active_cycles
 *
 * SSO_ACTIVE_CYCLES = SSO cycles SSO active
 *
 * This register counts every sclk cycle that the SSO clocks are active.
 * **NOTE: Added in pass 2.0
 */
union cvmx_sso_active_cycles {
	uint64_t u64;
	struct cvmx_sso_active_cycles_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t act_cyc                      : 64; /**< Counts number of active cycles. */
#else
	uint64_t act_cyc                      : 64;
#endif
	} s;
	struct cvmx_sso_active_cycles_s       cn68xx;
};
typedef union cvmx_sso_active_cycles cvmx_sso_active_cycles_t;

/**
 * cvmx_sso_bist_stat
 *
 * SSO_BIST_STAT = SSO BIST Status Register
 *
 * Contains the BIST status for the SSO memories ('0' = pass, '1' = fail).
 * Note that PP BIST status is not reported here as it was in previous designs.
 *
 *   There may be more for DDR interface buffers.
 *   It's possible that a RAM will be used for SSO_PP_QOS_RND.
 */
union cvmx_sso_bist_stat {
	uint64_t u64;
	struct cvmx_sso_bist_stat_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_62_63               : 2;
	uint64_t odu_pref                     : 2;  /**< ODU Prefetch memory BIST status */
	uint64_t reserved_54_59               : 6;
	uint64_t fptr                         : 2;  /**< FPTR memory BIST status */
	uint64_t reserved_45_51               : 7;
	uint64_t rwo_dat                      : 1;  /**< RWO_DAT memory BIST status */
	uint64_t rwo                          : 2;  /**< RWO memory BIST status */
	uint64_t reserved_35_41               : 7;
	uint64_t rwi_dat                      : 1;  /**< RWI_DAT memory BIST status */
	uint64_t reserved_32_33               : 2;
	uint64_t soc                          : 1;  /**< SSO CAM BIST status */
	uint64_t reserved_28_30               : 3;
	uint64_t ncbo                         : 4;  /**< NCBO transmitter memory BIST status */
	uint64_t reserved_21_23               : 3;
	uint64_t index                        : 1;  /**< Index memory BIST status */
	uint64_t reserved_17_19               : 3;
	uint64_t fidx                         : 1;  /**< Forward index memory BIST status */
	uint64_t reserved_10_15               : 6;
	uint64_t pend                         : 2;  /**< Pending switch memory BIST status */
	uint64_t reserved_2_7                 : 6;
	uint64_t oth                          : 2;  /**< WQP, GRP memory BIST status */
#else
	uint64_t oth                          : 2;
	uint64_t reserved_2_7                 : 6;
	uint64_t pend                         : 2;
	uint64_t reserved_10_15               : 6;
	uint64_t fidx                         : 1;
	uint64_t reserved_17_19               : 3;
	uint64_t index                        : 1;
	uint64_t reserved_21_23               : 3;
	uint64_t ncbo                         : 4;
	uint64_t reserved_28_30               : 3;
	uint64_t soc                          : 1;
	uint64_t reserved_32_33               : 2;
	uint64_t rwi_dat                      : 1;
	uint64_t reserved_35_41               : 7;
	uint64_t rwo                          : 2;
	uint64_t rwo_dat                      : 1;
	uint64_t reserved_45_51               : 7;
	uint64_t fptr                         : 2;
	uint64_t reserved_54_59               : 6;
	uint64_t odu_pref                     : 2;
	uint64_t reserved_62_63               : 2;
#endif
	} s;
	struct cvmx_sso_bist_stat_s           cn68xx;
	struct cvmx_sso_bist_stat_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_54_63               : 10;
	uint64_t fptr                         : 2;  /**< FPTR memory BIST status */
	uint64_t reserved_45_51               : 7;
	uint64_t rwo_dat                      : 1;  /**< RWO_DAT memory BIST status */
	uint64_t rwo                          : 2;  /**< RWO memory BIST status */
	uint64_t reserved_35_41               : 7;
	uint64_t rwi_dat                      : 1;  /**< RWI_DAT memory BIST status */
	uint64_t reserved_32_33               : 2;
	uint64_t soc                          : 1;  /**< SSO CAM BIST status */
	uint64_t reserved_28_30               : 3;
	uint64_t ncbo                         : 4;  /**< NCBO transmitter memory BIST status */
	uint64_t reserved_21_23               : 3;
	uint64_t index                        : 1;  /**< Index memory BIST status */
	uint64_t reserved_17_19               : 3;
	uint64_t fidx                         : 1;  /**< Forward index memory BIST status */
	uint64_t reserved_10_15               : 6;
	uint64_t pend                         : 2;  /**< Pending switch memory BIST status */
	uint64_t reserved_2_7                 : 6;
	uint64_t oth                          : 2;  /**< WQP, GRP memory BIST status */
#else
	uint64_t oth                          : 2;
	uint64_t reserved_2_7                 : 6;
	uint64_t pend                         : 2;
	uint64_t reserved_10_15               : 6;
	uint64_t fidx                         : 1;
	uint64_t reserved_17_19               : 3;
	uint64_t index                        : 1;
	uint64_t reserved_21_23               : 3;
	uint64_t ncbo                         : 4;
	uint64_t reserved_28_30               : 3;
	uint64_t soc                          : 1;
	uint64_t reserved_32_33               : 2;
	uint64_t rwi_dat                      : 1;
	uint64_t reserved_35_41               : 7;
	uint64_t rwo                          : 2;
	uint64_t rwo_dat                      : 1;
	uint64_t reserved_45_51               : 7;
	uint64_t fptr                         : 2;
	uint64_t reserved_54_63               : 10;
#endif
	} cn68xxp1;
};
typedef union cvmx_sso_bist_stat cvmx_sso_bist_stat_t;

/**
 * cvmx_sso_cfg
 *
 * SSO_CFG = SSO Config
 *
 * This register is an assortment of various SSO configuration bits.
 */
union cvmx_sso_cfg {
	uint64_t u64;
	struct cvmx_sso_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_16_63               : 48;
	uint64_t qck_gw_rsp_adj               : 3;  /**< Fast GET_WORK response fine adjustment
                                                         Allowed values are 0, 1, and 2 (0 is quickest) */
	uint64_t qck_gw_rsp_dis               : 1;  /**< Disable faster response to GET_WORK */
	uint64_t qck_sw_dis                   : 1;  /**< Disable faster switch to UNSCHEDULED on GET_WORK */
	uint64_t rwq_alloc_dis                : 1;  /**< Disable FPA Alloc Requests when SSO_FPAGE_CNT < 16 */
	uint64_t soc_ccam_dis                 : 1;  /**< Disable power saving SOC conditional CAM
                                                         (**NOTE: Added in pass 2.0) */
	uint64_t sso_cclk_dis                 : 1;  /**< Disable power saving SSO conditional clocking
                                                         (**NOTE: Added in pass 2.0) */
	uint64_t rwo_flush                    : 1;  /**< Flush RWO engine
                                                         Allows outbound NCB entries to go immediately rather
                                                         than waiting for a complete fill packet. This register
                                                         is one-shot and clears itself each time it is set. */
	uint64_t wfe_thr                      : 1;  /**< Use 1 Work-fetch engine (instead of 4) */
	uint64_t rwio_byp_dis                 : 1;  /**< Disable Bypass path in RWI/RWO Engines */
	uint64_t rwq_byp_dis                  : 1;  /**< Disable Bypass path in RWQ Engine */
	uint64_t stt                          : 1;  /**< STT Setting for RW Stores */
	uint64_t ldt                          : 1;  /**< LDT Setting for RW Loads */
	uint64_t dwb                          : 1;  /**< DWB Setting for Return Page Requests
                                                         1 = 2 128B cache pages to issue DWB for
                                                         0 = 0 128B cache pages ro issue DWB for */
	uint64_t rwen                         : 1;  /**< Enable RWI/RWO operations
                                                         This bit should be set after SSO_RWQ_HEAD_PTRX and
                                                         SSO_RWQ_TAIL_PTRX have been programmed. */
#else
	uint64_t rwen                         : 1;
	uint64_t dwb                          : 1;
	uint64_t ldt                          : 1;
	uint64_t stt                          : 1;
	uint64_t rwq_byp_dis                  : 1;
	uint64_t rwio_byp_dis                 : 1;
	uint64_t wfe_thr                      : 1;
	uint64_t rwo_flush                    : 1;
	uint64_t sso_cclk_dis                 : 1;
	uint64_t soc_ccam_dis                 : 1;
	uint64_t rwq_alloc_dis                : 1;
	uint64_t qck_sw_dis                   : 1;
	uint64_t qck_gw_rsp_dis               : 1;
	uint64_t qck_gw_rsp_adj               : 3;
	uint64_t reserved_16_63               : 48;
#endif
	} s;
	struct cvmx_sso_cfg_s                 cn68xx;
	struct cvmx_sso_cfg_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t rwo_flush                    : 1;  /**< Flush RWO engine
                                                         Allows outbound NCB entries to go immediately rather
                                                         than waiting for a complete fill packet. This register
                                                         is one-shot and clears itself each time it is set. */
	uint64_t wfe_thr                      : 1;  /**< Use 1 Work-fetch engine (instead of 4) */
	uint64_t rwio_byp_dis                 : 1;  /**< Disable Bypass path in RWI/RWO Engines */
	uint64_t rwq_byp_dis                  : 1;  /**< Disable Bypass path in RWQ Engine */
	uint64_t stt                          : 1;  /**< STT Setting for RW Stores */
	uint64_t ldt                          : 1;  /**< LDT Setting for RW Loads */
	uint64_t dwb                          : 1;  /**< DWB Setting for Return Page Requests
                                                         1 = 2 128B cache pages to issue DWB for
                                                         0 = 0 128B cache pages ro issue DWB for */
	uint64_t rwen                         : 1;  /**< Enable RWI/RWO operations
                                                         This bit should be set after SSO_RWQ_HEAD_PTRX and
                                                         SSO_RWQ_TAIL_PTRX have been programmed. */
#else
	uint64_t rwen                         : 1;
	uint64_t dwb                          : 1;
	uint64_t ldt                          : 1;
	uint64_t stt                          : 1;
	uint64_t rwq_byp_dis                  : 1;
	uint64_t rwio_byp_dis                 : 1;
	uint64_t wfe_thr                      : 1;
	uint64_t rwo_flush                    : 1;
	uint64_t reserved_8_63                : 56;
#endif
	} cn68xxp1;
};
typedef union cvmx_sso_cfg cvmx_sso_cfg_t;

/**
 * cvmx_sso_ds_pc
 *
 * SSO_DS_PC = SSO De-Schedule Performance Counter
 *
 * Counts the number of de-schedule requests.
 * Counter rolls over through zero when max value exceeded.
 */
union cvmx_sso_ds_pc {
	uint64_t u64;
	struct cvmx_sso_ds_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t ds_pc                        : 64; /**< De-schedule performance counter */
#else
	uint64_t ds_pc                        : 64;
#endif
	} s;
	struct cvmx_sso_ds_pc_s               cn68xx;
	struct cvmx_sso_ds_pc_s               cn68xxp1;
};
typedef union cvmx_sso_ds_pc cvmx_sso_ds_pc_t;

/**
 * cvmx_sso_err
 *
 * SSO_ERR = SSO Error Register
 *
 * Contains ECC and other misc error bits.
 *
 * <45> The free page error bit will assert when SSO_FPAGE_CNT <= 16 and
 *      SSO_CFG[RWEN] is 1.  Software will want to disable the interrupt
 *      associated with this error when recovering SSO pointers from the
 *      FPA and SSO.
 *
 * This register also contains the illegal operation error bits:
 *
 * <42> Received ADDWQ with tag specified as EMPTY
 * <41> Received illegal opcode
 * <40> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE
 *      from WS with CLR_NSCHED pending
 * <39> Received CLR_NSCHED
 *      from WS with SWTAG_DESCH/DESCH/CLR_NSCHED pending
 * <38> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE
 *      from WS with ALLOC_WE pending
 * <37> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE/CLR_NSCHED
 *      from WS with GET_WORK pending
 * <36> Received SWTAG_FULL/SWTAG_DESCH
 *      with tag specified as UNSCHEDULED
 * <35> Received SWTAG/SWTAG_FULL/SWTAG_DESCH
 *      with tag specified as EMPTY
 * <34> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK
 *      from WS with pending tag switch to ORDERED or ATOMIC
 * <33> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP
 *      from WS in UNSCHEDULED state
 * <32> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP
 *      from WS in EMPTY state
 */
union cvmx_sso_err {
	uint64_t u64;
	struct cvmx_sso_err_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_48_63               : 16;
	uint64_t bfp                          : 1;  /**< Bad Fill Packet error
                                                         Last byte of the fill packet did not match 8'h1a */
	uint64_t awe                          : 1;  /**< Out-of-memory error (ADDWQ Request is dropped) */
	uint64_t fpe                          : 1;  /**< Free page error */
	uint64_t reserved_43_44               : 2;
	uint64_t iop                          : 11; /**< Illegal operation errors */
	uint64_t reserved_12_31               : 20;
	uint64_t pnd_dbe0                     : 1;  /**< Double bit error for even PND RAM */
	uint64_t pnd_sbe0                     : 1;  /**< Single bit error for even PND RAM */
	uint64_t pnd_dbe1                     : 1;  /**< Double bit error for odd PND RAM */
	uint64_t pnd_sbe1                     : 1;  /**< Single bit error for odd PND RAM */
	uint64_t oth_dbe0                     : 1;  /**< Double bit error for even OTH RAM */
	uint64_t oth_sbe0                     : 1;  /**< Single bit error for even OTH RAM */
	uint64_t oth_dbe1                     : 1;  /**< Double bit error for odd OTH RAM */
	uint64_t oth_sbe1                     : 1;  /**< Single bit error for odd OTH RAM */
	uint64_t idx_dbe                      : 1;  /**< Double bit error for IDX RAM */
	uint64_t idx_sbe                      : 1;  /**< Single bit error for IDX RAM */
	uint64_t fidx_dbe                     : 1;  /**< Double bit error for FIDX RAM */
	uint64_t fidx_sbe                     : 1;  /**< Single bit error for FIDX RAM */
#else
	uint64_t fidx_sbe                     : 1;
	uint64_t fidx_dbe                     : 1;
	uint64_t idx_sbe                      : 1;
	uint64_t idx_dbe                      : 1;
	uint64_t oth_sbe1                     : 1;
	uint64_t oth_dbe1                     : 1;
	uint64_t oth_sbe0                     : 1;
	uint64_t oth_dbe0                     : 1;
	uint64_t pnd_sbe1                     : 1;
	uint64_t pnd_dbe1                     : 1;
	uint64_t pnd_sbe0                     : 1;
	uint64_t pnd_dbe0                     : 1;
	uint64_t reserved_12_31               : 20;
	uint64_t iop                          : 11;
	uint64_t reserved_43_44               : 2;
	uint64_t fpe                          : 1;
	uint64_t awe                          : 1;
	uint64_t bfp                          : 1;
	uint64_t reserved_48_63               : 16;
#endif
	} s;
	struct cvmx_sso_err_s                 cn68xx;
	struct cvmx_sso_err_s                 cn68xxp1;
};
typedef union cvmx_sso_err cvmx_sso_err_t;

/**
 * cvmx_sso_err_enb
 *
 * SSO_ERR_ENB = SSO Error Enable Register
 *
 * Contains the interrupt enables corresponding to SSO_ERR.
 */
union cvmx_sso_err_enb {
	uint64_t u64;
	struct cvmx_sso_err_enb_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_48_63               : 16;
	uint64_t bfp_ie                       : 1;  /**< Bad Fill Packet error interrupt enable */
	uint64_t awe_ie                       : 1;  /**< Add-work error interrupt enable */
	uint64_t fpe_ie                       : 1;  /**< Free Page error interrupt enable */
	uint64_t reserved_43_44               : 2;
	uint64_t iop_ie                       : 11; /**< Illegal operation interrupt enables */
	uint64_t reserved_12_31               : 20;
	uint64_t pnd_dbe0_ie                  : 1;  /**< Double bit error interrupt enable for even PND RAM */
	uint64_t pnd_sbe0_ie                  : 1;  /**< Single bit error interrupt enable for even PND RAM */
	uint64_t pnd_dbe1_ie                  : 1;  /**< Double bit error interrupt enable for odd PND RAM */
	uint64_t pnd_sbe1_ie                  : 1;  /**< Single bit error interrupt enable for odd PND RAM */
	uint64_t oth_dbe0_ie                  : 1;  /**< Double bit error interrupt enable for even OTH RAM */
	uint64_t oth_sbe0_ie                  : 1;  /**< Single bit error interrupt enable for even OTH RAM */
	uint64_t oth_dbe1_ie                  : 1;  /**< Double bit error interrupt enable for odd OTH RAM */
	uint64_t oth_sbe1_ie                  : 1;  /**< Single bit error interrupt enable for odd OTH RAM */
	uint64_t idx_dbe_ie                   : 1;  /**< Double bit error interrupt enable for IDX RAM */
	uint64_t idx_sbe_ie                   : 1;  /**< Single bit error interrupt enable for IDX RAM */
	uint64_t fidx_dbe_ie                  : 1;  /**< Double bit error interrupt enable for FIDX RAM */
	uint64_t fidx_sbe_ie                  : 1;  /**< Single bit error interrupt enable for FIDX RAM */
#else
	uint64_t fidx_sbe_ie                  : 1;
	uint64_t fidx_dbe_ie                  : 1;
	uint64_t idx_sbe_ie                   : 1;
	uint64_t idx_dbe_ie                   : 1;
	uint64_t oth_sbe1_ie                  : 1;
	uint64_t oth_dbe1_ie                  : 1;
	uint64_t oth_sbe0_ie                  : 1;
	uint64_t oth_dbe0_ie                  : 1;
	uint64_t pnd_sbe1_ie                  : 1;
	uint64_t pnd_dbe1_ie                  : 1;
	uint64_t pnd_sbe0_ie                  : 1;
	uint64_t pnd_dbe0_ie                  : 1;
	uint64_t reserved_12_31               : 20;
	uint64_t iop_ie                       : 11;
	uint64_t reserved_43_44               : 2;
	uint64_t fpe_ie                       : 1;
	uint64_t awe_ie                       : 1;
	uint64_t bfp_ie                       : 1;
	uint64_t reserved_48_63               : 16;
#endif
	} s;
	struct cvmx_sso_err_enb_s             cn68xx;
	struct cvmx_sso_err_enb_s             cn68xxp1;
};
typedef union cvmx_sso_err_enb cvmx_sso_err_enb_t;

/**
 * cvmx_sso_fidx_ecc_ctl
 *
 * SSO_FIDX_ECC_CTL = SSO FIDX ECC Control
 *
 */
union cvmx_sso_fidx_ecc_ctl {
	uint64_t u64;
	struct cvmx_sso_fidx_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_3_63                : 61;
	uint64_t flip_synd                    : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the FIDX RAM. */
	uint64_t ecc_ena                      : 1;  /**< ECC Enable: When set will enable the 5 bit ECC
                                                         correct logic for the FIDX RAM. */
#else
	uint64_t ecc_ena                      : 1;
	uint64_t flip_synd                    : 2;
	uint64_t reserved_3_63                : 61;
#endif
	} s;
	struct cvmx_sso_fidx_ecc_ctl_s        cn68xx;
	struct cvmx_sso_fidx_ecc_ctl_s        cn68xxp1;
};
typedef union cvmx_sso_fidx_ecc_ctl cvmx_sso_fidx_ecc_ctl_t;

/**
 * cvmx_sso_fidx_ecc_st
 *
 * SSO_FIDX_ECC_ST = SSO FIDX ECC Status
 *
 */
union cvmx_sso_fidx_ecc_st {
	uint64_t u64;
	struct cvmx_sso_fidx_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_27_63               : 37;
	uint64_t addr                         : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the FIDX RAM */
	uint64_t reserved_9_15                : 7;
	uint64_t syndrom                      : 5;  /**< Report the latest error syndrom for the
                                                         FIDX RAM */
	uint64_t reserved_0_3                 : 4;
#else
	uint64_t reserved_0_3                 : 4;
	uint64_t syndrom                      : 5;
	uint64_t reserved_9_15                : 7;
	uint64_t addr                         : 11;
	uint64_t reserved_27_63               : 37;
#endif
	} s;
	struct cvmx_sso_fidx_ecc_st_s         cn68xx;
	struct cvmx_sso_fidx_ecc_st_s         cn68xxp1;
};
typedef union cvmx_sso_fidx_ecc_st cvmx_sso_fidx_ecc_st_t;

/**
 * cvmx_sso_fpage_cnt
 *
 * SSO_FPAGE_CNT = SSO Free Page Cnt
 *
 * This register keeps track of the number of free pages pointers available for use in external memory.
 */
union cvmx_sso_fpage_cnt {
	uint64_t u64;
	struct cvmx_sso_fpage_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t fpage_cnt                    : 32; /**< Free Page Cnt
                                                         HW updates this register. Writes to this register
                                                         are only for diagnostic purposes */
#else
	uint64_t fpage_cnt                    : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_fpage_cnt_s           cn68xx;
	struct cvmx_sso_fpage_cnt_s           cn68xxp1;
};
typedef union cvmx_sso_fpage_cnt cvmx_sso_fpage_cnt_t;

/**
 * cvmx_sso_gwe_cfg
 *
 * SSO_GWE_CFG = SSO Get-Work Examiner Configuration
 *
 * This register controls the operation of the Get-Work Examiner (GWE)
 */
union cvmx_sso_gwe_cfg {
	uint64_t u64;
	struct cvmx_sso_gwe_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_12_63               : 52;
	uint64_t odu_ffpgw_dis                : 1;  /**< Disable flushing ODU on periodic restart of GWE */
	uint64_t gwe_rfpgw_dis                : 1;  /**< Disable periodic restart of GWE for pending get_work */
	uint64_t odu_prf_dis                  : 1;  /**< Disable ODU-initiated prefetches of WQEs into L2C
                                                         For diagnostic use only. */
	uint64_t odu_bmp_dis                  : 1;  /**< Disable ODU bumps.
                                                         If SSO_PP_STRICT is true, could
                                                         prevent forward progress under some circumstances.
                                                         For diagnostic use only. */
	uint64_t reserved_5_7                 : 3;
	uint64_t gwe_hvy_dis                  : 1;  /**< Disable GWE automatic, proportional weight-increase
                                                         mechanism and use SSO_QOSX_RND values as-is.
                                                         For diagnostic use only. */
	uint64_t gwe_poe                      : 1;  /**< Pause GWE on extracts
                                                         For diagnostic use only. */
	uint64_t gwe_fpor                     : 1;  /**< Flush GWE pipeline when restarting GWE.
                                                         For diagnostic use only. */
	uint64_t gwe_rah                      : 1;  /**< Begin at head of input queues when restarting GWE.
                                                         For diagnostic use only. */
	uint64_t gwe_dis                      : 1;  /**< Disable Get-Work Examiner */
#else
	uint64_t gwe_dis                      : 1;
	uint64_t gwe_rah                      : 1;
	uint64_t gwe_fpor                     : 1;
	uint64_t gwe_poe                      : 1;
	uint64_t gwe_hvy_dis                  : 1;
	uint64_t reserved_5_7                 : 3;
	uint64_t odu_bmp_dis                  : 1;
	uint64_t odu_prf_dis                  : 1;
	uint64_t gwe_rfpgw_dis                : 1;
	uint64_t odu_ffpgw_dis                : 1;
	uint64_t reserved_12_63               : 52;
#endif
	} s;
	struct cvmx_sso_gwe_cfg_s             cn68xx;
	struct cvmx_sso_gwe_cfg_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_4_63                : 60;
	uint64_t gwe_poe                      : 1;  /**< Pause GWE on extracts
                                                         For diagnostic use only. */
	uint64_t gwe_fpor                     : 1;  /**< Flush GWE pipeline when restarting GWE.
                                                         For diagnostic use only. */
	uint64_t gwe_rah                      : 1;  /**< Begin at head of input queues when restarting GWE.
                                                         For diagnostic use only. */
	uint64_t gwe_dis                      : 1;  /**< Disable Get-Work Examiner */
#else
	uint64_t gwe_dis                      : 1;
	uint64_t gwe_rah                      : 1;
	uint64_t gwe_fpor                     : 1;
	uint64_t gwe_poe                      : 1;
	uint64_t reserved_4_63                : 60;
#endif
	} cn68xxp1;
};
typedef union cvmx_sso_gwe_cfg cvmx_sso_gwe_cfg_t;

/**
 * cvmx_sso_idx_ecc_ctl
 *
 * SSO_IDX_ECC_CTL = SSO IDX ECC Control
 *
 */
union cvmx_sso_idx_ecc_ctl {
	uint64_t u64;
	struct cvmx_sso_idx_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_3_63                : 61;
	uint64_t flip_synd                    : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the IDX RAM. */
	uint64_t ecc_ena                      : 1;  /**< ECC Enable: When set will enable the 5 bit ECC
                                                         correct logic for the IDX RAM. */
#else
	uint64_t ecc_ena                      : 1;
	uint64_t flip_synd                    : 2;
	uint64_t reserved_3_63                : 61;
#endif
	} s;
	struct cvmx_sso_idx_ecc_ctl_s         cn68xx;
	struct cvmx_sso_idx_ecc_ctl_s         cn68xxp1;
};
typedef union cvmx_sso_idx_ecc_ctl cvmx_sso_idx_ecc_ctl_t;

/**
 * cvmx_sso_idx_ecc_st
 *
 * SSO_IDX_ECC_ST = SSO IDX ECC Status
 *
 */
union cvmx_sso_idx_ecc_st {
	uint64_t u64;
	struct cvmx_sso_idx_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_27_63               : 37;
	uint64_t addr                         : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the IDX RAM */
	uint64_t reserved_9_15                : 7;
	uint64_t syndrom                      : 5;  /**< Report the latest error syndrom for the
                                                         IDX RAM */
	uint64_t reserved_0_3                 : 4;
#else
	uint64_t reserved_0_3                 : 4;
	uint64_t syndrom                      : 5;
	uint64_t reserved_9_15                : 7;
	uint64_t addr                         : 11;
	uint64_t reserved_27_63               : 37;
#endif
	} s;
	struct cvmx_sso_idx_ecc_st_s          cn68xx;
	struct cvmx_sso_idx_ecc_st_s          cn68xxp1;
};
typedef union cvmx_sso_idx_ecc_st cvmx_sso_idx_ecc_st_t;

/**
 * cvmx_sso_iq_cnt#
 *
 * CSR reserved addresses: (64): 0x8200..0x83f8
 * CSR align addresses: ===========================================================================================================
 * SSO_IQ_CNTX = SSO Input Queue Count Register
 *               (one per QOS level)
 *
 * Contains a read-only count of the number of work queue entries for each QOS
 * level. Counts both in-unit and in-memory entries.
 */
union cvmx_sso_iq_cntx {
	uint64_t u64;
	struct cvmx_sso_iq_cntx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t iq_cnt                       : 32; /**< Input queue count for QOS level X */
#else
	uint64_t iq_cnt                       : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_iq_cntx_s             cn68xx;
	struct cvmx_sso_iq_cntx_s             cn68xxp1;
};
typedef union cvmx_sso_iq_cntx cvmx_sso_iq_cntx_t;

/**
 * cvmx_sso_iq_com_cnt
 *
 * SSO_IQ_COM_CNT = SSO Input Queue Combined Count Register
 *
 * Contains a read-only count of the total number of work queue entries in all
 * QOS levels.  Counts both in-unit and in-memory entries.
 */
union cvmx_sso_iq_com_cnt {
	uint64_t u64;
	struct cvmx_sso_iq_com_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t iq_cnt                       : 32; /**< Input queue combined count */
#else
	uint64_t iq_cnt                       : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_iq_com_cnt_s          cn68xx;
	struct cvmx_sso_iq_com_cnt_s          cn68xxp1;
};
typedef union cvmx_sso_iq_com_cnt cvmx_sso_iq_com_cnt_t;

/**
 * cvmx_sso_iq_int
 *
 * SSO_IQ_INT = SSO Input Queue Interrupt Register
 *
 * Contains the bits (one per QOS level) that can trigger the input queue
 * interrupt.  An IQ_INT bit will be set if SSO_IQ_CNT#QOS# changes and the
 * resulting value is equal to SSO_IQ_THR#QOS#.
 */
union cvmx_sso_iq_int {
	uint64_t u64;
	struct cvmx_sso_iq_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t iq_int                       : 8;  /**< Input queue interrupt bits */
#else
	uint64_t iq_int                       : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_sso_iq_int_s              cn68xx;
	struct cvmx_sso_iq_int_s              cn68xxp1;
};
typedef union cvmx_sso_iq_int cvmx_sso_iq_int_t;

/**
 * cvmx_sso_iq_int_en
 *
 * SSO_IQ_INT_EN = SSO Input Queue Interrupt Enable Register
 *
 * Contains the bits (one per QOS level) that enable the input queue interrupt.
 */
union cvmx_sso_iq_int_en {
	uint64_t u64;
	struct cvmx_sso_iq_int_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t int_en                       : 8;  /**< Input queue interrupt enable bits */
#else
	uint64_t int_en                       : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_sso_iq_int_en_s           cn68xx;
	struct cvmx_sso_iq_int_en_s           cn68xxp1;
};
typedef union cvmx_sso_iq_int_en cvmx_sso_iq_int_en_t;

/**
 * cvmx_sso_iq_thr#
 *
 * CSR reserved addresses: (24): 0x9040..0x90f8
 * CSR align addresses: ===========================================================================================================
 * SSO_IQ_THRX = SSO Input Queue Threshold Register
 *               (one per QOS level)
 *
 * Threshold value for triggering input queue interrupts.
 */
union cvmx_sso_iq_thrx {
	uint64_t u64;
	struct cvmx_sso_iq_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t iq_thr                       : 32; /**< Input queue threshold for QOS level X */
#else
	uint64_t iq_thr                       : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_iq_thrx_s             cn68xx;
	struct cvmx_sso_iq_thrx_s             cn68xxp1;
};
typedef union cvmx_sso_iq_thrx cvmx_sso_iq_thrx_t;

/**
 * cvmx_sso_nos_cnt
 *
 * SSO_NOS_CNT = SSO No-schedule Count Register
 *
 * Contains the number of work queue entries on the no-schedule list.
 */
union cvmx_sso_nos_cnt {
	uint64_t u64;
	struct cvmx_sso_nos_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_12_63               : 52;
	uint64_t nos_cnt                      : 12; /**< Number of work queue entries on the no-schedule list */
#else
	uint64_t nos_cnt                      : 12;
	uint64_t reserved_12_63               : 52;
#endif
	} s;
	struct cvmx_sso_nos_cnt_s             cn68xx;
	struct cvmx_sso_nos_cnt_s             cn68xxp1;
};
typedef union cvmx_sso_nos_cnt cvmx_sso_nos_cnt_t;

/**
 * cvmx_sso_nw_tim
 *
 * SSO_NW_TIM = SSO New Work Timer Period Register
 *
 * Sets the minimum period for a new work request timeout.  Period is specified
 * in n-1 notation where the increment value is 1024 clock cycles.  Thus, a
 * value of 0x0 in this register translates to 1024 cycles, 0x1 translates to
 * 2048 cycles, 0x2 translates to 3072 cycles, etc...  Note: the maximum period
 * for a new work request timeout is 2 times the minimum period.  Note: the new
 * work request timeout counter is reset when this register is written.
 *
 * There are two new work request timeout cases:
 *
 * - WAIT bit clear.  The new work request can timeout if the timer expires
 *   before the pre-fetch engine has reached the end of all work queues.  This
 *   can occur if the executable work queue entry is deep in the queue and the
 *   pre-fetch engine is subject to many resets (i.e. high switch, de-schedule,
 *   or new work load from other PP's).  Thus, it is possible for a PP to
 *   receive a work response with the NO_WORK bit set even though there was at
 *   least one executable entry in the work queues.  The other (and typical)
 *   scenario for receiving a NO_WORK response with the WAIT bit clear is that
 *   the pre-fetch engine has reached the end of all work queues without
 *   finding executable work.
 *
 * - WAIT bit set.  The new work request can timeout if the timer expires
 *   before the pre-fetch engine has found executable work.  In this case, the
 *   only scenario where the PP will receive a work response with the NO_WORK
 *   bit set is if the timer expires.  Note: it is still possible for a PP to
 *   receive a NO_WORK response even though there was at least one executable
 *   entry in the work queues.
 *
 * In either case, it's important to note that switches and de-schedules are
 * higher priority operations that can cause the pre-fetch engine to reset.
 * Thus in a system with many switches or de-schedules occurring, it's possible
 * for the new work timer to expire (resulting in NO_WORK responses) before the
 * pre-fetch engine is able to get very deep into the work queues.
 */
union cvmx_sso_nw_tim {
	uint64_t u64;
	struct cvmx_sso_nw_tim_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_10_63               : 54;
	uint64_t nw_tim                       : 10; /**< New work timer period */
#else
	uint64_t nw_tim                       : 10;
	uint64_t reserved_10_63               : 54;
#endif
	} s;
	struct cvmx_sso_nw_tim_s              cn68xx;
	struct cvmx_sso_nw_tim_s              cn68xxp1;
};
typedef union cvmx_sso_nw_tim cvmx_sso_nw_tim_t;

/**
 * cvmx_sso_oth_ecc_ctl
 *
 * SSO_OTH_ECC_CTL = SSO OTH ECC Control
 *
 */
union cvmx_sso_oth_ecc_ctl {
	uint64_t u64;
	struct cvmx_sso_oth_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_6_63                : 58;
	uint64_t flip_synd1                   : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the odd OTH RAM. */
	uint64_t ecc_ena1                     : 1;  /**< ECC Enable: When set will enable the 7 bit ECC
                                                         correct logic for the odd OTH RAM. */
	uint64_t flip_synd0                   : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the even OTH RAM. */
	uint64_t ecc_ena0                     : 1;  /**< ECC Enable: When set will enable the 7 bit ECC
                                                         correct logic for the even OTH RAM. */
#else
	uint64_t ecc_ena0                     : 1;
	uint64_t flip_synd0                   : 2;
	uint64_t ecc_ena1                     : 1;
	uint64_t flip_synd1                   : 2;
	uint64_t reserved_6_63                : 58;
#endif
	} s;
	struct cvmx_sso_oth_ecc_ctl_s         cn68xx;
	struct cvmx_sso_oth_ecc_ctl_s         cn68xxp1;
};
typedef union cvmx_sso_oth_ecc_ctl cvmx_sso_oth_ecc_ctl_t;

/**
 * cvmx_sso_oth_ecc_st
 *
 * SSO_OTH_ECC_ST = SSO OTH ECC Status
 *
 */
union cvmx_sso_oth_ecc_st {
	uint64_t u64;
	struct cvmx_sso_oth_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_59_63               : 5;
	uint64_t addr1                        : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the odd OTH RAM */
	uint64_t reserved_43_47               : 5;
	uint64_t syndrom1                     : 7;  /**< Report the latest error syndrom for the odd
                                                         OTH RAM */
	uint64_t reserved_27_35               : 9;
	uint64_t addr0                        : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the even OTH RAM */
	uint64_t reserved_11_15               : 5;
	uint64_t syndrom0                     : 7;  /**< Report the latest error syndrom for the even
                                                         OTH RAM */
	uint64_t reserved_0_3                 : 4;
#else
	uint64_t reserved_0_3                 : 4;
	uint64_t syndrom0                     : 7;
	uint64_t reserved_11_15               : 5;
	uint64_t addr0                        : 11;
	uint64_t reserved_27_35               : 9;
	uint64_t syndrom1                     : 7;
	uint64_t reserved_43_47               : 5;
	uint64_t addr1                        : 11;
	uint64_t reserved_59_63               : 5;
#endif
	} s;
	struct cvmx_sso_oth_ecc_st_s          cn68xx;
	struct cvmx_sso_oth_ecc_st_s          cn68xxp1;
};
typedef union cvmx_sso_oth_ecc_st cvmx_sso_oth_ecc_st_t;

/**
 * cvmx_sso_pnd_ecc_ctl
 *
 * SSO_PND_ECC_CTL = SSO PND ECC Control
 *
 */
union cvmx_sso_pnd_ecc_ctl {
	uint64_t u64;
	struct cvmx_sso_pnd_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_6_63                : 58;
	uint64_t flip_synd1                   : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the odd PND RAM. */
	uint64_t ecc_ena1                     : 1;  /**< ECC Enable: When set will enable the 7 bit ECC
                                                         correct logic for the odd PND RAM. */
	uint64_t flip_synd0                   : 2;  /**< Testing feature. Flip Syndrom to generate single or
                                                         double bit error for the even PND RAM. */
	uint64_t ecc_ena0                     : 1;  /**< ECC Enable: When set will enable the 7 bit ECC
                                                         correct logic for the even PND RAM. */
#else
	uint64_t ecc_ena0                     : 1;
	uint64_t flip_synd0                   : 2;
	uint64_t ecc_ena1                     : 1;
	uint64_t flip_synd1                   : 2;
	uint64_t reserved_6_63                : 58;
#endif
	} s;
	struct cvmx_sso_pnd_ecc_ctl_s         cn68xx;
	struct cvmx_sso_pnd_ecc_ctl_s         cn68xxp1;
};
typedef union cvmx_sso_pnd_ecc_ctl cvmx_sso_pnd_ecc_ctl_t;

/**
 * cvmx_sso_pnd_ecc_st
 *
 * SSO_PND_ECC_ST = SSO PND ECC Status
 *
 */
union cvmx_sso_pnd_ecc_st {
	uint64_t u64;
	struct cvmx_sso_pnd_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_59_63               : 5;
	uint64_t addr1                        : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the odd PND RAM */
	uint64_t reserved_43_47               : 5;
	uint64_t syndrom1                     : 7;  /**< Report the latest error syndrom for the odd
                                                         PND RAM */
	uint64_t reserved_27_35               : 9;
	uint64_t addr0                        : 11; /**< Latch the address for latest sde/dbe occured
                                                         for the even PND RAM */
	uint64_t reserved_11_15               : 5;
	uint64_t syndrom0                     : 7;  /**< Report the latest error syndrom for the even
                                                         PND RAM */
	uint64_t reserved_0_3                 : 4;
#else
	uint64_t reserved_0_3                 : 4;
	uint64_t syndrom0                     : 7;
	uint64_t reserved_11_15               : 5;
	uint64_t addr0                        : 11;
	uint64_t reserved_27_35               : 9;
	uint64_t syndrom1                     : 7;
	uint64_t reserved_43_47               : 5;
	uint64_t addr1                        : 11;
	uint64_t reserved_59_63               : 5;
#endif
	} s;
	struct cvmx_sso_pnd_ecc_st_s          cn68xx;
	struct cvmx_sso_pnd_ecc_st_s          cn68xxp1;
};
typedef union cvmx_sso_pnd_ecc_st cvmx_sso_pnd_ecc_st_t;

/**
 * cvmx_sso_pp#_grp_msk
 *
 * CSR reserved addresses: (24): 0x5040..0x50f8
 * CSR align addresses: ===========================================================================================================
 * SSO_PPX_GRP_MSK = SSO PP Group Mask Register
 *                   (one bit per group per PP)
 *
 * Selects which group(s) a PP belongs to.  A '1' in any bit position sets the
 * PP's membership in the corresponding group.  A value of 0x0 will prevent the
 * PP from receiving new work.
 *
 * Note that these do not contain QOS level priorities for each PP.  This is a
 * change from previous POW designs.
 */
union cvmx_sso_ppx_grp_msk {
	uint64_t u64;
	struct cvmx_sso_ppx_grp_msk_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t grp_msk                      : 64; /**< PPX group mask */
#else
	uint64_t grp_msk                      : 64;
#endif
	} s;
	struct cvmx_sso_ppx_grp_msk_s         cn68xx;
	struct cvmx_sso_ppx_grp_msk_s         cn68xxp1;
};
typedef union cvmx_sso_ppx_grp_msk cvmx_sso_ppx_grp_msk_t;

/**
 * cvmx_sso_pp#_qos_pri
 *
 * CSR reserved addresses: (56): 0x2040..0x21f8
 * CSR align addresses: ===========================================================================================================
 * SSO_PP(0..31)_QOS_PRI = SSO PP QOS Priority Register
 *                                (one field per IQ per PP)
 *
 * Contains the QOS level priorities for each PP.
 *      0x0       is the highest priority
 *      0x7       is the lowest priority
 *      0xf       prevents the PP from receiving work from that QOS level
 *      0x8-0xe   Reserved
 *
 * For a given PP, priorities should begin at 0x0, and remain contiguous
 * throughout the range.  Failure to do so may result in severe
 * performance degradation.
 *
 *
 * Priorities for IQs 0..7
 */
union cvmx_sso_ppx_qos_pri {
	uint64_t u64;
	struct cvmx_sso_ppx_qos_pri_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_60_63               : 4;
	uint64_t qos7_pri                     : 4;  /**< QOS7 priority for PPX */
	uint64_t reserved_52_55               : 4;
	uint64_t qos6_pri                     : 4;  /**< QOS6 priority for PPX */
	uint64_t reserved_44_47               : 4;
	uint64_t qos5_pri                     : 4;  /**< QOS5 priority for PPX */
	uint64_t reserved_36_39               : 4;
	uint64_t qos4_pri                     : 4;  /**< QOS4 priority for PPX */
	uint64_t reserved_28_31               : 4;
	uint64_t qos3_pri                     : 4;  /**< QOS3 priority for PPX */
	uint64_t reserved_20_23               : 4;
	uint64_t qos2_pri                     : 4;  /**< QOS2 priority for PPX */
	uint64_t reserved_12_15               : 4;
	uint64_t qos1_pri                     : 4;  /**< QOS1 priority for PPX */
	uint64_t reserved_4_7                 : 4;
	uint64_t qos0_pri                     : 4;  /**< QOS0 priority for PPX */
#else
	uint64_t qos0_pri                     : 4;
	uint64_t reserved_4_7                 : 4;
	uint64_t qos1_pri                     : 4;
	uint64_t reserved_12_15               : 4;
	uint64_t qos2_pri                     : 4;
	uint64_t reserved_20_23               : 4;
	uint64_t qos3_pri                     : 4;
	uint64_t reserved_28_31               : 4;
	uint64_t qos4_pri                     : 4;
	uint64_t reserved_36_39               : 4;
	uint64_t qos5_pri                     : 4;
	uint64_t reserved_44_47               : 4;
	uint64_t qos6_pri                     : 4;
	uint64_t reserved_52_55               : 4;
	uint64_t qos7_pri                     : 4;
	uint64_t reserved_60_63               : 4;
#endif
	} s;
	struct cvmx_sso_ppx_qos_pri_s         cn68xx;
	struct cvmx_sso_ppx_qos_pri_s         cn68xxp1;
};
typedef union cvmx_sso_ppx_qos_pri cvmx_sso_ppx_qos_pri_t;

/**
 * cvmx_sso_pp_strict
 *
 * SSO_PP_STRICT = SSO Strict Priority
 *
 * This register controls getting work from the input queues.  If the bit
 * corresponding to a PP is set, that PP will not take work off the input
 * queues until it is known that there is no higher-priority work available.
 *
 * Setting SSO_PP_STRICT may incur a performance penalty if highest-priority
 * work is not found early.
 *
 * It is possible to starve a PP of work with SSO_PP_STRICT.  If the
 * SSO_PPX_GRP_MSK for a PP masks-out much of the work added to the input
 * queues that are higher-priority for that PP, and if there is a constant
 * stream of work through one or more of those higher-priority input queues,
 * then that PP may not accept work from lower-priority input queues.  This can
 * be alleviated by ensuring that most or all the work added to the
 * higher-priority input queues for a PP with SSO_PP_STRICT set are in a group
 * acceptable to that PP.
 *
 * It is also possible to neglect work in an input queue if SSO_PP_STRICT is
 * used.  If an input queue is a lower-priority queue for all PPs, and if all
 * the PPs have their corresponding bit in SSO_PP_STRICT set, then work may
 * never be taken (or be seldom taken) from that queue.  This can be alleviated
 * by ensuring that work in all input queues can be serviced by one or more PPs
 * that do not have SSO_PP_STRICT set, or that the input queue is the
 * highest-priority input queue for one or more PPs that do have SSO_PP_STRICT
 * set.
 */
union cvmx_sso_pp_strict {
	uint64_t u64;
	struct cvmx_sso_pp_strict_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t pp_strict                    : 32; /**< Corresponding PP operates in strict mode. */
#else
	uint64_t pp_strict                    : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_pp_strict_s           cn68xx;
	struct cvmx_sso_pp_strict_s           cn68xxp1;
};
typedef union cvmx_sso_pp_strict cvmx_sso_pp_strict_t;

/**
 * cvmx_sso_qos#_rnd
 *
 * CSR align addresses: ===========================================================================================================
 * SSO_QOS(0..7)_RND = SSO QOS Issue Round Register
 *                (one per IQ)
 *
 * The number of arbitration rounds each QOS level participates in.
 */
union cvmx_sso_qosx_rnd {
	uint64_t u64;
	struct cvmx_sso_qosx_rnd_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t rnds_qos                     : 8;  /**< Number of rounds to participate in for IQ(X). */
#else
	uint64_t rnds_qos                     : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_sso_qosx_rnd_s            cn68xx;
	struct cvmx_sso_qosx_rnd_s            cn68xxp1;
};
typedef union cvmx_sso_qosx_rnd cvmx_sso_qosx_rnd_t;

/**
 * cvmx_sso_qos_thr#
 *
 * CSR reserved addresses: (24): 0xa040..0xa0f8
 * CSR align addresses: ===========================================================================================================
 * SSO_QOS_THRX = SSO QOS Threshold Register
 *                (one per QOS level)
 *
 * Contains the thresholds for allocating SSO internal storage buffers.  If the
 * number of remaining free buffers drops below the minimum threshold (MIN_THR)
 * or the number of allocated buffers for this QOS level rises above the
 * maximum threshold (MAX_THR), future incoming work queue entries will be
 * buffered externally rather than internally.  This register also contains the
 * number of internal buffers currently allocated to this QOS level (BUF_CNT).
 */
union cvmx_sso_qos_thrx {
	uint64_t u64;
	struct cvmx_sso_qos_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_40_63               : 24;
	uint64_t buf_cnt                      : 12; /**< # of internal buffers allocated to QOS level X */
	uint64_t reserved_26_27               : 2;
	uint64_t max_thr                      : 12; /**< Max threshold for QOS level X
                                                         For performance reasons, MAX_THR can have a slop of 4
                                                         WQE for QOS level X. */
	uint64_t reserved_12_13               : 2;
	uint64_t min_thr                      : 12; /**< Min threshold for QOS level X
                                                         For performance reasons, MIN_THR can have a slop of 4
                                                         WQEs for QOS level X. */
#else
	uint64_t min_thr                      : 12;
	uint64_t reserved_12_13               : 2;
	uint64_t max_thr                      : 12;
	uint64_t reserved_26_27               : 2;
	uint64_t buf_cnt                      : 12;
	uint64_t reserved_40_63               : 24;
#endif
	} s;
	struct cvmx_sso_qos_thrx_s            cn68xx;
	struct cvmx_sso_qos_thrx_s            cn68xxp1;
};
typedef union cvmx_sso_qos_thrx cvmx_sso_qos_thrx_t;

/**
 * cvmx_sso_qos_we
 *
 * SSO_QOS_WE = SSO WE Buffers
 *
 * This register contains a read-only count of the current number of free
 * buffers (FREE_CNT) and the total number of tag chain heads on the de-schedule list
 * (DES_CNT) (which is not the same as the total number of entries on all of the descheduled
 * tag chains.)
 */
union cvmx_sso_qos_we {
	uint64_t u64;
	struct cvmx_sso_qos_we_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_26_63               : 38;
	uint64_t des_cnt                      : 12; /**< Number of buffers on de-schedule list */
	uint64_t reserved_12_13               : 2;
	uint64_t free_cnt                     : 12; /**< Number of total free buffers */
#else
	uint64_t free_cnt                     : 12;
	uint64_t reserved_12_13               : 2;
	uint64_t des_cnt                      : 12;
	uint64_t reserved_26_63               : 38;
#endif
	} s;
	struct cvmx_sso_qos_we_s              cn68xx;
	struct cvmx_sso_qos_we_s              cn68xxp1;
};
typedef union cvmx_sso_qos_we cvmx_sso_qos_we_t;

/**
 * cvmx_sso_reset
 *
 * SSO_RESET = SSO Soft Reset
 *
 * Writing a one to SSO_RESET[RESET] will reset the SSO.  After receiving a
 * store to this CSR, the SSO must not be sent any other operations for 2500
 * sclk cycles.
 *
 * Note that the contents of this register are reset along with the rest of the
 * SSO.
 *
 * IMPLEMENTATION NOTES--NOT FOR SPEC:
 *      The SSO must return the bus credit associated with the CSR store used
 *      to write this register before reseting itself.  And the RSL tree
 *      that passes through the SSO must continue to work for RSL operations
 *      that do not target the SSO itself.
 */
union cvmx_sso_reset {
	uint64_t u64;
	struct cvmx_sso_reset_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_1_63                : 63;
	uint64_t reset                        : 1;  /**< Reset the SSO */
#else
	uint64_t reset                        : 1;
	uint64_t reserved_1_63                : 63;
#endif
	} s;
	struct cvmx_sso_reset_s               cn68xx;
};
typedef union cvmx_sso_reset cvmx_sso_reset_t;

/**
 * cvmx_sso_rwq_head_ptr#
 *
 * CSR reserved addresses: (24): 0xb040..0xb0f8
 * CSR align addresses: ===========================================================================================================
 * SSO_RWQ_HEAD_PTRX = SSO Remote Queue Head Register
 *                (one per QOS level)
 * Contains the ptr to the first entry of the remote linked list(s) for a particular
 * QoS level. SW should initialize the remote linked list(s) by programming
 * SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values.
 */
union cvmx_sso_rwq_head_ptrx {
	uint64_t u64;
	struct cvmx_sso_rwq_head_ptrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_38_63               : 26;
	uint64_t ptr                          : 31; /**< Head Pointer */
	uint64_t reserved_5_6                 : 2;
	uint64_t rctr                         : 5;  /**< Index of next WQE entry in fill packet to be
                                                         processed (inbound queues) */
#else
	uint64_t rctr                         : 5;
	uint64_t reserved_5_6                 : 2;
	uint64_t ptr                          : 31;
	uint64_t reserved_38_63               : 26;
#endif
	} s;
	struct cvmx_sso_rwq_head_ptrx_s       cn68xx;
	struct cvmx_sso_rwq_head_ptrx_s       cn68xxp1;
};
typedef union cvmx_sso_rwq_head_ptrx cvmx_sso_rwq_head_ptrx_t;

/**
 * cvmx_sso_rwq_pop_fptr
 *
 * SSO_RWQ_POP_FPTR = SSO Pop Free Pointer
 *
 * This register is used by SW to remove pointers for buffer-reallocation and diagnostics, and
 * should only be used when SSO is idle.
 *
 * To remove ALL pointers, software must insure that there are modulus 16
 * pointers in the FPA.  To do this, SSO_CFG.RWQ_BYP_DIS must be set, the FPA
 * pointer count read, and enough fake buffers pushed via SSO_RWQ_PSH_FPTR to
 * bring the FPA pointer count up to mod 16.
 */
union cvmx_sso_rwq_pop_fptr {
	uint64_t u64;
	struct cvmx_sso_rwq_pop_fptr_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t val                          : 1;  /**< Free Pointer Valid */
	uint64_t cnt                          : 6;  /**< fptr_in count */
	uint64_t reserved_38_56               : 19;
	uint64_t fptr                         : 31; /**< Free Pointer */
	uint64_t reserved_0_6                 : 7;
#else
	uint64_t reserved_0_6                 : 7;
	uint64_t fptr                         : 31;
	uint64_t reserved_38_56               : 19;
	uint64_t cnt                          : 6;
	uint64_t val                          : 1;
#endif
	} s;
	struct cvmx_sso_rwq_pop_fptr_s        cn68xx;
	struct cvmx_sso_rwq_pop_fptr_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t val                          : 1;  /**< Free Pointer Valid */
	uint64_t reserved_38_62               : 25;
	uint64_t fptr                         : 31; /**< Free Pointer */
	uint64_t reserved_0_6                 : 7;
#else
	uint64_t reserved_0_6                 : 7;
	uint64_t fptr                         : 31;
	uint64_t reserved_38_62               : 25;
	uint64_t val                          : 1;
#endif
	} cn68xxp1;
};
typedef union cvmx_sso_rwq_pop_fptr cvmx_sso_rwq_pop_fptr_t;

/**
 * cvmx_sso_rwq_psh_fptr
 *
 * CSR reserved addresses: (56): 0xc240..0xc3f8
 * SSO_RWQ_PSH_FPTR = SSO Free Pointer FIFO
 *
 * This register is used by SW to initialize the SSO with a pool of free
 * pointers by writing the FPTR field whenever FULL = 0. Free pointers are
 * fetched/released from/to the pool when accessing WQE entries stored remotely
 * (in remote linked lists).  Free pointers should be 128 byte aligned, each of
 * 256 bytes. This register should only be used when SSO is idle.
 *
 * Software needs to set aside buffering for
 *      8 + 48 + ROUNDUP(N/26)
 *
 * where as many as N DRAM work queue entries may be used.  The first 8 buffers
 * are used to setup the SSO_RWQ_HEAD_PTR and SSO_RWQ_TAIL_PTRs, and the
 * remainder are pushed via this register.
 *
 * IMPLEMENTATION NOTES--NOT FOR SPEC:
 *      48 avoids false out of buffer error due to (16) FPA and in-sso FPA buffering (32)
 *      26 is number of WAE's per 256B buffer
 */
union cvmx_sso_rwq_psh_fptr {
	uint64_t u64;
	struct cvmx_sso_rwq_psh_fptr_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t full                         : 1;  /**< FIFO Full.  When set, the FPA is busy writing entries
                                                         and software must wait before adding new entries. */
	uint64_t cnt                          : 4;  /**< fptr_out count */
	uint64_t reserved_38_58               : 21;
	uint64_t fptr                         : 31; /**< Free Pointer */
	uint64_t reserved_0_6                 : 7;
#else
	uint64_t reserved_0_6                 : 7;
	uint64_t fptr                         : 31;
	uint64_t reserved_38_58               : 21;
	uint64_t cnt                          : 4;
	uint64_t full                         : 1;
#endif
	} s;
	struct cvmx_sso_rwq_psh_fptr_s        cn68xx;
	struct cvmx_sso_rwq_psh_fptr_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t full                         : 1;  /**< FIFO Full.  When set, the FPA is busy writing entries
                                                         and software must wait before adding new entries. */
	uint64_t reserved_38_62               : 25;
	uint64_t fptr                         : 31; /**< Free Pointer */
	uint64_t reserved_0_6                 : 7;
#else
	uint64_t reserved_0_6                 : 7;
	uint64_t fptr                         : 31;
	uint64_t reserved_38_62               : 25;
	uint64_t full                         : 1;
#endif
	} cn68xxp1;
};
typedef union cvmx_sso_rwq_psh_fptr cvmx_sso_rwq_psh_fptr_t;

/**
 * cvmx_sso_rwq_tail_ptr#
 *
 * CSR reserved addresses: (56): 0xc040..0xc1f8
 * SSO_RWQ_TAIL_PTRX = SSO Remote Queue Tail Register
 *                (one per QOS level)
 * Contains the ptr to the last entry of the remote linked list(s) for a particular
 * QoS level. SW must initialize the remote linked list(s) by programming
 * SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values.
 */
union cvmx_sso_rwq_tail_ptrx {
	uint64_t u64;
	struct cvmx_sso_rwq_tail_ptrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_38_63               : 26;
	uint64_t ptr                          : 31; /**< Tail Pointer */
	uint64_t reserved_5_6                 : 2;
	uint64_t rctr                         : 5;  /**< Number of entries waiting to be sent out to external
                                                         RAM (outbound queues) */
#else
	uint64_t rctr                         : 5;
	uint64_t reserved_5_6                 : 2;
	uint64_t ptr                          : 31;
	uint64_t reserved_38_63               : 26;
#endif
	} s;
	struct cvmx_sso_rwq_tail_ptrx_s       cn68xx;
	struct cvmx_sso_rwq_tail_ptrx_s       cn68xxp1;
};
typedef union cvmx_sso_rwq_tail_ptrx cvmx_sso_rwq_tail_ptrx_t;

/**
 * cvmx_sso_ts_pc
 *
 * SSO_TS_PC = SSO Tag Switch Performance Counter
 *
 * Counts the number of tag switch requests.
 * Counter rolls over through zero when max value exceeded.
 */
union cvmx_sso_ts_pc {
	uint64_t u64;
	struct cvmx_sso_ts_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t ts_pc                        : 64; /**< Tag switch performance counter */
#else
	uint64_t ts_pc                        : 64;
#endif
	} s;
	struct cvmx_sso_ts_pc_s               cn68xx;
	struct cvmx_sso_ts_pc_s               cn68xxp1;
};
typedef union cvmx_sso_ts_pc cvmx_sso_ts_pc_t;

/**
 * cvmx_sso_wa_com_pc
 *
 * SSO_WA_COM_PC = SSO Work Add Combined Performance Counter
 *
 * Counts the number of add new work requests for all QOS levels.
 * Counter rolls over through zero when max value exceeded.
 */
union cvmx_sso_wa_com_pc {
	uint64_t u64;
	struct cvmx_sso_wa_com_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t wa_pc                        : 64; /**< Work add combined performance counter */
#else
	uint64_t wa_pc                        : 64;
#endif
	} s;
	struct cvmx_sso_wa_com_pc_s           cn68xx;
	struct cvmx_sso_wa_com_pc_s           cn68xxp1;
};
typedef union cvmx_sso_wa_com_pc cvmx_sso_wa_com_pc_t;

/**
 * cvmx_sso_wa_pc#
 *
 * CSR reserved addresses: (64): 0x4200..0x43f8
 * CSR align addresses: ===========================================================================================================
 * SSO_WA_PCX = SSO Work Add Performance Counter
 *             (one per QOS level)
 *
 * Counts the number of add new work requests for each QOS level.
 * Counter rolls over through zero when max value exceeded.
 */
union cvmx_sso_wa_pcx {
	uint64_t u64;
	struct cvmx_sso_wa_pcx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t wa_pc                        : 64; /**< Work add performance counter for QOS level X */
#else
	uint64_t wa_pc                        : 64;
#endif
	} s;
	struct cvmx_sso_wa_pcx_s              cn68xx;
	struct cvmx_sso_wa_pcx_s              cn68xxp1;
};
typedef union cvmx_sso_wa_pcx cvmx_sso_wa_pcx_t;

/**
 * cvmx_sso_wq_int
 *
 * Note, the old POW offsets ran from 0x0 to 0x3f8, leaving the next available slot at 0x400.
 * To ensure no overlap, start on 4k boundary: 0x1000.
 * SSO_WQ_INT = SSO Work Queue Interrupt Register
 *
 * Contains the bits (one per group) that set work queue interrupts and are
 * used to clear these interrupts.  For more information regarding this
 * register, see the interrupt section of the SSO spec.
 */
union cvmx_sso_wq_int {
	uint64_t u64;
	struct cvmx_sso_wq_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t wq_int                       : 64; /**< Work queue interrupt bits
                                                         Corresponding WQ_INT bit is set by HW whenever:
                                                           - SSO_WQ_INT_CNTX[IQ_CNT] >=
                                                             SSO_WQ_INT_THRX[IQ_THR] and the threshold
                                                             interrupt is not disabled.
                                                             SSO_WQ_IQ_DISX[IQ_DIS<X>]==1 disables the interrupt
                                                             SSO_WQ_INT_THRX[IQ_THR]==0 disables the int.
                                                           - SSO_WQ_INT_CNTX[DS_CNT] >=
                                                             SSO_WQ_INT_THRX[DS_THR] and the threshold
                                                             interrupt is not disabled
                                                             SSO_WQ_INT_THRX[DS_THR]==0 disables the int.
                                                           - SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic
                                                             counter SSO_WQ_INT_PC[PC]==0 and
                                                             SSO_WQ_INT_THRX[TC_EN]==1 and at least one of:
                                                               - SSO_WQ_INT_CNTX[IQ_CNT] > 0
                                                               - SSO_WQ_INT_CNTX[DS_CNT] > 0 */
#else
	uint64_t wq_int                       : 64;
#endif
	} s;
	struct cvmx_sso_wq_int_s              cn68xx;
	struct cvmx_sso_wq_int_s              cn68xxp1;
};
typedef union cvmx_sso_wq_int cvmx_sso_wq_int_t;

/**
 * cvmx_sso_wq_int_cnt#
 *
 * CSR reserved addresses: (64): 0x7200..0x73f8
 * CSR align addresses: ===========================================================================================================
 * SSO_WQ_INT_CNTX = SSO Work Queue Interrupt Count Register
 *                   (one per group)
 *
 * Contains a read-only copy of the counts used to trigger work queue
 * interrupts.  For more information regarding this register, see the interrupt
 * section.
 */
union cvmx_sso_wq_int_cntx {
	uint64_t u64;
	struct cvmx_sso_wq_int_cntx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t tc_cnt                       : 4;  /**< Time counter current value for group X
                                                         HW sets TC_CNT to SSO_WQ_INT_THRX[TC_THR] whenever:
                                                           - corresponding SSO_WQ_INT_CNTX[IQ_CNT]==0 and
                                                             corresponding SSO_WQ_INT_CNTX[DS_CNT]==0
                                                           - corresponding SSO_WQ_INT[WQ_INT<X>] is written
                                                             with a 1 by SW
                                                           - corresponding SSO_WQ_IQ_DIS[IQ_DIS<X>] is written
                                                             with a 1 by SW
                                                           - corresponding SSO_WQ_INT_THRX is written by SW
                                                           - TC_CNT==1 and periodic counter
                                                             SSO_WQ_INT_PC[PC]==0
                                                         Otherwise, HW decrements TC_CNT whenever the
                                                         periodic counter SSO_WQ_INT_PC[PC]==0.
                                                         TC_CNT is 0 whenever SSO_WQ_INT_THRX[TC_THR]==0. */
	uint64_t reserved_26_27               : 2;
	uint64_t ds_cnt                       : 12; /**< De-schedule executable count for group X */
	uint64_t reserved_12_13               : 2;
	uint64_t iq_cnt                       : 12; /**< Input queue executable count for group X */
#else
	uint64_t iq_cnt                       : 12;
	uint64_t reserved_12_13               : 2;
	uint64_t ds_cnt                       : 12;
	uint64_t reserved_26_27               : 2;
	uint64_t tc_cnt                       : 4;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_sso_wq_int_cntx_s         cn68xx;
	struct cvmx_sso_wq_int_cntx_s         cn68xxp1;
};
typedef union cvmx_sso_wq_int_cntx cvmx_sso_wq_int_cntx_t;

/**
 * cvmx_sso_wq_int_pc
 *
 * CSR reserved addresses: (1): 0x1018..0x1018
 * SSO_WQ_INT_PC = SSO Work Queue Interrupt Periodic Counter Register
 *
 * Contains the threshold value for the work queue interrupt periodic counter
 * and also a read-only copy of the periodic counter.  For more information
 * regarding this register, see the interrupt section.
 */
union cvmx_sso_wq_int_pc {
	uint64_t u64;
	struct cvmx_sso_wq_int_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_60_63               : 4;
	uint64_t pc                           : 28; /**< Work queue interrupt periodic counter */
	uint64_t reserved_28_31               : 4;
	uint64_t pc_thr                       : 20; /**< Work queue interrupt periodic counter threshold */
	uint64_t reserved_0_7                 : 8;
#else
	uint64_t reserved_0_7                 : 8;
	uint64_t pc_thr                       : 20;
	uint64_t reserved_28_31               : 4;
	uint64_t pc                           : 28;
	uint64_t reserved_60_63               : 4;
#endif
	} s;
	struct cvmx_sso_wq_int_pc_s           cn68xx;
	struct cvmx_sso_wq_int_pc_s           cn68xxp1;
};
typedef union cvmx_sso_wq_int_pc cvmx_sso_wq_int_pc_t;

/**
 * cvmx_sso_wq_int_thr#
 *
 * CSR reserved addresses: (96): 0x6100..0x63f8
 * CSR align addresses: ===========================================================================================================
 * SSO_WQ_INT_THR(0..63) = SSO Work Queue Interrupt Threshold Registers
 *                         (one per group)
 *
 * Contains the thresholds for enabling and setting work queue interrupts.  For
 * more information, see the interrupt section.
 *
 * Note: Up to 16 of the SSO's internal storage buffers can be allocated
 * for hardware use and are therefore not available for incoming work queue
 * entries.  Additionally, any WS that is not in the EMPTY state consumes a
 * buffer.  Thus in a 32 PP system, it is not advisable to set either IQ_THR or
 * DS_THR to greater than 2048 - 16 - 32*2 = 1968.  Doing so may prevent the
 * interrupt from ever triggering.
 *
 * Priorities for QOS levels 0..7
 */
union cvmx_sso_wq_int_thrx {
	uint64_t u64;
	struct cvmx_sso_wq_int_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_33_63               : 31;
	uint64_t tc_en                        : 1;  /**< Time counter interrupt enable for group X
                                                         TC_EN must be zero when TC_THR==0 */
	uint64_t tc_thr                       : 4;  /**< Time counter interrupt threshold for group X
                                                         When TC_THR==0, SSO_WQ_INT_CNTX[TC_CNT] is zero */
	uint64_t reserved_26_27               : 2;
	uint64_t ds_thr                       : 12; /**< De-schedule count threshold for group X
                                                         DS_THR==0 disables the threshold interrupt */
	uint64_t reserved_12_13               : 2;
	uint64_t iq_thr                       : 12; /**< Input queue count threshold for group X
                                                         IQ_THR==0 disables the threshold interrupt */
#else
	uint64_t iq_thr                       : 12;
	uint64_t reserved_12_13               : 2;
	uint64_t ds_thr                       : 12;
	uint64_t reserved_26_27               : 2;
	uint64_t tc_thr                       : 4;
	uint64_t tc_en                        : 1;
	uint64_t reserved_33_63               : 31;
#endif
	} s;
	struct cvmx_sso_wq_int_thrx_s         cn68xx;
	struct cvmx_sso_wq_int_thrx_s         cn68xxp1;
};
typedef union cvmx_sso_wq_int_thrx cvmx_sso_wq_int_thrx_t;

/**
 * cvmx_sso_wq_iq_dis
 *
 * CSR reserved addresses: (1): 0x1008..0x1008
 * SSO_WQ_IQ_DIS = SSO Input Queue Interrupt Temporary Disable Mask
 *
 * Contains the input queue interrupt temporary disable bits (one per group).
 * For more information regarding this register, see the interrupt section.
 */
union cvmx_sso_wq_iq_dis {
	uint64_t u64;
	struct cvmx_sso_wq_iq_dis_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t iq_dis                       : 64; /**< Input queue interrupt temporary disable mask
                                                         Corresponding SSO_WQ_INTX[WQ_INT<X>] bit cannot be
                                                         set due to IQ_CNT/IQ_THR check when this bit is set.
                                                         Corresponding IQ_DIS bit is cleared by HW whenever:
                                                          - SSO_WQ_INT_CNTX[IQ_CNT] is zero, or
                                                          - SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic
                                                            counter SSO_WQ_INT_PC[PC]==0 */
#else
	uint64_t iq_dis                       : 64;
#endif
	} s;
	struct cvmx_sso_wq_iq_dis_s           cn68xx;
	struct cvmx_sso_wq_iq_dis_s           cn68xxp1;
};
typedef union cvmx_sso_wq_iq_dis cvmx_sso_wq_iq_dis_t;

/**
 * cvmx_sso_ws_pc#
 *
 * CSR reserved addresses: (225): 0x3100..0x3800
 * CSR align addresses: ===========================================================================================================
 * SSO_WS_PCX = SSO Work Schedule Performance Counter
 *              (one per group)
 *
 * Counts the number of work schedules for each group.
 * Counter rolls over through zero when max value exceeded.
 */
union cvmx_sso_ws_pcx {
	uint64_t u64;
	struct cvmx_sso_ws_pcx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t ws_pc                        : 64; /**< Work schedule performance counter for group X */
#else
	uint64_t ws_pc                        : 64;
#endif
	} s;
	struct cvmx_sso_ws_pcx_s              cn68xx;
	struct cvmx_sso_ws_pcx_s              cn68xxp1;
};
typedef union cvmx_sso_ws_pcx cvmx_sso_ws_pcx_t;

#endif