/*-
* SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/**
* @file
*
* @brief This file contains the implementation of the SCIC_SDS_PHY public and
* protected methods.
*/
#include <dev/isci/scil/scic_user_callback.h>
#include <dev/isci/scil/scic_phy.h>
#include <dev/isci/scil/scic_sds_phy.h>
#include <dev/isci/scil/scic_sds_port.h>
#include <dev/isci/scil/scic_sds_controller_registers.h>
#include <dev/isci/scil/scic_sds_phy_registers.h>
#include <dev/isci/scil/scic_sds_logger.h>
#include <dev/isci/scil/scic_sds_remote_node_context.h>
#include <dev/isci/scil/sci_util.h>
#include <dev/isci/scil/scic_sds_controller.h>
#include <dev/isci/scil/scu_event_codes.h>
#include <dev/isci/scil/sci_base_state.h>
#include <dev/isci/scil/intel_ata.h>
#include <dev/isci/scil/intel_sata.h>
#include <dev/isci/scil/sci_base_state_machine.h>
#include <dev/isci/scil/scic_sds_port_registers.h>
#define SCIC_SDS_PHY_MIN_TIMER_COUNT (SCI_MAX_PHYS)
#define SCIC_SDS_PHY_MAX_TIMER_COUNT (SCI_MAX_PHYS)
// Maximum arbitration wait time in micro-seconds
#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
#define AFE_REGISTER_WRITE_DELAY 10
//*****************************************************************************
//* SCIC SDS PHY Internal Methods
//*****************************************************************************
/**
* @brief This method will initialize the phy transport layer registers
*
* @param[in] this_phy
* @param[in] transport_layer_registers
*
* @return SCI_STATUS
*/
static
SCI_STATUS scic_sds_phy_transport_layer_initialization(
SCIC_SDS_PHY_T *this_phy,
SCU_TRANSPORT_LAYER_REGISTERS_T *transport_layer_registers
)
{
U32 tl_control;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
this_phy, transport_layer_registers
));
this_phy->transport_layer_registers = transport_layer_registers;
SCU_STPTLDARNI_WRITE(this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
// Hardware team recommends that we enable the STP prefetch for all transports
tl_control = SCU_TLCR_READ(this_phy);
tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
SCU_TLCR_WRITE(this_phy, tl_control);
return SCI_SUCCESS;
}
/**
* @brief This method will initialize the phy link layer registers
*
* @param[in] this_phy
* @param[in] link_layer_registers
*
* @return SCI_STATUS
*/
static
SCI_STATUS scic_sds_phy_link_layer_initialization(
SCIC_SDS_PHY_T *this_phy,
SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
)
{
U32 phy_configuration;
SAS_CAPABILITIES_T phy_capabilities;
U32 parity_check = 0;
U32 parity_count = 0;
U32 link_layer_control;
U32 phy_timer_timeout_values;
U32 clksm_value = 0;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
this_phy, link_layer_registers
));
this_phy->link_layer_registers = link_layer_registers;
// Set our IDENTIFY frame data
#define SCI_END_DEVICE 0x01
SCU_SAS_TIID_WRITE(
this_phy,
( SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR)
| SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR)
| SCU_SAS_TIID_GEN_BIT(STP_INITIATOR)
| SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST)
| SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE) )
);
// Write the device SAS Address
SCU_SAS_TIDNH_WRITE(this_phy, 0xFEDCBA98);
SCU_SAS_TIDNL_WRITE(this_phy, this_phy->phy_index);
// Write the source SAS Address
SCU_SAS_TISSAH_WRITE(
this_phy,
this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
this_phy->phy_index].sas_address.sci_format.high
);
SCU_SAS_TISSAL_WRITE(
this_phy,
this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
this_phy->phy_index].sas_address.sci_format.low
);
// Clear and Set the PHY Identifier
SCU_SAS_TIPID_WRITE(this_phy, 0x00000000);
SCU_SAS_TIPID_WRITE(this_phy, SCU_SAS_TIPID_GEN_VALUE(ID, this_phy->phy_index));
// Change the initial state of the phy configuration register
phy_configuration = SCU_SAS_PCFG_READ(this_phy);
// Hold OOB state machine in reset
phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
SCU_SAS_PCFG_WRITE(this_phy, phy_configuration);
// Configure the SNW capabilities
phy_capabilities.u.all = 0;
phy_capabilities.u.bits.start = 1;
phy_capabilities.u.bits.gen3_without_ssc_supported = 1;
phy_capabilities.u.bits.gen2_without_ssc_supported = 1;
phy_capabilities.u.bits.gen1_without_ssc_supported = 1;
/*
* Set up SSC settings according to version of OEM Parameters.
*/
{
U8 header_version, enable_sata, enable_sas,
sata_spread, sas_type, sas_spread;
OEM_SSC_PARAMETERS_T ssc;
header_version = this_phy->owning_port->owning_controller->
oem_parameters_version;
ssc.bf.ssc_sata_tx_spread_level =
this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sata_tx_spread_level;
ssc.bf.ssc_sas_tx_spread_level =
this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_spread_level;
ssc.bf.ssc_sas_tx_type =
this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_type;
enable_sata = enable_sas = sata_spread = sas_type = sas_spread = 0;
if (header_version == SCI_OEM_PARAM_VER_1_0)
{
/*
* Version 1.0 is merely turning SSC on to default values.;
*/
if (ssc.do_enable_ssc != 0)
{
enable_sas = enable_sata = TRUE;
sas_type = 0x0; // Downspreading
sata_spread = 0x2; // +0 to -1419 PPM
sas_spread = 0x2; // +0 to -1419 PPM
}
}
else // header_version >= SCI_OEM_PARAM_VER_1_1
{
/*
* Version 1.1 can turn on SAS and SATA independently and
* specify spread levels. Also can specify spread type for SAS.
*/
if ((sata_spread = ssc.bf.ssc_sata_tx_spread_level) != 0)
enable_sata = TRUE; // Downspreading only
if ((sas_spread = ssc.bf.ssc_sas_tx_spread_level) != 0)
{
enable_sas = TRUE;
sas_type = ssc.bf.ssc_sas_tx_type;
}
}
if (enable_sas == TRUE)
{
U32 reg_val = scu_afe_register_read(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].
afe_xcvr_control0);
reg_val |= (0x00100000 | (((U32)sas_type) << 19));
scu_afe_register_write(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].afe_xcvr_control0,
reg_val);
reg_val = scu_afe_register_read(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].
afe_tx_ssc_control);
reg_val |= (((U32)(sas_spread)) << 8);
scu_afe_register_write(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
reg_val);
phy_capabilities.u.bits.gen3_with_ssc_supported = 1;
phy_capabilities.u.bits.gen2_with_ssc_supported = 1;
phy_capabilities.u.bits.gen1_with_ssc_supported = 1;
}
if (enable_sata == TRUE)
{
U32 reg_val = scu_afe_register_read(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].
afe_tx_ssc_control);
reg_val |= (U32)sata_spread;
scu_afe_register_write(
this_phy->owning_port->owning_controller,
scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
reg_val);
reg_val = scu_link_layer_register_read(
this_phy,
stp_control);
reg_val |= (U32)(1 << 12);
scu_link_layer_register_write(
this_phy,
stp_control,
reg_val);
}
}
// The SAS specification indicates that the phy_capabilities that
// are transmitted shall have an even parity. Calculate the parity.
parity_check = phy_capabilities.u.all;
while (parity_check != 0)
{
if (parity_check & 0x1)
parity_count++;
parity_check >>= 1;
}
// If parity indicates there are an odd number of bits set, then
// set the parity bit to 1 in the phy capabilities.
if ((parity_count % 2) != 0)
phy_capabilities.u.bits.parity = 1;
SCU_SAS_PHYCAP_WRITE(this_phy, phy_capabilities.u.all);
// Set the enable spinup period but disable the ability to send notify enable spinup
SCU_SAS_ENSPINUP_WRITE(
this_phy,
SCU_ENSPINUP_GEN_VAL(
COUNT,
this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].notify_enable_spin_up_insertion_frequency
)
);
// Write the ALIGN Insertion Ferequency for connected phy and inpendent of connected state
clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
CONNECTED,
this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].in_connection_align_insertion_frequency
);
clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
GENERAL,
this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].align_insertion_frequency
);
SCU_SAS_CLKSM_WRITE ( this_phy, clksm_value);
#if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD)
/// @todo Provide a way to write this register correctly
scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
#elif defined(PBG_BUILD)
if (
(this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
|| (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
)
{
scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x04210400);
scu_link_layer_register_write(this_phy, sas_primitive_timeout, 0x20A7C05);
}
else
{
scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
}
#else
/// @todo Provide a way to write this register correctly
scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x0e739ce7);
#endif
link_layer_control = SCU_SAS_LLCTL_GEN_VAL(
NO_OUTBOUND_TASK_TIMEOUT,
(U8) this_phy->owning_port->owning_controller->
user_parameters.sds1.no_outbound_task_timeout
);
#if PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN1_SPEED
#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1
#elif PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN2_SPEED
#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2
#else
#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3
#endif // PHY_MAX_LINK_SPEED_GENERATION
if (this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
{
link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
MAX_LINK_RATE, COMPILED_MAX_LINK_RATE
);
}
else if (this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
{
link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
MAX_LINK_RATE,
MIN(
SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2,
COMPILED_MAX_LINK_RATE)
);
}
else
{
link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
MAX_LINK_RATE,
MIN(
SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1,
COMPILED_MAX_LINK_RATE)
);
}
scu_link_layer_register_write(
this_phy, link_layer_control, link_layer_control
);
phy_timer_timeout_values = scu_link_layer_register_read(
this_phy,
phy_timer_timeout_values
);
// Clear the default 0x36 (54us) RATE_CHANGE timeout value.
phy_timer_timeout_values &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
// Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
// lock with 3Gb drive when SCU max rate is set to 1.5Gb.
phy_timer_timeout_values |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
scu_link_layer_register_write(
this_phy, phy_timer_timeout_values, phy_timer_timeout_values
);
// Program the max ARB time for the PHY to 700us so we inter-operate with
// the PMC expander which shuts down PHYs if the expander PHY generates too
// many breaks. This time value will guarantee that the initiator PHY will
// generate the break.
#if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
scu_link_layer_register_write(
this_phy,
maximum_arbitration_wait_timer_timeout,
SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME
);
#endif // defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
// Disable the link layer hang detection timer
scu_link_layer_register_write(
this_phy, link_layer_hang_detection_timeout, 0x00000000
);
// We can exit the initial state to the stopped state
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STOPPED
);
return SCI_SUCCESS;
}
/**
* This function will handle the sata SIGNATURE FIS timeout condition. It
* will restart the starting substate machine since we dont know what has
* actually happening.
*
* @param[in] cookie This object is cast to the SCIC_SDS_PHY_T object.
*
* @return none
*/
void scic_sds_phy_sata_timeout( SCI_OBJECT_HANDLE_T cookie)
{
SCIC_SDS_PHY_T * this_phy = (SCIC_SDS_PHY_T *)cookie;
SCIC_LOG_INFO((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC SDS Phy 0x%x did not receive signature fis before timeout.\n",
this_phy
));
sci_base_state_machine_stop(
scic_sds_phy_get_starting_substate_machine(this_phy));
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STARTING
);
}
//*****************************************************************************
//* SCIC SDS PHY External Methods
//*****************************************************************************
/**
* @brief This method returns the object size for a phy object.
*
* @return U32
*/
U32 scic_sds_phy_get_object_size(void)
{
return sizeof(SCIC_SDS_PHY_T);
}
/**
* @brief This method returns the minimum number of timers required for a
* phy object.
*
* @return U32
*/
U32 scic_sds_phy_get_min_timer_count(void)
{
return SCIC_SDS_PHY_MIN_TIMER_COUNT;
}
/**
* @brief This method returns the maximum number of timers required for a
* phy object.
*
* @return U32
*/
U32 scic_sds_phy_get_max_timer_count(void)
{
return SCIC_SDS_PHY_MAX_TIMER_COUNT;
}
#ifdef SCI_LOGGING
static
void scic_sds_phy_initialize_state_logging(
SCIC_SDS_PHY_T *this_phy
)
{
sci_base_state_machine_logger_initialize(
&this_phy->parent.state_machine_logger,
&this_phy->parent.state_machine,
&this_phy->parent.parent,
scic_cb_logger_log_states,
"SCIC_SDS_PHY_T", "base state machine",
SCIC_LOG_OBJECT_PHY
);
sci_base_state_machine_logger_initialize(
&this_phy->starting_substate_machine_logger,
&this_phy->starting_substate_machine,
&this_phy->parent.parent,
scic_cb_logger_log_states,
"SCIC_SDS_PHY_T", "starting substate machine",
SCIC_LOG_OBJECT_PHY
);
}
#endif // SCI_LOGGING
#ifdef SCIC_DEBUG_ENABLED
/**
* Debug code to record the state transitions in the phy
*
* @param our_observer
* @param the_state_machine
*/
void scic_sds_phy_observe_state_change(
SCI_BASE_OBSERVER_T * our_observer,
SCI_BASE_SUBJECT_T * the_subject
)
{
SCIC_SDS_PHY_T *this_phy;
SCI_BASE_STATE_MACHINE_T *the_state_machine;
U8 transition_requestor;
U32 base_state_id;
U32 starting_substate_id;
the_state_machine = (SCI_BASE_STATE_MACHINE_T *)the_subject;
this_phy = (SCIC_SDS_PHY_T *)the_state_machine->state_machine_owner;
if (the_state_machine == &this_phy->parent.state_machine)
{
transition_requestor = 0x01;
}
else if (the_state_machine == &this_phy->starting_substate_machine)
{
transition_requestor = 0x02;
}
else
{
transition_requestor = 0xFF;
}
base_state_id =
sci_base_state_machine_get_state(&this_phy->parent.state_machine);
starting_substate_id =
sci_base_state_machine_get_state(&this_phy->starting_substate_machine);
this_phy->state_record.state_transition_table[
this_phy->state_record.index++] = ( (transition_requestor << 24)
| ((U8)base_state_id << 8)
| ((U8)starting_substate_id));
this_phy->state_record.index =
this_phy->state_record.index & (MAX_STATE_TRANSITION_RECORD - 1);
}
#endif // SCIC_DEBUG_ENABLED
#ifdef SCIC_DEBUG_ENABLED
/**
* This method initializes the state record debug information for the phy
* object.
*
* @pre The state machines for the phy object must be constructed before this
* function is called.
*
* @param this_phy The phy which is being initialized.
*/
void scic_sds_phy_initialize_state_recording(
SCIC_SDS_PHY_T *this_phy
)
{
this_phy->state_record.index = 0;
sci_base_observer_initialize(
&this_phy->state_record.base_state_observer,
scic_sds_phy_observe_state_change,
&this_phy->parent.state_machine.parent
);
sci_base_observer_initialize(
&this_phy->state_record.starting_state_observer,
scic_sds_phy_observe_state_change,
&this_phy->starting_substate_machine.parent
);
}
#endif // SCIC_DEBUG_ENABLED
/**
* @brief This method will construct the SCIC_SDS_PHY object
*
* @param[in] this_phy
* @param[in] owning_port
* @param[in] phy_index
*
* @return none
*/
void scic_sds_phy_construct(
SCIC_SDS_PHY_T *this_phy,
SCIC_SDS_PORT_T *owning_port,
U8 phy_index
)
{
// Call the base constructor first
// Copy the logger from the port (this could be the dummy port)
sci_base_phy_construct(
&this_phy->parent,
sci_base_object_get_logger(owning_port),
scic_sds_phy_state_table
);
// Copy the rest of the input data to our locals
this_phy->owning_port = owning_port;
this_phy->phy_index = phy_index;
this_phy->bcn_received_while_port_unassigned = FALSE;
this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
this_phy->link_layer_registers = NULL;
this_phy->max_negotiated_speed = SCI_SAS_NO_LINK_RATE;
this_phy->sata_timeout_timer = NULL;
// Clear out the identification buffer data
memset(&this_phy->phy_type, 0, sizeof(this_phy->phy_type));
// Clear out the error counter data
memset(this_phy->error_counter, 0, sizeof(this_phy->error_counter));
// Initialize the substate machines
sci_base_state_machine_construct(
&this_phy->starting_substate_machine,
&this_phy->parent.parent,
scic_sds_phy_starting_substates,
SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
);
#ifdef SCI_LOGGING
scic_sds_phy_initialize_state_logging(this_phy);
#endif // SCI_LOGGING
#ifdef SCIC_DEBUG_ENABLED
scic_sds_phy_initialize_state_recording(this_phy);
#endif // SCIC_DEBUG_ENABLED
}
/**
* @brief This method returns the port currently containing this phy.
* If the phy is currently contained by the dummy port, then
* the phy is considered to not be part of a port.
*
* @param[in] this_phy This parameter specifies the phy for which to
* retrieve the containing port.
*
* @return This method returns a handle to a port that contains
* the supplied phy.
* @retval SCI_INVALID_HANDLE This value is returned if the phy is not
* part of a real port (i.e. it's contained in the dummy port).
* @retval !SCI_INVALID_HANDLE All other values indicate a handle/pointer
* to the port containing the phy.
*/
SCI_PORT_HANDLE_T scic_sds_phy_get_port(
SCIC_SDS_PHY_T *this_phy
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_get_port(0x%x) enter\n",
this_phy
));
if (scic_sds_port_get_index(this_phy->owning_port) == SCIC_SDS_DUMMY_PORT)
return SCI_INVALID_HANDLE;
return this_phy->owning_port;
}
/**
* @brief This method will assign a port to the phy object.
*
* @param[in, out] this_phy This parameter specifies the phy for which
* to assign a port object.
* @param[in] the_port This parameter is the port to assing to the phy.
*/
void scic_sds_phy_set_port(
SCIC_SDS_PHY_T * this_phy,
SCIC_SDS_PORT_T * the_port
)
{
this_phy->owning_port = the_port;
if (this_phy->bcn_received_while_port_unassigned)
{
this_phy->bcn_received_while_port_unassigned = FALSE;
scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
}
}
/**
* @brief This method will initialize the constructed phy
*
* @param[in] this_phy
* @param[in] link_layer_registers
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_phy_initialize(
SCIC_SDS_PHY_T *this_phy,
void *transport_layer_registers,
SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_initialize(this_phy:0x%x, link_layer_registers:0x%x)\n",
this_phy, link_layer_registers
));
// Perform the initialization of the TL hardware
scic_sds_phy_transport_layer_initialization(this_phy, transport_layer_registers);
// Perofrm the initialization of the PE hardware
scic_sds_phy_link_layer_initialization(this_phy, link_layer_registers);
// There is nothing that needs to be done in this state just
// transition to the stopped state.
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STOPPED
);
return SCI_SUCCESS;
}
/**
* This method assigns the direct attached device ID for this phy.
*
* @param[in] this_phy The phy for which the direct attached device id is to
* be assigned.
* @param[in] device_id The direct attached device ID to assign to the phy.
* This will either be the RNi for the device or an invalid RNi if there
* is no current device assigned to the phy.
*/
void scic_sds_phy_setup_transport(
SCIC_SDS_PHY_T * this_phy,
U32 device_id
)
{
U32 tl_control;
SCU_STPTLDARNI_WRITE(this_phy, device_id);
// The read should guarntee that the first write gets posted
// before the next write
tl_control = SCU_TLCR_READ(this_phy);
tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
SCU_TLCR_WRITE(this_phy, tl_control);
}
/**
* This function will perform the register reads/writes to suspend the SCU
* hardware protocol engine.
*
* @param[in,out] this_phy The phy object to be suspended.
*
* @return none
*/
void scic_sds_phy_suspend(
SCIC_SDS_PHY_T * this_phy
)
{
U32 scu_sas_pcfg_value;
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
scic_sds_phy_setup_transport(
this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
);
}
/**
* This function will perform the register reads/writes required to resume the
* SCU hardware protocol engine.
*
* @param[in,out] this_phy The phy object to resume.
*
* @return none
*/
void scic_sds_phy_resume(
SCIC_SDS_PHY_T * this_phy
)
{
U32 scu_sas_pcfg_value;
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
}
/**
* @brief This method returns the local sas address assigned to this phy.
*
* @param[in] this_phy This parameter specifies the phy for which
* to retrieve the local SAS address.
* @param[out] sas_address This parameter specifies the location into
* which to copy the local SAS address.
*
* @return none
*/
void scic_sds_phy_get_sas_address(
SCIC_SDS_PHY_T *this_phy,
SCI_SAS_ADDRESS_T *sas_address
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_get_sas_address(this_phy:0x%x, sas_address:0x%x)\n",
this_phy, sas_address
));
sas_address->high = SCU_SAS_TISSAH_READ(this_phy);
sas_address->low = SCU_SAS_TISSAL_READ(this_phy);
}
/**
* @brief This method returns the remote end-point (i.e. attached)
* sas address assigned to this phy.
*
* @param[in] this_phy This parameter specifies the phy for which
* to retrieve the remote end-point SAS address.
* @param[out] sas_address This parameter specifies the location into
* which to copy the remote end-point SAS address.
*
* @return none
*/
void scic_sds_phy_get_attached_sas_address(
SCIC_SDS_PHY_T *this_phy,
SCI_SAS_ADDRESS_T *sas_address
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_get_attached_sas_address(0x%x, 0x%x) enter\n",
this_phy, sas_address
));
sas_address->high
= this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high;
sas_address->low
= this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low;
}
/**
* @brief This method returns the supported protocols assigned to
* this phy
*
* @param[in] this_phy
* @param[out] protocols
*/
void scic_sds_phy_get_protocols(
SCIC_SDS_PHY_T *this_phy,
SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
)
{
U32 tiid_value = SCU_SAS_TIID_READ(this_phy);
//Check each bit of this register. please refer to
//SAS Transmit Identification Register (SAS_TIID).
if (tiid_value & 0x2)
protocols->u.bits.smp_target = 1;
if (tiid_value & 0x4)
protocols->u.bits.stp_target = 1;
if (tiid_value & 0x8)
protocols->u.bits.ssp_target = 1;
if (tiid_value & 0x200)
protocols->u.bits.smp_initiator = 1;
if ((tiid_value & 0x400))
protocols->u.bits.stp_initiator = 1;
if (tiid_value & 0x800)
protocols->u.bits.ssp_initiator = 1;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_get_protocols(this_phy:0x%x, protocols:0x%x)\n",
this_phy, protocols->u.all
));
}
/**
* This method returns the supported protocols for the attached phy. If this
* is a SAS phy the protocols are returned from the identify address frame.
* If this is a SATA phy then protocols are made up and the target phy is an
* STP target phy.
*
* @note The caller will get the entire set of bits for the protocol value.
*
* @param[in] this_phy The parameter is the phy object for which the attached
* phy protcols are to be returned.
* @param[out] protocols The parameter is the returned protocols for the
* attached phy.
*/
void scic_sds_phy_get_attached_phy_protocols(
SCIC_SDS_PHY_T *this_phy,
SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_get_attached_phy_protocols(this_phy:0x%x, protocols:0x%x[0x%x])\n",
this_phy, protocols, protocols->u.all
));
protocols->u.all = 0;
if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
{
protocols->u.all =
this_phy->phy_type.sas.identify_address_frame_buffer.protocols.u.all;
}
else if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
{
protocols->u.bits.stp_target = 1;
}
}
/**
* @brief This method release resources in for a scic phy.
*
* @param[in] controller This parameter specifies the core controller, one of
* its phy's resources are to be released.
* @param[in] this_phy This parameter specifies the phy whose resource is to
* be released.
*/
void scic_sds_phy_release_resource(
SCIC_SDS_CONTROLLER_T * controller,
SCIC_SDS_PHY_T * this_phy
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_release_resource(0x%x, 0x%x)\n",
controller, this_phy
));
//Currently, the only resource to be released is a timer.
if (this_phy->sata_timeout_timer != NULL)
{
scic_cb_timer_destroy(controller, this_phy->sata_timeout_timer);
this_phy->sata_timeout_timer = NULL;
}
}
//*****************************************************************************
//* SCIC SDS PHY Handler Redirects
//*****************************************************************************
/**
* @brief This method will attempt to reset the phy. This
* request is only valid when the phy is in an ready
* state
*
* @param[in] this_phy
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_phy_reset(
SCIC_SDS_PHY_T * this_phy
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_reset(this_phy:0x%08x)\n",
this_phy
));
return this_phy->state_handlers->parent.reset_handler(
&this_phy->parent
);
}
/**
* @brief This method will process the event code received.
*
* @param[in] this_phy
* @param[in] event_code
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_phy_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_event_handler(this_phy:0x%08x, event_code:%x)\n",
this_phy, event_code
));
return this_phy->state_handlers->event_handler(this_phy, event_code);
}
/**
* @brief This method will process the frame index received.
*
* @param[in] this_phy
* @param[in] frame_index
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_phy_frame_handler(
SCIC_SDS_PHY_T *this_phy,
U32 frame_index
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_frame_handler(this_phy:0x%08x, frame_index:%d)\n",
this_phy, frame_index
));
return this_phy->state_handlers->frame_handler(this_phy, frame_index);
}
/**
* @brief This method will give the phy permission to consume power
*
* @param[in] this_phy
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_phy_consume_power_handler(
SCIC_SDS_PHY_T *this_phy
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sds_phy_consume_power_handler(this_phy:0x%08x)\n",
this_phy
));
return this_phy->state_handlers->consume_power_handler(this_phy);
}
//*****************************************************************************
//* SCIC PHY Public Methods
//*****************************************************************************
SCI_STATUS scic_phy_get_properties(
SCI_PHY_HANDLE_T phy,
SCIC_PHY_PROPERTIES_T * properties
)
{
SCIC_SDS_PHY_T *this_phy;
U8 max_speed_generation;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_get_properties(0x%x, 0x%x) enter\n",
this_phy, properties
));
if (phy == SCI_INVALID_HANDLE)
{
return SCI_FAILURE_INVALID_PHY;
}
memset(properties, 0, sizeof(SCIC_PHY_PROPERTIES_T));
//get max link rate of this phy set by user.
max_speed_generation =
this_phy->owning_port->owning_controller->user_parameters.sds1.
phys[this_phy->phy_index].max_speed_generation;
properties->negotiated_link_rate = this_phy->max_negotiated_speed;
if (max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
properties->max_link_rate = SCI_SAS_600_GB;
else if (max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
properties->max_link_rate = SCI_SAS_300_GB;
else
properties->max_link_rate = SCI_SAS_150_GB;
properties->index = this_phy->phy_index;
properties->owning_port = scic_sds_phy_get_port(this_phy);
scic_sds_phy_get_protocols(this_phy, &properties->transmit_iaf.protocols);
properties->transmit_iaf.sas_address.high =
this_phy->owning_port->owning_controller->oem_parameters.sds1.
phys[this_phy->phy_index].sas_address.sci_format.high;
properties->transmit_iaf.sas_address.low =
this_phy->owning_port->owning_controller->oem_parameters.sds1.
phys[this_phy->phy_index].sas_address.sci_format.low;
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_sas_phy_get_properties(
SCI_PHY_HANDLE_T phy,
SCIC_SAS_PHY_PROPERTIES_T * properties
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sas_phy_get_properties(0x%x, 0x%x) enter\n",
this_phy, properties
));
if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
{
memcpy(
&properties->received_iaf,
&this_phy->phy_type.sas.identify_address_frame_buffer,
sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
);
properties->received_capabilities.u.all
= SCU_SAS_RECPHYCAP_READ(this_phy);
return SCI_SUCCESS;
}
return SCI_FAILURE;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_sata_phy_get_properties(
SCI_PHY_HANDLE_T phy,
SCIC_SATA_PHY_PROPERTIES_T * properties
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sata_phy_get_properties(0x%x, 0x%x) enter\n",
this_phy, properties
));
if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
{
memcpy(
&properties->signature_fis,
&this_phy->phy_type.sata.signature_fis_buffer,
sizeof(SATA_FIS_REG_D2H_T)
);
/// @todo add support for port selectors.
properties->is_port_selector_present = FALSE;
return SCI_SUCCESS;
}
return SCI_FAILURE;
}
// ---------------------------------------------------------------------------
#if !defined(DISABLE_PORT_SELECTORS)
SCI_STATUS scic_sata_phy_send_port_selection_signal(
SCI_PHY_HANDLE_T phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_sata_phy_send_port_selection_signals(0x%x) enter\n",
this_phy
));
/// @todo To be implemented
ASSERT(FALSE);
return SCI_FAILURE;
}
#endif // !defined(DISABLE_PORT_SELECTORS)
// ---------------------------------------------------------------------------
#if !defined(DISABLE_PHY_COUNTERS)
SCI_STATUS scic_phy_enable_counter(
SCI_PHY_HANDLE_T phy,
SCIC_PHY_COUNTER_ID_T counter_id
)
{
SCIC_SDS_PHY_T *this_phy;
SCI_STATUS status = SCI_SUCCESS;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_enable_counter(0x%x, 0x%x) enter\n",
this_phy, counter_id
));
switch(counter_id)
{
case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control |= (1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
// These error counters are enabled by default, and cannot be
// disabled. Return SCI_SUCCESS to denote that they are
// enabled, hiding the fact that enabling the counter is
// a no-op.
case SCIC_PHY_COUNTER_RECEIVED_FRAME:
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
break;
default:
status = SCI_FAILURE;
break;
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_phy_disable_counter(
SCI_PHY_HANDLE_T phy,
SCIC_PHY_COUNTER_ID_T counter_id
)
{
SCIC_SDS_PHY_T *this_phy;
SCI_STATUS status = SCI_SUCCESS;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_disable_counter(0x%x, 0x%x) enter\n",
this_phy, counter_id
));
switch(counter_id)
{
case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
{
U32 control = SCU_SAS_ECENCR_READ(this_phy);
control &= ~(1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
SCU_SAS_ECENCR_WRITE(this_phy, control);
}
break;
// These error counters cannot be disabled, so return SCI_FAILURE.
case SCIC_PHY_COUNTER_RECEIVED_FRAME:
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
default:
status = SCI_FAILURE;
break;
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_phy_get_counter(
SCI_PHY_HANDLE_T phy,
SCIC_PHY_COUNTER_ID_T counter_id,
U32 * data
)
{
SCIC_SDS_PHY_T *this_phy;
SCI_STATUS status = SCI_SUCCESS;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_get_counter(0x%x, 0x%x) enter\n",
this_phy, counter_id
));
switch(counter_id)
{
case SCIC_PHY_COUNTER_RECEIVED_FRAME:
*data = scu_link_layer_register_read(this_phy, received_frame_count);
break;
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
*data = scu_link_layer_register_read(this_phy, transmit_frame_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
*data = scu_link_layer_register_read(this_phy, received_dword_count);
break;
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
*data = scu_link_layer_register_read(this_phy, transmit_dword_count);
break;
case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
*data = scu_link_layer_register_read(this_phy, loss_of_sync_error_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
*data = scu_link_layer_register_read(this_phy, running_disparity_error_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
*data = scu_link_layer_register_read(this_phy, received_frame_crc_error_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
*data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX];
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
*data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX];
break;
case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
*data = this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX];
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
*data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX];
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
*data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX];
break;
case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
*data = this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX];
break;
case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
*data = scu_link_layer_register_read(this_phy, received_short_frame_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
*data = scu_link_layer_register_read(this_phy, received_frame_without_credit_count);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
*data = scu_link_layer_register_read(this_phy, received_frame_after_done_count);
break;
case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
*data = scu_link_layer_register_read(this_phy, phy_reset_problem_count);
break;
default:
status = SCI_FAILURE;
break;
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_phy_clear_counter(
SCI_PHY_HANDLE_T phy,
SCIC_PHY_COUNTER_ID_T counter_id
)
{
SCIC_SDS_PHY_T *this_phy;
SCI_STATUS status = SCI_SUCCESS;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_clear_counter(0x%x, 0x%x) enter\n",
this_phy, counter_id
));
switch(counter_id)
{
case SCIC_PHY_COUNTER_RECEIVED_FRAME:
scu_link_layer_register_write(this_phy, received_frame_count, 0);
break;
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
scu_link_layer_register_write(this_phy, transmit_frame_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
scu_link_layer_register_write(this_phy, received_dword_count, 0);
break;
case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
scu_link_layer_register_write(this_phy, transmit_dword_count, 0);
break;
case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
scu_link_layer_register_write(this_phy, loss_of_sync_error_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
scu_link_layer_register_write(this_phy, running_disparity_error_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
scu_link_layer_register_write(this_phy, received_frame_crc_error_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX] = 0;
break;
case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
scu_link_layer_register_write(this_phy, received_short_frame_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
scu_link_layer_register_write(this_phy, received_frame_without_credit_count, 0);
break;
case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
scu_link_layer_register_write(this_phy, received_frame_after_done_count, 0);
break;
case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
scu_link_layer_register_write(this_phy, phy_reset_problem_count, 0);
break;
default:
status = SCI_FAILURE;
}
return status;
}
#endif // !defined(DISABLE_PHY_COUNTERS)
SCI_STATUS scic_phy_stop(
SCI_PHY_HANDLE_T phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_stop(this_phy:0x%x)\n",
this_phy
));
return this_phy->state_handlers->parent.stop_handler(&this_phy->parent);
}
SCI_STATUS scic_phy_start(
SCI_PHY_HANDLE_T phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"scic_phy_start(this_phy:0x%x)\n",
this_phy
));
return this_phy->state_handlers->parent.start_handler(&this_phy->parent);
}
//******************************************************************************
//* PHY STATE MACHINE
//******************************************************************************
//***************************************************************************
//* DEFAULT HANDLERS
//***************************************************************************
/**
* This is the default method for phy a start request. It will report a
* warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_start_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x requested to start from invalid state %d\n",
this_phy,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for phy a stop request. It will report a
* warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_stop_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x requested to stop from invalid state %d\n",
this_phy,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for phy a reset request. It will report a
* warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_reset_handler(
SCI_BASE_PHY_T * phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x requested to reset from invalid state %d\n",
this_phy,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for phy a destruct request. It will report a
* warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_destroy_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
/// @todo Implement something for the default
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x requested to destroy from invalid state %d\n",
this_phy,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for a phy frame handling request. It will
* report a warning, release the frame and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
* @param[in] frame_index This is the frame index that was received from the
* SCU hardware.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_frame_handler(
SCIC_SDS_PHY_T *this_phy,
U32 frame_index
)
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x received unexpected frame data %d while in state %d\n",
this_phy, frame_index,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
scic_sds_controller_release_frame(
scic_sds_phy_get_controller(this_phy), frame_index);
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for a phy event handler. It will report a
* warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
* @param[in] event_code This is the event code that was received from the SCU
* hardware.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x received unexpected event status %x while in state %d\n",
this_phy, event_code,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This is the default method for a phy consume power handler. It will report
* a warning and exit.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
SCI_STATUS scic_sds_phy_default_consume_power_handler(
SCIC_SDS_PHY_T *this_phy
)
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY,
"SCIC Phy 0x%08x given unexpected permission to consume power while in state %d\n",
this_phy,
sci_base_state_machine_get_state(&this_phy->parent.state_machine)
));
return SCI_FAILURE_INVALID_STATE;
}
//******************************************************************************
//* PHY STOPPED STATE HANDLERS
//******************************************************************************
/**
* This method takes the SCIC_SDS_PHY from a stopped state and attempts to
* start it.
* - The phy state machine is transitioned to the
* SCI_BASE_PHY_STATE_STARTING.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_stopped_state_start_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
// Create the SIGNATURE FIS Timeout timer for this phy
this_phy->sata_timeout_timer = scic_cb_timer_create(
scic_sds_phy_get_controller(this_phy),
scic_sds_phy_sata_timeout,
this_phy
);
if (this_phy->sata_timeout_timer != NULL)
{
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STARTING
);
}
return SCI_SUCCESS;
}
/**
* This method takes the SCIC_SDS_PHY from a stopped state and destroys it.
* - This function takes no action.
*
* @todo Shouldn't this function transition the SCI_BASE_PHY::state_machine to
* the SCI_BASE_PHY_STATE_FINAL?
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_stopped_state_destroy_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
/// @todo what do we actually need to do here?
return SCI_SUCCESS;
}
//******************************************************************************
//* PHY STARTING STATE HANDLERS
//******************************************************************************
// All of these state handlers are mapped to the starting sub-state machine
//******************************************************************************
//* PHY READY STATE HANDLERS
//******************************************************************************
/**
* This method takes the SCIC_SDS_PHY from a ready state and attempts to stop
* it.
* - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STOPPED.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_ready_state_stop_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STOPPED
);
scic_sds_controller_link_down(
scic_sds_phy_get_controller(this_phy),
scic_sds_phy_get_port(this_phy),
this_phy
);
return SCI_SUCCESS;
}
/**
* This method takes the SCIC_SDS_PHY from a ready state and attempts to reset
* it.
* - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STARTING.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_ready_state_reset_handler(
SCI_BASE_PHY_T * phy
)
{
SCIC_SDS_PHY_T * this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_RESETTING
);
return SCI_SUCCESS;
}
/**
* This method request the SCIC_SDS_PHY handle the received event. The only
* event that we are interested in while in the ready state is the link
* failure event.
* - decoded event is a link failure
* - transition the SCIC_SDS_PHY back to the SCI_BASE_PHY_STATE_STARTING
* state.
* - any other event received will report a warning message
*
* @param[in] phy This is the SCIC_SDS_PHY object which has received the
* event.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the event received is a link failure
* @retval SCI_FAILURE_INVALID_STATE for any other event received.
*/
static
SCI_STATUS scic_sds_phy_ready_state_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
SCI_STATUS result = SCI_FAILURE;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STARTING
);
result = SCI_SUCCESS;
break;
case SCU_EVENT_BROADCAST_CHANGE:
// Broadcast change received. Notify the port.
if (scic_sds_phy_get_port(this_phy) != SCI_INVALID_HANDLE)
scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
else
this_phy->bcn_received_while_port_unassigned = TRUE;
break;
case SCU_EVENT_ERR_CNT(RX_CREDIT_BLOCKED_RECEIVED):
case SCU_EVENT_ERR_CNT(TX_DONE_CREDIT_TIMEOUT):
case SCU_EVENT_ERR_CNT(RX_DONE_CREDIT_TIMEOUT):
case SCU_EVENT_ERR_CNT(INACTIVITY_TIMER_EXPIRED):
case SCU_EVENT_ERR_CNT(TX_DONE_ACK_NAK_TIMEOUT):
case SCU_EVENT_ERR_CNT(RX_DONE_ACK_NAK_TIMEOUT):
{
U32 error_counter_index =
scu_get_event_specifier(event_code) >> SCU_EVENT_SPECIFIC_CODE_SHIFT;
this_phy->error_counter[error_counter_index]++;
result = SCI_SUCCESS;
}
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"SCIC PHY 0x%x ready state machine received unexpected event_code %x\n",
this_phy, event_code
));
result = SCI_FAILURE_INVALID_STATE;
break;
}
return result;
}
// ---------------------------------------------------------------------------
/**
* This is the resetting state event handler.
*
* @param[in] this_phy This is the SCIC_SDS_PHY object which is receiving the
* event.
* @param[in] event_code This is the event code to be processed.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
static
SCI_STATUS scic_sds_phy_resetting_state_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
SCI_STATUS result = SCI_FAILURE;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_HARD_RESET_TRANSMITTED:
// Link failure change state back to the starting state
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STARTING
);
result = SCI_SUCCESS;
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"SCIC PHY 0x%x resetting state machine received unexpected event_code %x\n",
this_phy, event_code
));
result = SCI_FAILURE_INVALID_STATE;
break;
}
return result;
}
// ---------------------------------------------------------------------------
SCIC_SDS_PHY_STATE_HANDLER_T
scic_sds_phy_state_handler_table[SCI_BASE_PHY_MAX_STATES] =
{
// SCI_BASE_PHY_STATE_INITIAL
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCI_BASE_PHY_STATE_STOPPED
{
{
scic_sds_phy_stopped_state_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_stopped_state_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCI_BASE_PHY_STATE_STARTING
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCI_BASE_PHY_STATE_READY
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_ready_state_stop_handler,
scic_sds_phy_ready_state_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_ready_state_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCI_BASE_PHY_STATE_RESETTING
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_resetting_state_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCI_BASE_PHY_STATE_FINAL
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
}
};
//****************************************************************************
//* PHY STATE PRIVATE METHODS
//****************************************************************************
/**
* This method will stop the SCIC_SDS_PHY object. This does not reset the
* protocol engine it just suspends it and places it in a state where it will
* not cause the end device to power up.
*
* @param[in] this_phy This is the SCIC_SDS_PHY object to stop.
*
* @return none
*/
static
void scu_link_layer_stop_protocol_engine(
SCIC_SDS_PHY_T *this_phy
)
{
U32 scu_sas_pcfg_value;
U32 enable_spinup_value;
// Suspend the protocol engine and place it in a sata spinup hold state
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value |= (
SCU_SAS_PCFG_GEN_BIT(OOB_RESET)
| SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE)
| SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)
);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
// Disable the notify enable spinup primitives
enable_spinup_value = SCU_SAS_ENSPINUP_READ(this_phy);
enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup_value);
}
/**
* This method will start the OOB/SN state machine for this SCIC_SDS_PHY
* object.
*
* @param[in] this_phy This is the SCIC_SDS_PHY object on which to start the
* OOB/SN state machine.
*/
static
void scu_link_layer_start_oob(
SCIC_SDS_PHY_T *this_phy
)
{
U32 scu_sas_pcfg_value;
/* Reset OOB sequence - start */
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value &=
~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
SCU_SAS_PCFG_READ(this_phy);
/* Reset OOB sequence - end */
/* Start OOB sequence - start */
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
SCU_SAS_PCFG_READ(this_phy);
/* Start OOB sequence - end */
}
/**
* This method will transmit a hard reset request on the specified phy. The
* SCU hardware requires that we reset the OOB state machine and set the hard
* reset bit in the phy configuration register.
* We then must start OOB over with the hard reset bit set.
*
* @param[in] this_phy
*/
static
void scu_link_layer_tx_hard_reset(
SCIC_SDS_PHY_T *this_phy
)
{
U32 phy_configuration_value;
// SAS Phys must wait for the HARD_RESET_TX event notification to transition
// to the starting state.
phy_configuration_value = SCU_SAS_PCFG_READ(this_phy);
phy_configuration_value |=
(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
// Now take the OOB state machine out of reset
phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
}
//****************************************************************************
//* PHY BASE STATE METHODS
//****************************************************************************
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_INITIAL.
* - This function sets the state handlers for the phy object base state
* machine initial state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_initial_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_INITIAL);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_INITIAL.
* - This function sets the state handlers for the phy object base state
* machine initial state.
* - The SCU hardware is requested to stop the protocol engine.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_stopped_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
/// @todo We need to get to the controller to place this PE in a reset state
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STOPPED);
if (this_phy->sata_timeout_timer != NULL)
{
scic_cb_timer_destroy(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer
);
this_phy->sata_timeout_timer = NULL;
}
scu_link_layer_stop_protocol_engine(this_phy);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_STARTING.
* - This function sets the state handlers for the phy object base state
* machine starting state.
* - The SCU hardware is requested to start OOB/SN on this protocol engine.
* - The phy starting substate machine is started.
* - If the previous state was the ready state then the
* SCIC_SDS_CONTROLLER is informed that the phy has gone link down.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STARTING);
scu_link_layer_stop_protocol_engine(this_phy);
scu_link_layer_start_oob(this_phy);
// We don't know what kind of phy we are going to be just yet
this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
this_phy->bcn_received_while_port_unassigned = FALSE;
// Change over to the starting substate machine to continue
sci_base_state_machine_start(&this_phy->starting_substate_machine);
if (this_phy->parent.state_machine.previous_state_id
== SCI_BASE_PHY_STATE_READY)
{
scic_sds_controller_link_down(
scic_sds_phy_get_controller(this_phy),
scic_sds_phy_get_port(this_phy),
this_phy
);
}
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_READY.
* - This function sets the state handlers for the phy object base state
* machine ready state.
* - The SCU hardware protocol engine is resumed.
* - The SCIC_SDS_CONTROLLER is informed that the phy object has gone link
* up.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_ready_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_READY);
scic_sds_controller_link_up(
scic_sds_phy_get_controller(this_phy),
scic_sds_phy_get_port(this_phy),
this_phy
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCI_BASE_PHY_STATE_INITIAL. This function suspends the SCU
* hardware protocol engine represented by this SCIC_SDS_PHY object.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_ready_state_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_suspend(this_phy);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_RESETTING.
* - This function sets the state handlers for the phy object base state
* machine resetting state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_resetting_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T * this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_RESETTING);
// The phy is being reset, therefore deactivate it from the port.
// In the resetting state we don't notify the user regarding
// link up and link down notifications.
scic_sds_port_deactivate_phy(this_phy->owning_port, this_phy, FALSE);
if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
{
scu_link_layer_tx_hard_reset(this_phy);
}
else
{
// The SCU does not need to have a descrete reset state so just go back to
// the starting state.
sci_base_state_machine_change_state(
&this_phy->parent.state_machine,
SCI_BASE_PHY_STATE_STARTING
);
}
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCI_BASE_PHY_STATE_FINAL.
* - This function sets the state handlers for the phy object base state
* machine final state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_final_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_FINAL);
// Nothing to do here
}
// ---------------------------------------------------------------------------
SCI_BASE_STATE_T scic_sds_phy_state_table[SCI_BASE_PHY_MAX_STATES] =
{
{
SCI_BASE_PHY_STATE_INITIAL,
scic_sds_phy_initial_state_enter,
NULL,
},
{
SCI_BASE_PHY_STATE_STOPPED,
scic_sds_phy_stopped_state_enter,
NULL,
},
{
SCI_BASE_PHY_STATE_STARTING,
scic_sds_phy_starting_state_enter,
NULL,
},
{
SCI_BASE_PHY_STATE_READY,
scic_sds_phy_ready_state_enter,
scic_sds_phy_ready_state_exit,
},
{
SCI_BASE_PHY_STATE_RESETTING,
scic_sds_phy_resetting_state_enter,
NULL,
},
{
SCI_BASE_PHY_STATE_FINAL,
scic_sds_phy_final_state_enter,
NULL,
}
};
//******************************************************************************
//* PHY STARTING SUB-STATE MACHINE
//******************************************************************************
//*****************************************************************************
//* SCIC SDS PHY HELPER FUNCTIONS
//*****************************************************************************
/**
* This method continues the link training for the phy as if it were a SAS PHY
* instead of a SATA PHY. This is done because the completion queue had a SAS
* PHY DETECTED event when the state machine was expecting a SATA PHY event.
*
* @param[in] this_phy The phy object that received SAS PHY DETECTED.
*
* @return none
*/
static
void scic_sds_phy_start_sas_link_training(
SCIC_SDS_PHY_T * this_phy
)
{
U32 phy_control;
phy_control = SCU_SAS_PCFG_READ(this_phy);
phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
SCU_SAS_PCFG_WRITE(this_phy, phy_control);
sci_base_state_machine_change_state(
&this_phy->starting_substate_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
);
this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
}
/**
* This method continues the link training for the phy as if it were a SATA
* PHY instead of a SAS PHY. This is done because the completion queue had a
* SATA SPINUP HOLD event when the state machine was expecting a SAS PHY
* event.
*
* @param[in] this_phy The phy object that received a SATA SPINUP HOLD event
*
* @return none
*/
static
void scic_sds_phy_start_sata_link_training(
SCIC_SDS_PHY_T * this_phy
)
{
sci_base_state_machine_change_state(
&this_phy->starting_substate_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
);
this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
}
/**
* @brief This method performs processing common to all protocols upon
* completion of link training.
*
* @param[in,out] this_phy This parameter specifies the phy object for which
* link training has completed.
* @param[in] max_link_rate This parameter specifies the maximum link
* rate to be associated with this phy.
* @param[in] next_state This parameter specifies the next state for the
* phy's starting sub-state machine.
*
* @return none
*/
static
void scic_sds_phy_complete_link_training(
SCIC_SDS_PHY_T * this_phy,
SCI_SAS_LINK_RATE max_link_rate,
U32 next_state
)
{
this_phy->max_negotiated_speed = max_link_rate;
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy), next_state
);
}
/**
* This method restarts the SCIC_SDS_PHY objects base state machine in the
* starting state from any starting substate.
*
* @param[in] this_phy The SCIC_SDS_PHY object to restart.
*
* @return none
*/
void scic_sds_phy_restart_starting_state(
SCIC_SDS_PHY_T *this_phy
)
{
// Stop the current substate machine
sci_base_state_machine_stop(
scic_sds_phy_get_starting_substate_machine(this_phy)
);
// Re-enter the base state machine starting state
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_STARTING
);
}
//*****************************************************************************
//* SCIC SDS PHY general handlers
//*****************************************************************************
static
SCI_STATUS scic_sds_phy_starting_substate_general_stop_handler(
SCI_BASE_PHY_T *phy
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)phy;
sci_base_state_machine_stop(
&this_phy->starting_substate_machine
);
sci_base_state_machine_change_state(
&phy->state_machine,
SCI_BASE_PHY_STATE_STOPPED
);
return SCI_SUCCESS;
}
//*****************************************************************************
//* SCIC SDS PHY EVENT_HANDLERS
//*****************************************************************************
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
* - decode the event
* - sas phy detected causes a state transition to the wait for speed
* event notification.
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on any valid event notification
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_ossp_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_SAS_PHY_DETECTED:
scic_sds_phy_start_sas_link_training(this_phy);
this_phy->is_in_link_training = TRUE;
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
scic_sds_phy_start_sata_link_training(this_phy);
this_phy->is_in_link_training = TRUE;
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
* - decode the event
* - sas phy detected returns us back to this state.
* - speed event detected causes a state transition to the wait for iaf.
* - identify timeout is an un-expected event and the state machine is
* restarted.
* - link failure events restart the starting state machine
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on any valid event notification
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_SAS_PHY_DETECTED:
// Why is this being reported again by the controller?
// We would re-enter this state so just stay here
break;
case SCU_EVENT_SAS_15:
case SCU_EVENT_SAS_15_SSC:
scic_sds_phy_complete_link_training(
this_phy, SCI_SAS_150_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
);
break;
case SCU_EVENT_SAS_30:
case SCU_EVENT_SAS_30_SSC:
scic_sds_phy_complete_link_training(
this_phy, SCI_SAS_300_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
);
break;
case SCU_EVENT_SAS_60:
case SCU_EVENT_SAS_60_SSC:
scic_sds_phy_complete_link_training(
this_phy, SCI_SAS_600_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
// We were doing SAS PHY link training and received a SATA PHY event
// continue OOB/SN as if this were a SATA PHY
scic_sds_phy_start_sata_link_training(this_phy);
break;
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
* - decode the event
* - sas phy detected event backs up the state machine to the await
* speed notification.
* - identify timeout is an un-expected event and the state machine is
* restarted.
* - link failure events restart the starting state machine
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on any valid event notification
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_SAS_PHY_DETECTED:
// Backup the state machine
scic_sds_phy_start_sas_link_training(this_phy);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
// We were doing SAS PHY link training and received a SATA PHY event
// continue OOB/SN as if this were a SATA PHY
scic_sds_phy_start_sata_link_training(this_phy);
break;
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
case SCU_EVENT_LINK_FAILURE:
case SCU_EVENT_HARD_RESET_RECEIVED:
// Start the oob/sn state machine over again
scic_sds_phy_restart_starting_state(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_POWER.
* - decode the event
* - link failure events restart the starting state machine
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on a link failure event
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
* - decode the event
* - link failure events restart the starting state machine
* - sata spinup hold events are ignored since they are expected
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on a link failure event
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
// These events are received every 10ms and are expected while in this state
break;
case SCU_EVENT_SAS_PHY_DETECTED:
// There has been a change in the phy type before OOB/SN for the
// SATA finished start down the SAS link traning path.
scic_sds_phy_start_sas_link_training(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
* - decode the event
* - link failure events restart the starting state machine
* - sata spinup hold events are ignored since they are expected
* - sata phy detected event change to the wait speed event
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on a link failure event
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sata_phy_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
// These events might be received since we dont know how many may be in
// the completion queue while waiting for power
break;
case SCU_EVENT_SATA_PHY_DETECTED:
this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
// We have received the SATA PHY notification change state
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
// There has been a change in the phy type before OOB/SN for the
// SATA finished start down the SAS link traning path.
scic_sds_phy_start_sas_link_training(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state
* SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
* - decode the event
* - sata phy detected returns us back to this state.
* - speed event detected causes a state transition to the wait for
* signature.
* - link failure events restart the starting state machine
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on any valid event notification
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sata_speed_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_SATA_PHY_DETECTED:
// The hardware reports multiple SATA PHY detected events
// ignore the extras
break;
case SCU_EVENT_SATA_15:
case SCU_EVENT_SATA_15_SSC:
scic_sds_phy_complete_link_training(
this_phy,
SCI_SAS_150_GB,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
);
break;
case SCU_EVENT_SATA_30:
case SCU_EVENT_SATA_30_SSC:
scic_sds_phy_complete_link_training(
this_phy,
SCI_SAS_300_GB,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
);
break;
case SCU_EVENT_SATA_60:
case SCU_EVENT_SATA_60_SSC:
scic_sds_phy_complete_link_training(
this_phy,
SCI_SAS_600_GB,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
);
break;
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
// There has been a change in the phy type before OOB/SN for the
// SATA finished start down the SAS link traning path.
scic_sds_phy_start_sas_link_training(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
/**
* This method is called when an event notification is received for the phy
* object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
* - decode the event
* - sas phy detected event backs up the state machine to the await
* speed notification.
* - identify timeout is an un-expected event and the state machine is
* restarted.
* - link failure events restart the starting state machine
* - any other events log a warning message and set a failure status
*
* @param[in] phy This SCIC_SDS_PHY object which has received an event.
* @param[in] event_code This is the event code which the phy object is to
* decode.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS on any valid event notification
* @retval SCI_FAILURE on any unexpected event notifation
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_event_handler(
SCIC_SDS_PHY_T *this_phy,
U32 event_code
)
{
U32 result = SCI_SUCCESS;
switch (scu_get_event_code(event_code))
{
case SCU_EVENT_SATA_PHY_DETECTED:
// Backup the state machine
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
);
break;
case SCU_EVENT_LINK_FAILURE:
// Link failure change state back to the starting state
scic_sds_phy_restart_starting_state(this_phy);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
"PHY starting substate machine received unexpected event_code %x\n",
event_code
));
result = SCI_FAILURE;
break;
}
return result;
}
//*****************************************************************************
//* SCIC SDS PHY FRAME_HANDLERS
//*****************************************************************************
/**
* This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
* SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
* - Get the UF Header
* - If the UF is an IAF
* - Copy IAF data to local phy object IAF data buffer.
* - Change starting substate to wait power.
* - else
* - log warning message of unexpected unsolicted frame
* - release frame buffer
*
* @param[in] phy This is SCIC_SDS_PHY object which is being requested to
* decode the frame data.
* @param[in] frame_index This is the index of the unsolicited frame which was
* received for this phy.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_frame_handler(
SCIC_SDS_PHY_T *this_phy,
U32 frame_index
)
{
SCI_STATUS result;
U32 *frame_words;
SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *identify_frame;
result = scic_sds_unsolicited_frame_control_get_header(
&(scic_sds_phy_get_controller(this_phy)->uf_control),
frame_index,
(void **)&frame_words);
if (result != SCI_SUCCESS)
{
return result;
}
frame_words[0] = SCIC_SWAP_DWORD(frame_words[0]);
identify_frame = (SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *)frame_words;
if (identify_frame->address_frame_type == 0)
{
// Byte swap the rest of the frame so we can make
// a copy of the buffer
frame_words[1] = SCIC_SWAP_DWORD(frame_words[1]);
frame_words[2] = SCIC_SWAP_DWORD(frame_words[2]);
frame_words[3] = SCIC_SWAP_DWORD(frame_words[3]);
frame_words[4] = SCIC_SWAP_DWORD(frame_words[4]);
frame_words[5] = SCIC_SWAP_DWORD(frame_words[5]);
memcpy(
&this_phy->phy_type.sas.identify_address_frame_buffer,
identify_frame,
sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
);
if (identify_frame->protocols.u.bits.smp_target)
{
// We got the IAF for an expander PHY go to the final state since
// there are no power requirements for expander phys.
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
);
}
else
{
// We got the IAF we can now go to the await spinup semaphore state
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
);
}
result = SCI_SUCCESS;
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
"PHY starting substate machine received unexpected frame id %x\n",
frame_index
));
}
// Regardless of the result release this frame since we are done with it
scic_sds_controller_release_frame(
scic_sds_phy_get_controller(this_phy), frame_index
);
return result;
}
/**
* This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
* SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
* - Get the UF Header
* - If the UF is an SIGNATURE FIS
* - Copy IAF data to local phy object SIGNATURE FIS data buffer.
* - else
* - log warning message of unexpected unsolicted frame
* - release frame buffer
*
* @param[in] phy This is SCIC_SDS_PHY object which is being requested to
* decode the frame data.
* @param[in] frame_index This is the index of the unsolicited frame which was
* received for this phy.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*
* @todo Must decode the SIGNATURE FIS data
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_frame_handler(
SCIC_SDS_PHY_T *this_phy,
U32 frame_index
)
{
SCI_STATUS result;
U32 * frame_words;
SATA_FIS_HEADER_T * fis_frame_header;
U32 * fis_frame_data;
result = scic_sds_unsolicited_frame_control_get_header(
&(scic_sds_phy_get_controller(this_phy)->uf_control),
frame_index,
(void **)&frame_words);
if (result != SCI_SUCCESS)
{
return result;
}
fis_frame_header = (SATA_FIS_HEADER_T *)frame_words;
if (
(fis_frame_header->fis_type == SATA_FIS_TYPE_REGD2H)
&& !(fis_frame_header->status & ATA_STATUS_REG_BSY_BIT)
)
{
scic_sds_unsolicited_frame_control_get_buffer(
&(scic_sds_phy_get_controller(this_phy)->uf_control),
frame_index,
(void **)&fis_frame_data
);
scic_sds_controller_copy_sata_response(
&this_phy->phy_type.sata.signature_fis_buffer,
frame_words,
fis_frame_data
);
// We got the IAF we can now go to the await spinup semaphore state
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
);
result = SCI_SUCCESS;
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_phy),
SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
"PHY starting substate machine received unexpected frame id %x\n",
frame_index
));
}
// Regardless of the result release this frame since we are done with it
scic_sds_controller_release_frame(
scic_sds_phy_get_controller(this_phy), frame_index
);
return result;
}
//*****************************************************************************
//* SCIC SDS PHY POWER_HANDLERS
//*****************************************************************************
/**
* This method is called by the SCIC_SDS_CONTROLLER when the phy object is
* granted power.
* - The notify enable spinups are turned on for this phy object
* - The phy state machine is transitioned to the
* SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_consume_power_handler(
SCIC_SDS_PHY_T *this_phy
)
{
U32 enable_spinup;
enable_spinup = SCU_SAS_ENSPINUP_READ(this_phy);
enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup);
// Change state to the final state this substate machine has run to completion
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
);
return SCI_SUCCESS;
}
/**
* This method is called by the SCIC_SDS_CONTROLLER when the phy object is
* granted power.
* - The phy state machine is transitioned to the
* SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
*
* @param[in] phy This is the SCI_BASE_PHY object which is cast into a
* SCIC_SDS_PHY object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_consume_power_handler(
SCIC_SDS_PHY_T *this_phy
)
{
U32 scu_sas_pcfg_value;
// Release the spinup hold state and reset the OOB state machine
scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
scu_sas_pcfg_value &=
~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
// Now restart the OOB operation
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
// Change state to the final state this substate machine has run to completion
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
);
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCIC_SDS_PHY_STATE_HANDLER_T
scic_sds_phy_starting_substate_handler_table[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
{
// SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_ossp_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_default_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_starting_substate_await_iaf_uf_frame_handler,
scic_sds_phy_starting_substate_await_iaf_uf_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_sas_power_event_handler,
scic_sds_phy_starting_substate_await_sas_power_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_sata_power_event_handler,
scic_sds_phy_starting_substate_await_sata_power_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_sata_phy_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_starting_substate_await_sata_speed_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_starting_substate_await_sig_fis_frame_handler,
scic_sds_phy_starting_substate_await_sig_fis_event_handler,
scic_sds_phy_default_consume_power_handler
},
// SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
{
{
scic_sds_phy_default_start_handler,
scic_sds_phy_starting_substate_general_stop_handler,
scic_sds_phy_default_reset_handler,
scic_sds_phy_default_destroy_handler
},
scic_sds_phy_default_frame_handler,
scic_sds_phy_default_event_handler,
scic_sds_phy_default_consume_power_handler
}
};
/**
* This macro sets the starting substate handlers by state_id
*/
#define scic_sds_phy_set_starting_substate_handlers(phy, state_id) \
scic_sds_phy_set_state_handlers( \
(phy), \
&scic_sds_phy_starting_substate_handler_table[(state_id)] \
)
//****************************************************************************
//* PHY STARTING SUBSTATE METHODS
//****************************************************************************
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL.
* - The initial state handlers are put in place for the SCIC_SDS_PHY
* object.
* - The state is changed to the wait phy type event notification.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_initial_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL);
// This is just an temporary state go off to the starting state
sci_base_state_machine_change_state(
scic_sds_phy_get_starting_substate_machine(this_phy),
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_PHY_TYPE_EN.
* - Set the SCIC_SDS_PHY object state handlers for this state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_ossp_en_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
* - Set the SCIC_SDS_PHY object state handlers for this state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sas_speed_en_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
* - Set the SCIC_SDS_PHY object state handlers for this state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_iaf_uf_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
* - Set the SCIC_SDS_PHY object state handlers for this state.
* - Add this phy object to the power control queue
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sas_power_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
);
scic_sds_controller_power_control_queue_insert(
scic_sds_phy_get_controller(this_phy),
this_phy
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
* - Remove the SCIC_SDS_PHY object from the power control queue.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sas_power_substate_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_controller_power_control_queue_remove(
scic_sds_phy_get_controller(this_phy), this_phy
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
* - Set the SCIC_SDS_PHY object state handlers for this state.
* - Add this phy object to the power control queue
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_power_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
);
scic_sds_controller_power_control_queue_insert(
scic_sds_phy_get_controller(this_phy),
this_phy
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
* - Remove the SCIC_SDS_PHY object from the power control queue.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_power_substate_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_controller_power_control_queue_remove(
scic_sds_phy_get_controller(this_phy),
this_phy
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
* - Set the SCIC_SDS_PHY object state handlers for this state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_phy_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
);
scic_cb_timer_start(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer,
SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
* - stop the timer that was started on entry to await sata phy
* event notification
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_phy_substate_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_cb_timer_stop(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
* - Set the SCIC_SDS_PHY object state handlers for this state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_speed_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
);
scic_cb_timer_start(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer,
SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
* - stop the timer that was started on entry to await sata phy
* event notification
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sata_speed_substate_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_cb_timer_stop(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
* - Set the SCIC_SDS_PHY object state handlers for this state.
* - Start the SIGNATURE FIS timeout timer
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sig_fis_uf_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
BOOL continue_to_ready_state;
SCIC_SDS_PHY_T * this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
);
continue_to_ready_state = scic_sds_port_link_detected(
this_phy->owning_port,
this_phy
);
if (continue_to_ready_state)
{
// Clear the PE suspend condition so we can actually receive SIG FIS
// The hardware will not respond to the XRDY until the PE suspend
// condition is cleared.
scic_sds_phy_resume(this_phy);
scic_cb_timer_start(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer,
SCIC_SDS_SIGNATURE_FIS_TIMEOUT
);
}
else
{
this_phy->is_in_link_training = FALSE;
}
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
* - Stop the SIGNATURE FIS timeout timer.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_await_sig_fis_uf_substate_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_cb_timer_stop(
scic_sds_phy_get_controller(this_phy),
this_phy->sata_timeout_timer
);
}
/**
* This method will perform the actions required by the SCIC_SDS_PHY on
* entering the SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
* - Set the SCIC_SDS_PHY object state handlers for this state.
* - Change base state machine to the ready state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_PHY object.
*
* @return none
*/
static
void scic_sds_phy_starting_final_substate_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_PHY_T *this_phy;
this_phy = (SCIC_SDS_PHY_T *)object;
scic_sds_phy_set_starting_substate_handlers(
this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
);
// State machine has run to completion so exit out and change
// the base state machine to the ready state
sci_base_state_machine_change_state(
scic_sds_phy_get_base_state_machine(this_phy),
SCI_BASE_PHY_STATE_READY);
}
// ---------------------------------------------------------------------------
SCI_BASE_STATE_T
scic_sds_phy_starting_substates[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
{
{
SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL,
scic_sds_phy_starting_initial_substate_enter,
NULL,
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN,
scic_sds_phy_starting_await_ossp_en_substate_enter,
NULL,
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN,
scic_sds_phy_starting_await_sas_speed_en_substate_enter,
NULL,
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF,
scic_sds_phy_starting_await_iaf_uf_substate_enter,
NULL,
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER,
scic_sds_phy_starting_await_sas_power_substate_enter,
scic_sds_phy_starting_await_sas_power_substate_exit,
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
scic_sds_phy_starting_await_sata_power_substate_enter,
scic_sds_phy_starting_await_sata_power_substate_exit
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
scic_sds_phy_starting_await_sata_phy_substate_enter,
scic_sds_phy_starting_await_sata_phy_substate_exit
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
scic_sds_phy_starting_await_sata_speed_substate_enter,
scic_sds_phy_starting_await_sata_speed_substate_exit
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
scic_sds_phy_starting_await_sig_fis_uf_substate_enter,
scic_sds_phy_starting_await_sig_fis_uf_substate_exit
},
{
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL,
scic_sds_phy_starting_final_substate_enter,
NULL,
}
};