Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2012 The FreeBSD Foundation
 * All rights reserved.
 *
 * This software was developed by Oleksandr Rybalko under sponsorship
 * from the FreeBSD Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.	Redistributions of source code must retain the above copyright
 *	notice, this list of conditions and the following disclaimer.
 * 2.	Redistributions in binary form must reproduce the above copyright
 *	notice, this list of conditions and the following disclaimer in the
 *	documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kdb.h>
#include <machine/bus.h>

#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_cpu_fdt.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_dev_imx.h>

#if defined(EXT_RESOURCES) && defined(__aarch64__)
#define	IMX_ENABLE_CLOCKS
#endif

#ifdef IMX_ENABLE_CLOCKS
#include <dev/extres/clk/clk.h>
#endif

#include "uart_if.h"

#include <arm/freescale/imx/imx_ccmvar.h>

/*
 * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
 * available to read or space for 24 more bytes to write.  While 8 bytes of
 * slack before over/underrun might seem excessive, the hardware can run at
 * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
 * to get into the interrupt handler and service the fifo.
 */
#define	IMX_FIFOSZ		32
#define	IMX_RXFIFO_LEVEL	24
#define	IMX_TXFIFO_LEVEL	24

/*
 * Low-level UART interface.
 */
static int imx_uart_probe(struct uart_bas *bas);
static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
static void imx_uart_term(struct uart_bas *bas);
static void imx_uart_putc(struct uart_bas *bas, int);
static int imx_uart_rxready(struct uart_bas *bas);
static int imx_uart_getc(struct uart_bas *bas, struct mtx *);

static struct uart_ops uart_imx_uart_ops = {
	.probe = imx_uart_probe,
	.init = imx_uart_init,
	.term = imx_uart_term,
	.putc = imx_uart_putc,
	.rxready = imx_uart_rxready,
	.getc = imx_uart_getc,
};

#if 0 /* Handy when debugging. */
static void
dumpregs(struct uart_bas *bas, const char * msg)
{

	if (!bootverbose)
		return;
	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
	    msg, bas->bsh,
	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)), 
	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
}
#endif

static int
imx_uart_probe(struct uart_bas *bas)
{

	return (0);
}

static u_int
imx_uart_getbaud(struct uart_bas *bas)
{
	uint32_t rate, ubir, ubmr;
	u_int baud, blo, bhi, i;
	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
	static const u_int std_rates[] = {
		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
	};

	/*
	 * Get the baud rate the hardware is programmed for, then search the
	 * table of standard baud rates for a number that's within 3% of the
	 * actual rate the hardware is programmed for.  It's more comforting to
	 * see that your console is running at 115200 than 114942.  Note that
	 * here we cannot make a simplifying assumption that the predivider and
	 * numerator are 1 (like we do when setting the baud rate), because we
	 * don't know what u-boot might have set up.
	 */
	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
	    IMXUART_UFCR_RFDIV_SHIFT;
	rate = bas->rclk / predivs[i];
	ubir = GETREG(bas, REG(UBIR)) + 1;
	ubmr = GETREG(bas, REG(UBMR)) + 1;
	baud = ((rate / 16 ) * ubir) / ubmr;

	blo = (baud * 100) / 103;
	bhi = (baud * 100) / 97;
	for (i = 0; i < nitems(std_rates); i++) {
		rate = std_rates[i];
		if (rate >= blo && rate <= bhi) {
			baud = rate;
			break;
		}
	}

	return (baud);
}

static void
imx_uart_init(struct uart_bas *bas, int baudrate, int databits, 
    int stopbits, int parity)
{
	uint32_t baseclk, reg;

        /* Enable the device and the RX/TX channels. */
	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));

	if (databits == 7)
		DIS(bas, UCR2, WS);
	else
		ENA(bas, UCR2, WS);

	if (stopbits == 2)
		ENA(bas, UCR2, STPB);
	else
		DIS(bas, UCR2, STPB);

	switch (parity) {
	case UART_PARITY_ODD:
		DIS(bas, UCR2, PROE);
		ENA(bas, UCR2, PREN);
		break;
	case UART_PARITY_EVEN:
		ENA(bas, UCR2, PROE);
		ENA(bas, UCR2, PREN);
		break;
	case UART_PARITY_MARK:
	case UART_PARITY_SPACE:
                /* FALLTHROUGH: Hardware doesn't support mark/space. */
	case UART_PARITY_NONE:
	default:
		DIS(bas, UCR2, PREN);
		break;
	}

	/*
	 * The hardware has an extremely flexible baud clock: it allows setting
	 * both the numerator and denominator of the divider, as well as a
	 * separate pre-divider.  We simplify the problem of coming up with a
	 * workable pair of numbers by assuming a pre-divider and numerator of
	 * one because our base clock is so fast we can reach virtually any
	 * reasonable speed with a simple divisor.  The numerator value actually
	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
	 * the register value is the numerator-1, so we have a hard-coded 15.
	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
	 * set back to back in order for the change to take effect.
	 */
	if ((baudrate > 0) && (bas->rclk != 0)) {
		baseclk = bas->rclk;
		reg = GETREG(bas, REG(UFCR));
		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
		SETREG(bas, REG(UFCR), reg);
		SETREG(bas, REG(UBIR), 15);
		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
	}

	/*
	 * Program the tx lowater and rx hiwater levels at which fifo-service
	 * interrupts are signaled.  The tx value is interpetted as "when there
	 * are only this many bytes remaining" (not "this many free").
	 */
	reg = GETREG(bas, REG(UFCR));
	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
	SETREG(bas, REG(UFCR), reg);
}

static void
imx_uart_term(struct uart_bas *bas)
{

}

static void
imx_uart_putc(struct uart_bas *bas, int c)
{

	while (!(IS(bas, USR1, TRDY)))
		;
	SETREG(bas, REG(UTXD), c);
}

static int
imx_uart_rxready(struct uart_bas *bas)
{

	return ((IS(bas, USR2, RDR)) ? 1 : 0);
}

static int
imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
{
	int c;

	uart_lock(hwmtx);
	while (!(IS(bas, USR2, RDR)))
		;

	c = GETREG(bas, REG(URXD));
	uart_unlock(hwmtx);
#if defined(KDB)
	if (c & FLD(URXD, BRK)) {
		if (kdb_break())
			return (0);
	}
#endif
	return (c & 0xff);
}

/*
 * High-level UART interface.
 */
struct imx_uart_softc {
	struct uart_softc base;
};

static int imx_uart_bus_attach(struct uart_softc *);
static int imx_uart_bus_detach(struct uart_softc *);
static int imx_uart_bus_flush(struct uart_softc *, int);
static int imx_uart_bus_getsig(struct uart_softc *);
static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
static int imx_uart_bus_ipend(struct uart_softc *);
static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
static int imx_uart_bus_probe(struct uart_softc *);
static int imx_uart_bus_receive(struct uart_softc *);
static int imx_uart_bus_setsig(struct uart_softc *, int);
static int imx_uart_bus_transmit(struct uart_softc *);
static void imx_uart_bus_grab(struct uart_softc *);
static void imx_uart_bus_ungrab(struct uart_softc *);

static kobj_method_t imx_uart_methods[] = {
	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
	KOBJMETHOD(uart_param,		imx_uart_bus_param),
	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
	{ 0, 0 }
};

static struct uart_class uart_imx_class = {
	"imx",
	imx_uart_methods,
	sizeof(struct imx_uart_softc),
	.uc_ops = &uart_imx_uart_ops,
	.uc_range = 0x100,
	.uc_rclk = 24000000, /* TODO: get value from CCM */
	.uc_rshift = 0
};

static struct ofw_compat_data compat_data[] = {
	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
	{NULL,			(uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);

#define	SIGCHG(c, i, s, d)				\
	if (c) {					\
		i |= (i & s) ? s : s | d;		\
	} else {					\
		i = (i & s) ? (i & ~s) | d : i;		\
	}

#ifdef IMX_ENABLE_CLOCKS
static int
imx_uart_setup_clocks(struct uart_softc *sc)
{
	struct uart_bas *bas;
	clk_t ipgclk, perclk;
	uint64_t freq;
	int error;

	bas = &sc->sc_bas;

	if (clk_get_by_ofw_name(sc->sc_dev, 0, "ipg", &ipgclk) != 0)
		return (ENOENT);

	if (clk_get_by_ofw_name(sc->sc_dev, 0, "per", &perclk) != 0) {
		return (ENOENT);
	}

	error = clk_enable(ipgclk);
	if (error != 0) {
		device_printf(sc->sc_dev, "cannot enable ipg clock\n");
		return (error);
	}

	error = clk_get_freq(perclk, &freq);
	if (error != 0) {
		device_printf(sc->sc_dev, "cannot get frequency\n");
		return (error);
	}

	bas->rclk = (uint32_t)freq;

	return (0);
}
#endif

static int
imx_uart_bus_attach(struct uart_softc *sc)
{
	struct uart_bas *bas;
	struct uart_devinfo *di;

	bas = &sc->sc_bas;

#ifdef IMX_ENABLE_CLOCKS
	int error = imx_uart_setup_clocks(sc);
	if (error)
		return (error);
#else
	bas->rclk = imx_ccm_uart_hz();
#endif

	if (sc->sc_sysdev != NULL) {
		di = sc->sc_sysdev;
		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
		    di->parity);
	} else {
		imx_uart_init(bas, 115200, 8, 1, 0);
	}

	(void)imx_uart_bus_getsig(sc);

	/* Clear all pending interrupts. */
	SETREG(bas, REG(USR1), 0xffff);
	SETREG(bas, REG(USR2), 0xffff);

	DIS(bas, UCR4, DREN);
	ENA(bas, UCR1, RRDYEN);
	DIS(bas, UCR1, IDEN);
	DIS(bas, UCR3, RXDSEN);
	ENA(bas, UCR2, ATEN);
	DIS(bas, UCR1, TXMPTYEN);
	DIS(bas, UCR1, TRDYEN);
	DIS(bas, UCR4, TCEN);
	DIS(bas, UCR4, OREN);
	ENA(bas, UCR4, BKEN);
	DIS(bas, UCR4, WKEN);
	DIS(bas, UCR1, ADEN);
	DIS(bas, UCR3, ACIEN);
	DIS(bas, UCR2, ESCI);
	DIS(bas, UCR4, ENIRI);
	DIS(bas, UCR3, AIRINTEN);
	DIS(bas, UCR3, AWAKEN);
	DIS(bas, UCR3, FRAERREN);
	DIS(bas, UCR3, PARERREN);
	DIS(bas, UCR1, RTSDEN);
	DIS(bas, UCR2, RTSEN);
	DIS(bas, UCR3, DTREN);
	DIS(bas, UCR3, RI);
	DIS(bas, UCR3, DCD);
	DIS(bas, UCR3, DTRDEN);
	ENA(bas, UCR2, IRTS);
	ENA(bas, UCR3, RXDMUXSEL);

	return (0);
}

static int
imx_uart_bus_detach(struct uart_softc *sc)
{

	SETREG(&sc->sc_bas, REG(UCR4), 0);

	return (0);
}

static int
imx_uart_bus_flush(struct uart_softc *sc, int what)
{

	/* TODO */
	return (0);
}

static int
imx_uart_bus_getsig(struct uart_softc *sc)
{
	uint32_t new, old, sig;
	uint8_t bes;

	do {
		old = sc->sc_hwsig;
		sig = old;
		uart_lock(sc->sc_hwmtx);
		bes = GETREG(&sc->sc_bas, REG(USR2));
		uart_unlock(sc->sc_hwmtx);
		/* XXX: chip can show delta */
		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
		new = sig & ~SER_MASK_DELTA;
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));

	return (sig);
}

static int
imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
	struct uart_bas *bas;
	int error;

	bas = &sc->sc_bas;
	error = 0;
	uart_lock(sc->sc_hwmtx);
	switch (request) {
	case UART_IOCTL_BREAK:
		/* TODO */
		break;
	case UART_IOCTL_BAUD:
		*(u_int*)data = imx_uart_getbaud(bas);
		break;
	default:
		error = EINVAL;
		break;
	}
	uart_unlock(sc->sc_hwmtx);

	return (error);
}

static int
imx_uart_bus_ipend(struct uart_softc *sc)
{
	struct uart_bas *bas;
	int ipend;
	uint32_t usr1, usr2;
	uint32_t ucr1, ucr2, ucr4;

	bas = &sc->sc_bas;
	ipend = 0;

	uart_lock(sc->sc_hwmtx);

	/* Read pending interrupts */
	usr1 = GETREG(bas, REG(USR1));
	usr2 = GETREG(bas, REG(USR2));
	/* ACK interrupts */
	SETREG(bas, REG(USR1), usr1);
	SETREG(bas, REG(USR2), usr2);

	ucr1 = GETREG(bas, REG(UCR1));
	ucr2 = GETREG(bas, REG(UCR2));
	ucr4 = GETREG(bas, REG(UCR4));

	/* If we have reached tx low-water, we can tx some more now. */
	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
		DIS(bas, UCR1, TRDYEN);
		ipend |= SER_INT_TXIDLE;
	}

	/*
	 * If we have reached the rx high-water, or if there are bytes in the rx
	 * fifo and no new data has arrived for 8 character periods (aging
	 * timer), we have input data to process.
	 */
	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) || 
	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
		DIS(bas, UCR1, RRDYEN);
		DIS(bas, UCR2, ATEN);
		ipend |= SER_INT_RXREADY;
	}

	/* A break can come in at any time, it never gets disabled. */
	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
		ipend |= SER_INT_BREAK;

	uart_unlock(sc->sc_hwmtx);

	return (ipend);
}

static int
imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
    int stopbits, int parity)
{

	uart_lock(sc->sc_hwmtx);
	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
	uart_unlock(sc->sc_hwmtx);
	return (0);
}

static int
imx_uart_bus_probe(struct uart_softc *sc)
{
	int error;

	error = imx_uart_probe(&sc->sc_bas);
	if (error)
		return (error);

	/*
	 * On input we can read up to the full fifo size at once.  On output, we
	 * want to write only as much as the programmed tx low water level,
	 * because that's all we can be certain we have room for in the fifo
	 * when we get a tx-ready interrupt.
	 */
	sc->sc_rxfifosz = IMX_FIFOSZ;
	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;

	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
	return (0);
}

static int
imx_uart_bus_receive(struct uart_softc *sc)
{
	struct uart_bas *bas;
	int xc, out;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);

	/*
	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
	 * full hardware fifo size, so we can safely process however much is
	 * there, not just the highwater size.
	 */
	while (IS(bas, USR2, RDR)) {
		if (uart_rx_full(sc)) {
			/* No space left in input buffer */
			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
			break;
		}
		xc = GETREG(bas, REG(URXD));
		out = xc & 0x000000ff;
		if (xc & FLD(URXD, FRMERR))
			out |= UART_STAT_FRAMERR;
		if (xc & FLD(URXD, PRERR))
			out |= UART_STAT_PARERR;
		if (xc & FLD(URXD, OVRRUN))
			out |= UART_STAT_OVERRUN;
		if (xc & FLD(URXD, BRK))
			out |= UART_STAT_BREAK;

		uart_rx_put(sc, out);
	}
	ENA(bas, UCR1, RRDYEN);
	ENA(bas, UCR2, ATEN);

	uart_unlock(sc->sc_hwmtx);
	return (0);
}

static int
imx_uart_bus_setsig(struct uart_softc *sc, int sig)
{

	return (0);
}

static int
imx_uart_bus_transmit(struct uart_softc *sc)
{
	struct uart_bas *bas = &sc->sc_bas;
	int i;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);

	/*
	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
	 * into the txbuf (because that's what sc_txfifosz is set to), and
	 * because we got the TRDY (low-water reached) interrupt we know at
	 * least that much space is available in the fifo.
	 */
	for (i = 0; i < sc->sc_txdatasz; i++) {
		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
	}
	sc->sc_txbusy = 1;
	ENA(bas, UCR1, TRDYEN);

	uart_unlock(sc->sc_hwmtx);

	return (0);
}

static void
imx_uart_bus_grab(struct uart_softc *sc)
{
	struct uart_bas *bas = &sc->sc_bas;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	DIS(bas, UCR1, RRDYEN);
	DIS(bas, UCR2, ATEN);
	uart_unlock(sc->sc_hwmtx);
}

static void
imx_uart_bus_ungrab(struct uart_softc *sc)
{
	struct uart_bas *bas = &sc->sc_bas;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	ENA(bas, UCR1, RRDYEN);
	ENA(bas, UCR2, ATEN);
	uart_unlock(sc->sc_hwmtx);
}