/*-
* Copyright (c) 2015-2016 Kevin Lo <kevlo@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sbuf.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
/* needed for checksum offload */
#include <netinet/in.h>
#include <netinet/ip.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR ure_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_urereg.h>
#include "miibus_if.h"
#include "opt_inet6.h"
#ifdef USB_DEBUG
static int ure_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, ure, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"USB ure");
SYSCTL_INT(_hw_usb_ure, OID_AUTO, debug, CTLFLAG_RWTUN, &ure_debug, 0,
"Debug level");
#endif
#ifdef USB_DEBUG_VAR
#ifdef USB_DEBUG
#define DEVPRINTFN(n,dev,fmt,...) do { \
if ((USB_DEBUG_VAR) >= (n)) { \
device_printf((dev), "%s: " fmt, \
__FUNCTION__ ,##__VA_ARGS__); \
} \
} while (0)
#define DEVPRINTF(...) DEVPRINTFN(1, __VA_ARGS__)
#else
#define DEVPRINTF(...) do { } while (0)
#define DEVPRINTFN(...) do { } while (0)
#endif
#endif
/*
* Various supported device vendors/products.
*/
static const STRUCT_USB_HOST_ID ure_devs[] = {
#define URE_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
URE_DEV(LENOVO, RTL8153, 0),
URE_DEV(LENOVO, TBT3LAN, 0),
URE_DEV(LENOVO, ONELINK, 0),
URE_DEV(LENOVO, USBCLAN, 0),
URE_DEV(NVIDIA, RTL8153, 0),
URE_DEV(REALTEK, RTL8152, URE_FLAG_8152),
URE_DEV(REALTEK, RTL8153, 0),
URE_DEV(TPLINK, RTL8153, 0),
#undef URE_DEV
};
static device_probe_t ure_probe;
static device_attach_t ure_attach;
static device_detach_t ure_detach;
static usb_callback_t ure_bulk_read_callback;
static usb_callback_t ure_bulk_write_callback;
static miibus_readreg_t ure_miibus_readreg;
static miibus_writereg_t ure_miibus_writereg;
static miibus_statchg_t ure_miibus_statchg;
static uether_fn_t ure_attach_post;
static uether_fn_t ure_init;
static uether_fn_t ure_stop;
static uether_fn_t ure_start;
static uether_fn_t ure_tick;
static uether_fn_t ure_rxfilter;
static int ure_ctl(struct ure_softc *, uint8_t, uint16_t, uint16_t,
void *, int);
static int ure_read_mem(struct ure_softc *, uint16_t, uint16_t, void *,
int);
static int ure_write_mem(struct ure_softc *, uint16_t, uint16_t, void *,
int);
static uint8_t ure_read_1(struct ure_softc *, uint16_t, uint16_t);
static uint16_t ure_read_2(struct ure_softc *, uint16_t, uint16_t);
static uint32_t ure_read_4(struct ure_softc *, uint16_t, uint16_t);
static int ure_write_1(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static int ure_write_2(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static int ure_write_4(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static uint16_t ure_ocp_reg_read(struct ure_softc *, uint16_t);
static void ure_ocp_reg_write(struct ure_softc *, uint16_t, uint16_t);
static int ure_sysctl_chipver(SYSCTL_HANDLER_ARGS);
static void ure_read_chipver(struct ure_softc *);
static int ure_attach_post_sub(struct usb_ether *);
static void ure_reset(struct ure_softc *);
static int ure_ifmedia_upd(struct ifnet *);
static void ure_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int ure_ioctl(struct ifnet *, u_long, caddr_t);
static void ure_rtl8152_init(struct ure_softc *);
static void ure_rtl8153_init(struct ure_softc *);
static void ure_disable_teredo(struct ure_softc *);
static void ure_init_fifo(struct ure_softc *);
static void ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m);
static int ure_txcsum(struct mbuf *m, int caps, uint32_t *regout);
static const struct usb_config ure_config_rx[URE_N_TRANSFER] = {
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = ure_bulk_read_callback,
.timeout = 0, /* no timeout */
},
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = ure_bulk_read_callback,
.timeout = 0, /* no timeout */
},
#if URE_N_TRANSFER == 4
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = ure_bulk_read_callback,
.timeout = 0, /* no timeout */
},
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = ure_bulk_read_callback,
.timeout = 0, /* no timeout */
},
#endif
};
static const struct usb_config ure_config_tx[URE_N_TRANSFER] = {
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = ure_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = ure_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
#if URE_N_TRANSFER == 4
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = ure_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
{
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = URE_TRANSFER_SIZE,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = ure_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
#endif
};
static device_method_t ure_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ure_probe),
DEVMETHOD(device_attach, ure_attach),
DEVMETHOD(device_detach, ure_detach),
/* MII interface. */
DEVMETHOD(miibus_readreg, ure_miibus_readreg),
DEVMETHOD(miibus_writereg, ure_miibus_writereg),
DEVMETHOD(miibus_statchg, ure_miibus_statchg),
DEVMETHOD_END
};
static driver_t ure_driver = {
.name = "ure",
.methods = ure_methods,
.size = sizeof(struct ure_softc),
};
static devclass_t ure_devclass;
DRIVER_MODULE(ure, uhub, ure_driver, ure_devclass, NULL, NULL);
DRIVER_MODULE(miibus, ure, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(ure, uether, 1, 1, 1);
MODULE_DEPEND(ure, usb, 1, 1, 1);
MODULE_DEPEND(ure, ether, 1, 1, 1);
MODULE_DEPEND(ure, miibus, 1, 1, 1);
MODULE_VERSION(ure, 1);
USB_PNP_HOST_INFO(ure_devs);
static const struct usb_ether_methods ure_ue_methods = {
.ue_attach_post = ure_attach_post,
.ue_attach_post_sub = ure_attach_post_sub,
.ue_start = ure_start,
.ue_init = ure_init,
.ue_stop = ure_stop,
.ue_tick = ure_tick,
.ue_setmulti = ure_rxfilter,
.ue_setpromisc = ure_rxfilter,
.ue_mii_upd = ure_ifmedia_upd,
.ue_mii_sts = ure_ifmedia_sts,
};
static int
ure_ctl(struct ure_softc *sc, uint8_t rw, uint16_t val, uint16_t index,
void *buf, int len)
{
struct usb_device_request req;
URE_LOCK_ASSERT(sc, MA_OWNED);
if (rw == URE_CTL_WRITE)
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = UR_SET_ADDRESS;
USETW(req.wValue, val);
USETW(req.wIndex, index);
USETW(req.wLength, len);
return (uether_do_request(&sc->sc_ue, &req, buf, 1000));
}
static int
ure_read_mem(struct ure_softc *sc, uint16_t addr, uint16_t index,
void *buf, int len)
{
return (ure_ctl(sc, URE_CTL_READ, addr, index, buf, len));
}
static int
ure_write_mem(struct ure_softc *sc, uint16_t addr, uint16_t index,
void *buf, int len)
{
return (ure_ctl(sc, URE_CTL_WRITE, addr, index, buf, len));
}
static uint8_t
ure_read_1(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
uint32_t val;
uint8_t temp[4];
uint8_t shift;
shift = (reg & 3) << 3;
reg &= ~3;
ure_read_mem(sc, reg, index, &temp, 4);
val = UGETDW(temp);
val >>= shift;
return (val & 0xff);
}
static uint16_t
ure_read_2(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
uint32_t val;
uint8_t temp[4];
uint8_t shift;
shift = (reg & 2) << 3;
reg &= ~3;
ure_read_mem(sc, reg, index, &temp, 4);
val = UGETDW(temp);
val >>= shift;
return (val & 0xffff);
}
static uint32_t
ure_read_4(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
uint8_t temp[4];
ure_read_mem(sc, reg, index, &temp, 4);
return (UGETDW(temp));
}
static int
ure_write_1(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
uint16_t byen;
uint8_t temp[4];
uint8_t shift;
byen = URE_BYTE_EN_BYTE;
shift = reg & 3;
val &= 0xff;
if (reg & 3) {
byen <<= shift;
val <<= (shift << 3);
reg &= ~3;
}
USETDW(temp, val);
return (ure_write_mem(sc, reg, index | byen, &temp, 4));
}
static int
ure_write_2(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
uint16_t byen;
uint8_t temp[4];
uint8_t shift;
byen = URE_BYTE_EN_WORD;
shift = reg & 2;
val &= 0xffff;
if (reg & 2) {
byen <<= shift;
val <<= (shift << 3);
reg &= ~3;
}
USETDW(temp, val);
return (ure_write_mem(sc, reg, index | byen, &temp, 4));
}
static int
ure_write_4(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
uint8_t temp[4];
USETDW(temp, val);
return (ure_write_mem(sc, reg, index | URE_BYTE_EN_DWORD, &temp, 4));
}
static uint16_t
ure_ocp_reg_read(struct ure_softc *sc, uint16_t addr)
{
uint16_t reg;
ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
reg = (addr & 0x0fff) | 0xb000;
return (ure_read_2(sc, reg, URE_MCU_TYPE_PLA));
}
static void
ure_ocp_reg_write(struct ure_softc *sc, uint16_t addr, uint16_t data)
{
uint16_t reg;
ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
reg = (addr & 0x0fff) | 0xb000;
ure_write_2(sc, reg, URE_MCU_TYPE_PLA, data);
}
static int
ure_miibus_readreg(device_t dev, int phy, int reg)
{
struct ure_softc *sc;
uint16_t val;
int locked;
sc = device_get_softc(dev);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
URE_LOCK(sc);
/* Let the rgephy driver read the URE_GMEDIASTAT register. */
if (reg == URE_GMEDIASTAT) {
if (!locked)
URE_UNLOCK(sc);
return (ure_read_1(sc, URE_GMEDIASTAT, URE_MCU_TYPE_PLA));
}
val = ure_ocp_reg_read(sc, URE_OCP_BASE_MII + reg * 2);
if (!locked)
URE_UNLOCK(sc);
return (val);
}
static int
ure_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct ure_softc *sc;
int locked;
sc = device_get_softc(dev);
if (sc->sc_phyno != phy)
return (0);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
URE_LOCK(sc);
ure_ocp_reg_write(sc, URE_OCP_BASE_MII + reg * 2, val);
if (!locked)
URE_UNLOCK(sc);
return (0);
}
static void
ure_miibus_statchg(device_t dev)
{
struct ure_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int locked;
sc = device_get_softc(dev);
mii = GET_MII(sc);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
URE_LOCK(sc);
ifp = uether_getifp(&sc->sc_ue);
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
sc->sc_flags &= ~URE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= URE_FLAG_LINK;
sc->sc_rxstarted = 0;
break;
case IFM_1000_T:
if ((sc->sc_flags & URE_FLAG_8152) != 0)
break;
sc->sc_flags |= URE_FLAG_LINK;
sc->sc_rxstarted = 0;
break;
default:
break;
}
}
/* Lost link, do nothing. */
if ((sc->sc_flags & URE_FLAG_LINK) == 0)
goto done;
done:
if (!locked)
URE_UNLOCK(sc);
}
/*
* Probe for a RTL8152/RTL8153 chip.
*/
static int
ure_probe(device_t dev)
{
struct usb_attach_arg *uaa;
uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != URE_CONFIG_IDX)
return (ENXIO);
if (uaa->info.bIfaceIndex != URE_IFACE_IDX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(ure_devs, sizeof(ure_devs), uaa));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
ure_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct ure_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
uint8_t iface_index;
int error;
sc->sc_flags = USB_GET_DRIVER_INFO(uaa);
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
iface_index = URE_IFACE_IDX;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_rx_xfer,
ure_config_rx, URE_N_TRANSFER, sc, &sc->sc_mtx);
if (error != 0) {
device_printf(dev, "allocating USB RX transfers failed\n");
goto detach;
}
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_tx_xfer,
ure_config_tx, URE_N_TRANSFER, sc, &sc->sc_mtx);
if (error != 0) {
usbd_transfer_unsetup(sc->sc_rx_xfer, URE_N_TRANSFER);
device_printf(dev, "allocating USB TX transfers failed\n");
goto detach;
}
/* Mark all TX transfers as available */
for (int i = 0; i < URE_N_TRANSFER; i++) {
sc->sc_txavail[i] = sc->sc_tx_xfer[i];
DEVPRINTF(dev, "sc_txavail[%d] = %p\n", i, sc->sc_txavail[i]);
}
sc->sc_txpos = 0;
ue->ue_sc = sc;
ue->ue_dev = dev;
ue->ue_udev = uaa->device;
ue->ue_mtx = &sc->sc_mtx;
ue->ue_methods = &ure_ue_methods;
error = uether_ifattach(ue);
if (error != 0) {
device_printf(dev, "could not attach interface\n");
goto detach;
}
return (0); /* success */
detach:
ure_detach(dev);
return (ENXIO); /* failure */
}
static int
ure_detach(device_t dev)
{
struct ure_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
usbd_transfer_unsetup(sc->sc_tx_xfer, URE_N_TRANSFER);
usbd_transfer_unsetup(sc->sc_rx_xfer, URE_N_TRANSFER);
uether_ifdetach(ue);
mtx_destroy(&sc->sc_mtx);
return (0);
}
/*
* Copy from USB buffers to a new mbuf chain with pkt header.
*
* This will use m_getm2 to get a mbuf chain w/ properly sized mbuf
* clusters as necessary.
*/
static struct mbuf *
ure_makembuf(struct usb_page_cache *pc, usb_frlength_t offset,
usb_frlength_t len)
{
struct usb_page_search_res;
struct mbuf *m, *mb;
usb_frlength_t tlen;
m = m_getm2(NULL, len + ETHER_ALIGN, M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (m);
/* uether_newbuf does this. */
m_adj(m, ETHER_ALIGN);
m->m_pkthdr.len = len;
for (mb = m; len > 0; mb = mb->m_next) {
tlen = MIN(len, M_TRAILINGSPACE(mb));
usbd_copy_out(pc, offset, mtod(mb, uint8_t *), tlen);
mb->m_len = tlen;
offset += tlen;
len -= tlen;
}
return (m);
}
static void
ure_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ure_softc *sc = usbd_xfer_softc(xfer);
struct usb_ether *ue = &sc->sc_ue;
struct ifnet *ifp = uether_getifp(ue);
struct usb_page_cache *pc;
struct mbuf *m;
struct ure_rxpkt pkt;
int actlen, off, len;
int caps;
uint32_t pktcsum;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
off = 0;
pc = usbd_xfer_get_frame(xfer, 0);
caps = if_getcapenable(ifp);
DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb start\n");
while (actlen > 0) {
if (actlen < (int)(sizeof(pkt))) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
goto tr_setup;
}
usbd_copy_out(pc, off, &pkt, sizeof(pkt));
off += sizeof(pkt);
actlen -= sizeof(pkt);
len = le32toh(pkt.ure_pktlen) & URE_RXPKT_LEN_MASK;
DEVPRINTFN(13, sc->sc_ue.ue_dev,
"rxpkt: %#x, %#x, %#x, %#x, %#x, %#x\n",
pkt.ure_pktlen, pkt.ure_csum, pkt.ure_misc,
pkt.ure_rsvd2, pkt.ure_rsvd3, pkt.ure_rsvd4);
DEVPRINTFN(13, sc->sc_ue.ue_dev, "len: %d\n", len);
if (len >= URE_RXPKT_LEN_MASK) {
/*
* drop the rest of this segment. With out
* more information, we cannot know where next
* packet starts. Blindly continuing would
* cause a packet in packet attack, allowing
* one VLAN to inject packets w/o a VLAN tag,
* or injecting packets into other VLANs.
*/
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
goto tr_setup;
}
if (actlen < len) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
goto tr_setup;
}
if (len != 0)
m = ure_makembuf(pc, off, len - ETHER_CRC_LEN);
else
m = NULL;
if (m == NULL) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
} else {
/* make mbuf and queue */
pktcsum = le32toh(pkt.ure_csum);
if (caps & IFCAP_VLAN_HWTAGGING &&
pktcsum & URE_RXPKT_RX_VLAN_TAG) {
m->m_pkthdr.ether_vtag =
bswap16(pktcsum &
URE_RXPKT_VLAN_MASK);
m->m_flags |= M_VLANTAG;
}
/* set the necessary flags for rx checksum */
ure_rxcsum(caps, &pkt, m);
uether_rxmbuf(ue, m, len - ETHER_CRC_LEN);
}
off += roundup(len, URE_RXPKT_ALIGN);
actlen -= roundup(len, URE_RXPKT_ALIGN);
}
DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb end\n");
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
uether_rxflush(ue);
return;
default: /* Error */
DPRINTF("bulk read error, %s\n",
usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static void
ure_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ure_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
struct usb_page_cache *pc;
struct mbuf *m;
struct ure_txpkt txpkt;
uint32_t regtmp;
int len, pos;
int rem;
int caps;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
if ((sc->sc_flags & URE_FLAG_LINK) == 0) {
/* don't send anything if there is no link! */
break;
}
pc = usbd_xfer_get_frame(xfer, 0);
caps = if_getcapenable(ifp);
pos = 0;
rem = URE_TRANSFER_SIZE;
while (rem > sizeof(txpkt)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
/*
* make sure we don't ever send too large of a
* packet
*/
len = m->m_pkthdr.len;
if ((len & URE_TXPKT_LEN_MASK) != len) {
device_printf(sc->sc_ue.ue_dev,
"pkt len too large: %#x", len);
pkterror:
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
continue;
}
if (sizeof(txpkt) +
roundup(len, URE_TXPKT_ALIGN) > rem) {
/* out of space */
IFQ_DRV_PREPEND(&ifp->if_snd, m);
m = NULL;
break;
}
txpkt = (struct ure_txpkt){};
txpkt.ure_pktlen = htole32((len & URE_TXPKT_LEN_MASK) |
URE_TKPKT_TX_FS | URE_TKPKT_TX_LS);
if (m->m_flags & M_VLANTAG) {
txpkt.ure_csum = htole32(
bswap16(m->m_pkthdr.ether_vtag &
URE_TXPKT_VLAN_MASK) | URE_TXPKT_VLAN);
}
if (ure_txcsum(m, caps, ®tmp)) {
device_printf(sc->sc_ue.ue_dev,
"pkt l4 off too large");
goto pkterror;
}
txpkt.ure_csum |= htole32(regtmp);
DEVPRINTFN(13, sc->sc_ue.ue_dev,
"txpkt: mbflg: %#x, %#x, %#x\n",
m->m_pkthdr.csum_flags, le32toh(txpkt.ure_pktlen),
le32toh(txpkt.ure_csum));
usbd_copy_in(pc, pos, &txpkt, sizeof(txpkt));
pos += sizeof(txpkt);
rem -= sizeof(txpkt);
usbd_m_copy_in(pc, pos, m, 0, len);
pos += roundup(len, URE_TXPKT_ALIGN);
rem -= roundup(len, URE_TXPKT_ALIGN);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
/*
* If there's a BPF listener, bounce a copy
* of this frame to him.
*/
BPF_MTAP(ifp, m);
m_freem(m);
}
/* no packets to send */
if (pos == 0)
break;
/* Set frame length. */
usbd_xfer_set_frame_len(xfer, 0, pos);
usbd_transfer_submit(xfer);
KASSERT(sc->sc_txpos >= 0 && sc->sc_txpos <= URE_N_TRANSFER,
("sc_txpos invalid: %d", sc->sc_txpos));
if (sc->sc_txpos < URE_N_TRANSFER &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
xfer = sc->sc_txavail[sc->sc_txpos++];
usbd_transfer_start(xfer);
}
if (sc->sc_txpos == URE_N_TRANSFER)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(error));
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (error == USB_ERR_TIMEOUT) {
DEVPRINTFN(12, sc->sc_ue.ue_dev,
"pkt tx timeout\n");
}
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
}
KASSERT(sc->sc_txpos > 0 && sc->sc_txpos <= URE_N_TRANSFER, ("sc_txpos invalid: %d", sc->sc_txpos));
sc->sc_txavail[(--(sc->sc_txpos))] = xfer;
if (sc->sc_txpos < URE_N_TRANSFER)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
ure_read_chipver(struct ure_softc *sc)
{
uint16_t ver;
ver = ure_read_2(sc, URE_PLA_TCR1, URE_MCU_TYPE_PLA) & URE_VERSION_MASK;
sc->sc_ver = ver;
switch (ver) {
case 0x4c00:
sc->sc_chip |= URE_CHIP_VER_4C00;
break;
case 0x4c10:
sc->sc_chip |= URE_CHIP_VER_4C10;
break;
case 0x5c00:
sc->sc_chip |= URE_CHIP_VER_5C00;
break;
case 0x5c10:
sc->sc_chip |= URE_CHIP_VER_5C10;
break;
case 0x5c20:
sc->sc_chip |= URE_CHIP_VER_5C20;
break;
case 0x5c30:
sc->sc_chip |= URE_CHIP_VER_5C30;
break;
default:
device_printf(sc->sc_ue.ue_dev,
"unknown version 0x%04x\n", ver);
break;
}
}
static int
ure_sysctl_chipver(SYSCTL_HANDLER_ARGS)
{
struct sbuf sb;
struct ure_softc *sc = arg1;
int error;
sbuf_new_for_sysctl(&sb, NULL, 0, req);
sbuf_printf(&sb, "%04x", sc->sc_ver);
error = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error);
}
static void
ure_attach_post(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
sc->sc_rxstarted = 0;
sc->sc_phyno = 0;
/* Determine the chip version. */
ure_read_chipver(sc);
/* Initialize controller and get station address. */
if (sc->sc_flags & URE_FLAG_8152)
ure_rtl8152_init(sc);
else
ure_rtl8153_init(sc);
if ((sc->sc_chip & URE_CHIP_VER_4C00) ||
(sc->sc_chip & URE_CHIP_VER_4C10))
ure_read_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA,
ue->ue_eaddr, 8);
else
ure_read_mem(sc, URE_PLA_BACKUP, URE_MCU_TYPE_PLA,
ue->ue_eaddr, 8);
if (ETHER_IS_ZERO(sc->sc_ue.ue_eaddr)) {
device_printf(sc->sc_ue.ue_dev, "MAC assigned randomly\n");
arc4rand(sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN, 0);
sc->sc_ue.ue_eaddr[0] &= ~0x01; /* unicast */
sc->sc_ue.ue_eaddr[0] |= 0x02; /* locally administered */
}
sctx = device_get_sysctl_ctx(sc->sc_ue.ue_dev);
soid = device_get_sysctl_tree(sc->sc_ue.ue_dev);
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "chipver",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
ure_sysctl_chipver, "A",
"Return string with chip version.");
}
static int
ure_attach_post_sub(struct usb_ether *ue)
{
struct ure_softc *sc;
struct ifnet *ifp;
int error;
sc = uether_getsc(ue);
ifp = ue->ue_ifp;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = uether_start;
ifp->if_ioctl = ure_ioctl;
ifp->if_init = uether_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
/*
* Try to keep two transfers full at a time.
* ~(TRANSFER_SIZE / 80 bytes/pkt * 2 buffers in flight)
*/
ifp->if_snd.ifq_drv_maxlen = 512;
IFQ_SET_READY(&ifp->if_snd);
if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM|IFCAP_HWCSUM, 0);
if_sethwassist(ifp, CSUM_IP|CSUM_IP_UDP|CSUM_IP_TCP);
#ifdef INET6
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM_IPV6, 0);
#endif
if_setcapenable(ifp, if_getcapabilities(ifp));
mtx_lock(&Giant);
error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp,
uether_ifmedia_upd, ue->ue_methods->ue_mii_sts,
BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0);
mtx_unlock(&Giant);
return (error);
}
static void
ure_init(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint16_t cpcr;
URE_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Cancel pending I/O. */
ure_stop(ue);
ure_reset(sc);
/* Set MAC address. */
ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG);
ure_write_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA | URE_BYTE_EN_SIX_BYTES,
IF_LLADDR(ifp), 8);
ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML);
/* Reset the packet filter. */
ure_write_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA) &
~URE_FMC_FCR_MCU_EN);
ure_write_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA) |
URE_FMC_FCR_MCU_EN);
/* Enable RX VLANs if enabled */
cpcr = ure_read_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA);
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
DEVPRINTFN(12, sc->sc_ue.ue_dev, "enabled hw vlan tag\n");
cpcr |= URE_CPCR_RX_VLAN;
} else {
DEVPRINTFN(12, sc->sc_ue.ue_dev, "disabled hw vlan tag\n");
cpcr &= ~URE_CPCR_RX_VLAN;
}
ure_write_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA, cpcr);
/* Enable transmit and receive. */
ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA,
ure_read_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA) | URE_CR_RE |
URE_CR_TE);
ure_write_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA) &
~URE_RXDY_GATED_EN);
/* Configure RX filters. */
ure_rxfilter(ue);
usbd_xfer_set_stall(sc->sc_tx_xfer[0]);
/* Indicate we are up and running. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/* Switch to selected media. */
ure_ifmedia_upd(ifp);
}
static void
ure_tick(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
struct mii_data *mii = GET_MII(sc);
URE_LOCK_ASSERT(sc, MA_OWNED);
KASSERT(sc->sc_txpos >= 0 && sc->sc_txpos <= URE_N_TRANSFER, ("sc_txpos invalid: %d", sc->sc_txpos));
(void)ifp;
DEVPRINTFN(13, sc->sc_ue.ue_dev,
"sc_txpos: %d, oactive: %d\n", sc->sc_txpos, !!(ifp->if_drv_flags & IFF_DRV_OACTIVE));
for (int i = 0; i < URE_N_TRANSFER; i++)
DEVPRINTFN(13, sc->sc_ue.ue_dev,
"rx[%d] = %d\n", i, USB_GET_STATE(sc->sc_rx_xfer[i]));
for (int i = 0; i < URE_N_TRANSFER; i++)
DEVPRINTFN(13, sc->sc_ue.ue_dev,
"tx[%d] = %d\n", i, USB_GET_STATE(sc->sc_tx_xfer[i]));
mii_tick(mii);
if ((sc->sc_flags & URE_FLAG_LINK) == 0
&& mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->sc_flags |= URE_FLAG_LINK;
sc->sc_rxstarted = 0;
ure_start(ue);
}
}
static u_int
ure_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint32_t h, *hashes = arg;
h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
return (1);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
ure_rxfilter(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint32_t rxmode;
uint32_t h, hashes[2] = { 0, 0 };
URE_LOCK_ASSERT(sc, MA_OWNED);
rxmode = ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA);
rxmode &= ~(URE_RCR_AAP | URE_RCR_AM);
rxmode |= URE_RCR_APM; /* accept physical match packets */
rxmode |= URE_RCR_AB; /* always accept broadcasts */
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
if (ifp->if_flags & IFF_PROMISC)
rxmode |= URE_RCR_AAP;
rxmode |= URE_RCR_AM;
hashes[0] = hashes[1] = 0xffffffff;
goto done;
}
/* calculate multicast masks */
if_foreach_llmaddr(ifp, ure_hash_maddr, &hashes);
h = bswap32(hashes[0]);
hashes[0] = bswap32(hashes[1]);
hashes[1] = h;
rxmode |= URE_RCR_AM; /* accept multicast packets */
done:
DEVPRINTFN(14, ue->ue_dev, "rxfilt: RCR: %#x\n",
ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA));
ure_write_4(sc, URE_PLA_MAR0, URE_MCU_TYPE_PLA, hashes[0]);
ure_write_4(sc, URE_PLA_MAR4, URE_MCU_TYPE_PLA, hashes[1]);
ure_write_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, rxmode);
}
static void
ure_start(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct usb_xfer *xfer;
struct ifnet *ifp;
URE_LOCK_ASSERT(sc, MA_OWNED);
if (!sc->sc_rxstarted) {
sc->sc_rxstarted = 1;
for (int i = 0; i < URE_N_TRANSFER; i++)
usbd_transfer_start(sc->sc_rx_xfer[i]);
}
/*
* start the USB transfers, if not already started:
*/
if (sc->sc_txpos == URE_N_TRANSFER) {
ifp = uether_getifp(&sc->sc_ue);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
KASSERT(sc->sc_txpos >= 0 && sc->sc_txpos < URE_N_TRANSFER, ("sc_txpos invalid: %d", sc->sc_txpos));
xfer = sc->sc_txavail[sc->sc_txpos++];
if (sc->sc_txpos == URE_N_TRANSFER) {
ifp = uether_getifp(&sc->sc_ue);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
usbd_transfer_start(xfer);
}
static void
ure_reset(struct ure_softc *sc)
{
int i;
ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RST);
for (i = 0; i < URE_TIMEOUT; i++) {
if (!(ure_read_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA) &
URE_CR_RST))
break;
uether_pause(&sc->sc_ue, hz / 100);
}
if (i == URE_TIMEOUT)
device_printf(sc->sc_ue.ue_dev, "reset never completed\n");
}
/*
* Set media options.
*/
static int
ure_ifmedia_upd(struct ifnet *ifp)
{
struct ure_softc *sc = ifp->if_softc;
struct mii_data *mii = GET_MII(sc);
struct mii_softc *miisc;
int error;
URE_LOCK_ASSERT(sc, MA_OWNED);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
return (error);
}
/*
* Report current media status.
*/
static void
ure_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ure_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = GET_MII(sc);
URE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
URE_UNLOCK(sc);
}
static int
ure_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct usb_ether *ue = ifp->if_softc;
struct ure_softc *sc;
struct ifreq *ifr;
int error, mask, reinit;
sc = uether_getsc(ue);
ifr = (struct ifreq *)data;
error = 0;
reinit = 0;
switch (cmd) {
case SIOCSIFCAP:
URE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
reinit++;
}
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
}
if ((mask & IFCAP_TXCSUM_IPV6) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM_IPV6) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
}
if ((mask & IFCAP_RXCSUM_IPV6) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM_IPV6) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
}
if (reinit > 0 && ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
else
reinit = 0;
URE_UNLOCK(sc);
if (reinit > 0)
uether_init(ue);
break;
case SIOCSIFMTU:
/*
* in testing large MTUs "crashes" the device, it
* leaves the device w/ a broken state where link
* is in a bad state.
*/
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > (4096 - ETHER_HDR_LEN -
ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN)) {
error = EINVAL;
break;
}
URE_LOCK(sc);
if (if_getmtu(ifp) != ifr->ifr_mtu)
if_setmtu(ifp, ifr->ifr_mtu);
URE_UNLOCK(sc);
break;
default:
error = uether_ioctl(ifp, cmd, data);
}
return (error);
}
static void
ure_rtl8152_init(struct ure_softc *sc)
{
uint32_t pwrctrl;
/* Disable ALDPS. */
ure_ocp_reg_write(sc, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA |
URE_DIS_SDSAVE);
uether_pause(&sc->sc_ue, hz / 50);
if (sc->sc_chip & URE_CHIP_VER_4C00) {
ure_write_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA) &
~URE_LED_MODE_MASK);
}
ure_write_2(sc, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB) &
~URE_POWER_CUT);
ure_write_2(sc, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB) &
~URE_RESUME_INDICATE);
ure_write_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA) |
URE_TX_10M_IDLE_EN | URE_PFM_PWM_SWITCH);
pwrctrl = ure_read_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA);
pwrctrl &= ~URE_MCU_CLK_RATIO_MASK;
pwrctrl |= URE_MCU_CLK_RATIO | URE_D3_CLK_GATED_EN;
ure_write_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, pwrctrl);
ure_write_2(sc, URE_PLA_GPHY_INTR_IMR, URE_MCU_TYPE_PLA,
URE_GPHY_STS_MSK | URE_SPEED_DOWN_MSK | URE_SPDWN_RXDV_MSK |
URE_SPDWN_LINKCHG_MSK);
/* Enable Rx aggregation. */
ure_write_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB) &
~URE_RX_AGG_DISABLE);
/* Disable ALDPS. */
ure_ocp_reg_write(sc, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA |
URE_DIS_SDSAVE);
uether_pause(&sc->sc_ue, hz / 50);
ure_init_fifo(sc);
ure_write_1(sc, URE_USB_TX_AGG, URE_MCU_TYPE_USB,
URE_TX_AGG_MAX_THRESHOLD);
ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_HIGH);
ure_write_4(sc, URE_USB_TX_DMA, URE_MCU_TYPE_USB,
URE_TEST_MODE_DISABLE | URE_TX_SIZE_ADJUST1);
}
static void
ure_rtl8153_init(struct ure_softc *sc)
{
uint16_t val;
uint8_t u1u2[8];
int i;
/* Disable ALDPS. */
ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) & ~URE_EN_ALDPS);
uether_pause(&sc->sc_ue, hz / 50);
memset(u1u2, 0x00, sizeof(u1u2));
ure_write_mem(sc, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_2(sc, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) &
URE_AUTOLOAD_DONE)
break;
uether_pause(&sc->sc_ue, hz / 100);
}
if (i == URE_TIMEOUT)
device_printf(sc->sc_ue.ue_dev,
"timeout waiting for chip autoload\n");
for (i = 0; i < URE_TIMEOUT; i++) {
val = ure_ocp_reg_read(sc, URE_OCP_PHY_STATUS) &
URE_PHY_STAT_MASK;
if (val == URE_PHY_STAT_LAN_ON || val == URE_PHY_STAT_PWRDN)
break;
uether_pause(&sc->sc_ue, hz / 100);
}
if (i == URE_TIMEOUT)
device_printf(sc->sc_ue.ue_dev,
"timeout waiting for phy to stabilize\n");
ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB) &
~URE_U2P3_ENABLE);
if (sc->sc_chip & URE_CHIP_VER_5C10) {
val = ure_read_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB);
val &= ~URE_PWD_DN_SCALE_MASK;
val |= URE_PWD_DN_SCALE(96);
ure_write_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB, val);
ure_write_1(sc, URE_USB_USB2PHY, URE_MCU_TYPE_USB,
ure_read_1(sc, URE_USB_USB2PHY, URE_MCU_TYPE_USB) |
URE_USB2PHY_L1 | URE_USB2PHY_SUSPEND);
} else if (sc->sc_chip & URE_CHIP_VER_5C20) {
ure_write_1(sc, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA,
ure_read_1(sc, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA) &
~URE_ECM_ALDPS);
}
if (sc->sc_chip & (URE_CHIP_VER_5C20 | URE_CHIP_VER_5C30)) {
val = ure_read_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB);
if (ure_read_2(sc, URE_USB_BURST_SIZE, URE_MCU_TYPE_USB) ==
0)
val &= ~URE_DYNAMIC_BURST;
else
val |= URE_DYNAMIC_BURST;
ure_write_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB, val);
}
ure_write_1(sc, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB,
ure_read_1(sc, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB) |
URE_EP4_FULL_FC);
ure_write_2(sc, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB) &
~URE_TIMER11_EN);
ure_write_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA) &
~URE_LED_MODE_MASK);
if ((sc->sc_chip & URE_CHIP_VER_5C10) &&
usbd_get_speed(sc->sc_ue.ue_udev) != USB_SPEED_SUPER)
val = URE_LPM_TIMER_500MS;
else
val = URE_LPM_TIMER_500US;
ure_write_1(sc, URE_USB_LPM_CTRL, URE_MCU_TYPE_USB,
val | URE_FIFO_EMPTY_1FB | URE_ROK_EXIT_LPM);
val = ure_read_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB);
val &= ~URE_SEN_VAL_MASK;
val |= URE_SEN_VAL_NORMAL | URE_SEL_RXIDLE;
ure_write_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB, val);
ure_write_2(sc, URE_USB_CONNECT_TIMER, URE_MCU_TYPE_USB, 0x0001);
ure_write_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB) &
~(URE_PWR_EN | URE_PHASE2_EN));
ure_write_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB) &
~URE_PCUT_STATUS);
memset(u1u2, 0xff, sizeof(u1u2));
ure_write_mem(sc, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
ure_write_2(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA,
URE_ALDPS_SPDWN_RATIO);
ure_write_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA,
URE_EEE_SPDWN_RATIO);
ure_write_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA,
URE_PKT_AVAIL_SPDWN_EN | URE_SUSPEND_SPDWN_EN |
URE_U1U2_SPDWN_EN | URE_L1_SPDWN_EN);
ure_write_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA,
URE_PWRSAVE_SPDWN_EN | URE_RXDV_SPDWN_EN | URE_TX10MIDLE_EN |
URE_TP100_SPDWN_EN | URE_TP500_SPDWN_EN | URE_TP1000_SPDWN_EN |
URE_EEE_SPDWN_EN);
val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10)))
val |= URE_U2P3_ENABLE;
else
val &= ~URE_U2P3_ENABLE;
ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);
memset(u1u2, 0x00, sizeof(u1u2));
ure_write_mem(sc, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
/* Disable ALDPS. */
ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) & ~URE_EN_ALDPS);
uether_pause(&sc->sc_ue, hz / 50);
ure_init_fifo(sc);
/* Enable Rx aggregation. */
ure_write_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB,
ure_read_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB) &
~URE_RX_AGG_DISABLE);
val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10)))
val |= URE_U2P3_ENABLE;
else
val &= ~URE_U2P3_ENABLE;
ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);
memset(u1u2, 0xff, sizeof(u1u2));
ure_write_mem(sc, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
}
static void
ure_stop(struct usb_ether *ue)
{
struct ure_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
URE_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~URE_FLAG_LINK;
sc->sc_rxstarted = 0;
/*
* stop all the transfers, if not already stopped:
*/
for (int i = 0; i < URE_N_TRANSFER; i++) {
usbd_transfer_stop(sc->sc_rx_xfer[i]);
usbd_transfer_stop(sc->sc_tx_xfer[i]);
}
}
static void
ure_disable_teredo(struct ure_softc *sc)
{
ure_write_4(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA,
ure_read_4(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA) &
~(URE_TEREDO_SEL | URE_TEREDO_RS_EVENT_MASK | URE_OOB_TEREDO_EN));
ure_write_2(sc, URE_PLA_WDT6_CTRL, URE_MCU_TYPE_PLA,
URE_WDT6_SET_MODE);
ure_write_2(sc, URE_PLA_REALWOW_TIMER, URE_MCU_TYPE_PLA, 0);
ure_write_4(sc, URE_PLA_TEREDO_TIMER, URE_MCU_TYPE_PLA, 0);
}
static void
ure_init_fifo(struct ure_softc *sc)
{
uint32_t rx_fifo1, rx_fifo2;
int i;
ure_write_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA) |
URE_RXDY_GATED_EN);
ure_disable_teredo(sc);
DEVPRINTFN(14, sc->sc_ue.ue_dev, "init_fifo: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA));
ure_write_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA,
ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA) &
~URE_RCR_ACPT_ALL);
if (!(sc->sc_flags & URE_FLAG_8152)) {
if (sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10 |
URE_CHIP_VER_5C20)) {
ure_ocp_reg_write(sc, URE_OCP_ADC_CFG,
URE_CKADSEL_L | URE_ADC_EN | URE_EN_EMI_L);
}
if (sc->sc_chip & URE_CHIP_VER_5C00) {
ure_ocp_reg_write(sc, URE_OCP_EEE_CFG,
ure_ocp_reg_read(sc, URE_OCP_EEE_CFG) &
~URE_CTAP_SHORT_EN);
}
ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) |
URE_EEE_CLKDIV_EN);
ure_ocp_reg_write(sc, URE_OCP_DOWN_SPEED,
ure_ocp_reg_read(sc, URE_OCP_DOWN_SPEED) |
URE_EN_10M_BGOFF);
ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) |
URE_EN_10M_PLLOFF);
ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, URE_SRAM_IMPEDANCE);
ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, 0x0b13);
ure_write_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA) |
URE_PFM_PWM_SWITCH);
/* Enable LPF corner auto tune. */
ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, URE_SRAM_LPF_CFG);
ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, 0xf70f);
/* Adjust 10M amplitude. */
ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, URE_SRAM_10M_AMP1);
ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, 0x00af);
ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, URE_SRAM_10M_AMP2);
ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, 0x0208);
}
ure_reset(sc);
ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, 0);
ure_write_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA,
ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
~URE_NOW_IS_OOB);
ure_write_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA) &
~URE_MCU_BORW_EN);
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
URE_LINK_LIST_READY)
break;
uether_pause(&sc->sc_ue, hz / 100);
}
if (i == URE_TIMEOUT)
device_printf(sc->sc_ue.ue_dev,
"timeout waiting for OOB control\n");
ure_write_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA) |
URE_RE_INIT_LL);
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
URE_LINK_LIST_READY)
break;
uether_pause(&sc->sc_ue, hz / 100);
}
if (i == URE_TIMEOUT)
device_printf(sc->sc_ue.ue_dev,
"timeout waiting for OOB control\n");
ure_write_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA) &
~URE_CPCR_RX_VLAN);
ure_write_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA,
ure_read_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA) |
URE_TCR0_AUTO_FIFO);
/* Configure Rx FIFO threshold. */
ure_write_4(sc, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA,
URE_RXFIFO_THR1_NORMAL);
if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_FULL) {
rx_fifo1 = URE_RXFIFO_THR2_FULL;
rx_fifo2 = URE_RXFIFO_THR3_FULL;
} else {
rx_fifo1 = URE_RXFIFO_THR2_HIGH;
rx_fifo2 = URE_RXFIFO_THR3_HIGH;
}
ure_write_4(sc, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, rx_fifo1);
ure_write_4(sc, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, rx_fifo2);
/* Configure Tx FIFO threshold. */
ure_write_4(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA,
URE_TXFIFO_THR_NORMAL);
}
/*
* Update mbuf for rx checksum from hardware
*/
static void
ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m)
{
int flags;
uint32_t csum, misc;
int tcp, udp;
m->m_pkthdr.csum_flags = 0;
if (!(capenb & IFCAP_RXCSUM))
return;
csum = le32toh(rp->ure_csum);
misc = le32toh(rp->ure_misc);
tcp = udp = 0;
flags = 0;
if (csum & URE_RXPKT_IPV4_CS)
flags |= CSUM_IP_CHECKED;
else if (csum & URE_RXPKT_IPV6_CS)
flags = 0;
tcp = rp->ure_csum & URE_RXPKT_TCP_CS;
udp = rp->ure_csum & URE_RXPKT_UDP_CS;
if (__predict_true((flags & CSUM_IP_CHECKED) &&
!(misc & URE_RXPKT_IP_F))) {
flags |= CSUM_IP_VALID;
}
if (__predict_true(
(tcp && !(misc & URE_RXPKT_TCP_F)) ||
(udp && !(misc & URE_RXPKT_UDP_F)))) {
flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
}
m->m_pkthdr.csum_flags = flags;
}
/*
* If the L4 checksum offset is larger than 0x7ff (2047), return failure.
* We currently restrict MTU such that it can't happen, and even if we
* did have a large enough MTU, only a very specially crafted IPv6 packet
* with MANY headers could possibly come close.
*
* Returns 0 for success, and 1 if the packet cannot be checksummed and
* should be dropped.
*/
static int
ure_txcsum(struct mbuf *m, int caps, uint32_t *regout)
{
struct ip ip;
struct ether_header *eh;
int flags;
uint32_t data;
uint32_t reg;
int l3off, l4off;
uint16_t type;
*regout = 0;
flags = m->m_pkthdr.csum_flags;
if (flags == 0)
return (0);
if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
eh = mtod(m, struct ether_header *);
type = eh->ether_type;
} else
m_copydata(m, offsetof(struct ether_header, ether_type),
sizeof(type), (caddr_t)&type);
switch (type = htons(type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
l3off = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
/* XXX - what about QinQ? */
l3off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
return (0);
}
reg = 0;
if (flags & CSUM_IP)
reg |= URE_TXPKT_IPV4_CS;
data = m->m_pkthdr.csum_data;
if (flags & (CSUM_IP_TCP | CSUM_IP_UDP)) {
m_copydata(m, l3off, sizeof ip, (caddr_t)&ip);
l4off = l3off + (ip.ip_hl << 2) + data;
if (__predict_false(l4off > URE_L4_OFFSET_MAX))
return (1);
reg |= URE_TXPKT_IPV4_CS;
if (flags & CSUM_IP_TCP)
reg |= URE_TXPKT_TCP_CS;
else if (flags & CSUM_IP_UDP)
reg |= URE_TXPKT_UDP_CS;
reg |= l4off << URE_L4_OFFSET_SHIFT;
}
#ifdef INET6
else if (flags & (CSUM_IP6_TCP | CSUM_IP6_UDP)) {
l4off = l3off + data;
if (__predict_false(l4off > URE_L4_OFFSET_MAX))
return (1);
reg |= URE_TXPKT_IPV6_CS;
if (flags & CSUM_IP6_TCP)
reg |= URE_TXPKT_TCP_CS;
else if (flags & CSUM_IP6_UDP)
reg |= URE_TXPKT_UDP_CS;
reg |= l4off << URE_L4_OFFSET_SHIFT;
}
#endif
*regout = reg;
return 0;
}