Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1982, 1986, 1990, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_hwpmc_hooks.h"
#include "opt_sched.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/cpuset.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/kthread.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/turnstile.h>
#include <sys/umtx.h>
#include <machine/pcb.h>
#include <machine/smp.h>

#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif

#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
int __read_mostly		dtrace_vtime_active;
dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
#endif

/*
 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
 * the range 100-256 Hz (approximately).
 */
#define	ESTCPULIM(e) \
    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
#ifdef SMP
#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
#else
#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
#endif
#define	NICE_WEIGHT		1	/* Priorities per nice level. */

#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))

/*
 * The schedulable entity that runs a context.
 * This is  an extension to the thread structure and is tailored to
 * the requirements of this scheduler.
 * All fields are protected by the scheduler lock.
 */
struct td_sched {
	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
	u_int		ts_estcpu;	/* Estimated cpu utilization. */
	int		ts_cpticks;	/* Ticks of cpu time. */
	int		ts_slptime;	/* Seconds !RUNNING. */
	int		ts_slice;	/* Remaining part of time slice. */
	int		ts_flags;
	struct runq	*ts_runq;	/* runq the thread is currently on */
#ifdef KTR
	char		ts_name[TS_NAME_LEN];
#endif
};

/* flags kept in td_flags */
#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */

/* flags kept in ts_flags */
#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */

#define SKE_RUNQ_PCPU(ts)						\
    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)

#define	THREAD_CAN_SCHED(td, cpu)	\
    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)

_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
    sizeof(struct thread0_storage),
    "increase struct thread0_storage.t0st_sched size");

static struct mtx sched_lock;

static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
static int	sched_tdcnt;	/* Total runnable threads in the system. */
static int	sched_slice = 12; /* Thread run time before rescheduling. */

static void	setup_runqs(void);
static void	schedcpu(void);
static void	schedcpu_thread(void);
static void	sched_priority(struct thread *td, u_char prio);
static void	sched_setup(void *dummy);
static void	maybe_resched(struct thread *td);
static void	updatepri(struct thread *td);
static void	resetpriority(struct thread *td);
static void	resetpriority_thread(struct thread *td);
#ifdef SMP
static int	sched_pickcpu(struct thread *td);
static int	forward_wakeup(int cpunum);
static void	kick_other_cpu(int pri, int cpuid);
#endif

static struct kproc_desc sched_kp = {
        "schedcpu",
        schedcpu_thread,
        NULL
};
SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
    &sched_kp);
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);

static void sched_initticks(void *dummy);
SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
    NULL);

/*
 * Global run queue.
 */
static struct runq runq;

#ifdef SMP
/*
 * Per-CPU run queues
 */
static struct runq runq_pcpu[MAXCPU];
long runq_length[MAXCPU];

static cpuset_t idle_cpus_mask;
#endif

struct pcpuidlestat {
	u_int idlecalls;
	u_int oldidlecalls;
};
DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);

static void
setup_runqs(void)
{
#ifdef SMP
	int i;

	for (i = 0; i < MAXCPU; ++i)
		runq_init(&runq_pcpu[i]);
#endif

	runq_init(&runq);
}

static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
{
	int error, new_val, period;

	period = 1000000 / realstathz;
	new_val = period * sched_slice;
	error = sysctl_handle_int(oidp, &new_val, 0, req);
	if (error != 0 || req->newptr == NULL)
		return (error);
	if (new_val <= 0)
		return (EINVAL);
	sched_slice = imax(1, (new_val + period / 2) / period);
	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
	    realstathz);
	return (0);
}

SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "Scheduler");

SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
    "Scheduler name");
SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_kern_quantum, "I",
    "Quantum for timeshare threads in microseconds");
SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
    "Quantum for timeshare threads in stathz ticks");
#ifdef SMP
/* Enable forwarding of wakeups to all other cpus */
static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup,
    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
    "Kernel SMP");

static int runq_fuzz = 1;
SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");

static int forward_wakeup_enabled = 1;
SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
	   &forward_wakeup_enabled, 0,
	   "Forwarding of wakeup to idle CPUs");

static int forward_wakeups_requested = 0;
SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
	   &forward_wakeups_requested, 0,
	   "Requests for Forwarding of wakeup to idle CPUs");

static int forward_wakeups_delivered = 0;
SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
	   &forward_wakeups_delivered, 0,
	   "Completed Forwarding of wakeup to idle CPUs");

static int forward_wakeup_use_mask = 1;
SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
	   &forward_wakeup_use_mask, 0,
	   "Use the mask of idle cpus");

static int forward_wakeup_use_loop = 0;
SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
	   &forward_wakeup_use_loop, 0,
	   "Use a loop to find idle cpus");

#endif
#if 0
static int sched_followon = 0;
SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
	   &sched_followon, 0,
	   "allow threads to share a quantum");
#endif

SDT_PROVIDER_DEFINE(sched);

SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
    "struct proc *", "uint8_t");
SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
    "struct proc *", "void *");
SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
    "struct proc *", "void *", "int");
SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
    "struct proc *", "uint8_t", "struct thread *");
SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
    "struct proc *");
SDT_PROBE_DEFINE(sched, , , on__cpu);
SDT_PROBE_DEFINE(sched, , , remain__cpu);
SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
    "struct proc *");

static __inline void
sched_load_add(void)
{

	sched_tdcnt++;
	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
}

static __inline void
sched_load_rem(void)
{

	sched_tdcnt--;
	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
}
/*
 * Arrange to reschedule if necessary, taking the priorities and
 * schedulers into account.
 */
static void
maybe_resched(struct thread *td)
{

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	if (td->td_priority < curthread->td_priority)
		curthread->td_flags |= TDF_NEEDRESCHED;
}

/*
 * This function is called when a thread is about to be put on run queue
 * because it has been made runnable or its priority has been adjusted.  It
 * determines if the new thread should preempt the current thread.  If so,
 * it sets td_owepreempt to request a preemption.
 */
int
maybe_preempt(struct thread *td)
{
#ifdef PREEMPTION
	struct thread *ctd;
	int cpri, pri;

	/*
	 * The new thread should not preempt the current thread if any of the
	 * following conditions are true:
	 *
	 *  - The kernel is in the throes of crashing (panicstr).
	 *  - The current thread has a higher (numerically lower) or
	 *    equivalent priority.  Note that this prevents curthread from
	 *    trying to preempt to itself.
	 *  - The current thread has an inhibitor set or is in the process of
	 *    exiting.  In this case, the current thread is about to switch
	 *    out anyways, so there's no point in preempting.  If we did,
	 *    the current thread would not be properly resumed as well, so
	 *    just avoid that whole landmine.
	 *  - If the new thread's priority is not a realtime priority and
	 *    the current thread's priority is not an idle priority and
	 *    FULL_PREEMPTION is disabled.
	 *
	 * If all of these conditions are false, but the current thread is in
	 * a nested critical section, then we have to defer the preemption
	 * until we exit the critical section.  Otherwise, switch immediately
	 * to the new thread.
	 */
	ctd = curthread;
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	KASSERT((td->td_inhibitors == 0),
			("maybe_preempt: trying to run inhibited thread"));
	pri = td->td_priority;
	cpri = ctd->td_priority;
	if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
	    TD_IS_INHIBITED(ctd))
		return (0);
#ifndef FULL_PREEMPTION
	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
		return (0);
#endif

	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
	ctd->td_owepreempt = 1;
	return (1);
#else
	return (0);
#endif
}

/*
 * Constants for digital decay and forget:
 *	90% of (ts_estcpu) usage in 5 * loadav time
 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
 *          Note that, as ps(1) mentions, this can let percentages
 *          total over 100% (I've seen 137.9% for 3 processes).
 *
 * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
 *
 * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
 * That is, the system wants to compute a value of decay such
 * that the following for loop:
 * 	for (i = 0; i < (5 * loadavg); i++)
 * 		ts_estcpu *= decay;
 * will compute
 * 	ts_estcpu *= 0.1;
 * for all values of loadavg:
 *
 * Mathematically this loop can be expressed by saying:
 * 	decay ** (5 * loadavg) ~= .1
 *
 * The system computes decay as:
 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
 *
 * We wish to prove that the system's computation of decay
 * will always fulfill the equation:
 * 	decay ** (5 * loadavg) ~= .1
 *
 * If we compute b as:
 * 	b = 2 * loadavg
 * then
 * 	decay = b / (b + 1)
 *
 * We now need to prove two things:
 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
 *
 * Facts:
 *         For x close to zero, exp(x) =~ 1 + x, since
 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
 *         For x close to zero, ln(1+x) =~ x, since
 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
 *         ln(.1) =~ -2.30
 *
 * Proof of (1):
 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
 *	solving for factor,
 *      ln(factor) =~ (-2.30/5*loadav), or
 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
 *
 * Proof of (2):
 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
 *	solving for power,
 *      power*ln(b/(b+1)) =~ -2.30, or
 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
 *
 * Actual power values for the implemented algorithm are as follows:
 *      loadav: 1       2       3       4
 *      power:  5.68    10.32   14.94   19.55
 */

/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define	loadfactor(loadav)	(2 * (loadav))
#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))

/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
    "Decay factor used for updating %CPU");

/*
 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
 *
 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
 *
 * If you don't want to bother with the faster/more-accurate formula, you
 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
 * (more general) method of calculating the %age of CPU used by a process.
 */
#define	CCPU_SHIFT	11

/*
 * Recompute process priorities, every hz ticks.
 * MP-safe, called without the Giant mutex.
 */
/* ARGSUSED */
static void
schedcpu(void)
{
	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
	struct thread *td;
	struct proc *p;
	struct td_sched *ts;
	int awake;

	sx_slock(&allproc_lock);
	FOREACH_PROC_IN_SYSTEM(p) {
		PROC_LOCK(p);
		if (p->p_state == PRS_NEW) {
			PROC_UNLOCK(p);
			continue;
		}
		FOREACH_THREAD_IN_PROC(p, td) {
			awake = 0;
			ts = td_get_sched(td);
			thread_lock(td);
			/*
			 * Increment sleep time (if sleeping).  We
			 * ignore overflow, as above.
			 */
			/*
			 * The td_sched slptimes are not touched in wakeup
			 * because the thread may not HAVE everything in
			 * memory? XXX I think this is out of date.
			 */
			if (TD_ON_RUNQ(td)) {
				awake = 1;
				td->td_flags &= ~TDF_DIDRUN;
			} else if (TD_IS_RUNNING(td)) {
				awake = 1;
				/* Do not clear TDF_DIDRUN */
			} else if (td->td_flags & TDF_DIDRUN) {
				awake = 1;
				td->td_flags &= ~TDF_DIDRUN;
			}

			/*
			 * ts_pctcpu is only for ps and ttyinfo().
			 */
			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
			/*
			 * If the td_sched has been idle the entire second,
			 * stop recalculating its priority until
			 * it wakes up.
			 */
			if (ts->ts_cpticks != 0) {
#if	(FSHIFT >= CCPU_SHIFT)
				ts->ts_pctcpu += (realstathz == 100)
				    ? ((fixpt_t) ts->ts_cpticks) <<
				    (FSHIFT - CCPU_SHIFT) :
				    100 * (((fixpt_t) ts->ts_cpticks)
				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
#else
				ts->ts_pctcpu += ((FSCALE - ccpu) *
				    (ts->ts_cpticks *
				    FSCALE / realstathz)) >> FSHIFT;
#endif
				ts->ts_cpticks = 0;
			}
			/*
			 * If there are ANY running threads in this process,
			 * then don't count it as sleeping.
			 * XXX: this is broken.
			 */
			if (awake) {
				if (ts->ts_slptime > 1) {
					/*
					 * In an ideal world, this should not
					 * happen, because whoever woke us
					 * up from the long sleep should have
					 * unwound the slptime and reset our
					 * priority before we run at the stale
					 * priority.  Should KASSERT at some
					 * point when all the cases are fixed.
					 */
					updatepri(td);
				}
				ts->ts_slptime = 0;
			} else
				ts->ts_slptime++;
			if (ts->ts_slptime > 1) {
				thread_unlock(td);
				continue;
			}
			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
		      	resetpriority(td);
			resetpriority_thread(td);
			thread_unlock(td);
		}
		PROC_UNLOCK(p);
	}
	sx_sunlock(&allproc_lock);
}

/*
 * Main loop for a kthread that executes schedcpu once a second.
 */
static void
schedcpu_thread(void)
{

	for (;;) {
		schedcpu();
		pause("-", hz);
	}
}

/*
 * Recalculate the priority of a process after it has slept for a while.
 * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
 * least six times the loadfactor will decay ts_estcpu to zero.
 */
static void
updatepri(struct thread *td)
{
	struct td_sched *ts;
	fixpt_t loadfac;
	unsigned int newcpu;

	ts = td_get_sched(td);
	loadfac = loadfactor(averunnable.ldavg[0]);
	if (ts->ts_slptime > 5 * loadfac)
		ts->ts_estcpu = 0;
	else {
		newcpu = ts->ts_estcpu;
		ts->ts_slptime--;	/* was incremented in schedcpu() */
		while (newcpu && --ts->ts_slptime)
			newcpu = decay_cpu(loadfac, newcpu);
		ts->ts_estcpu = newcpu;
	}
}

/*
 * Compute the priority of a process when running in user mode.
 * Arrange to reschedule if the resulting priority is better
 * than that of the current process.
 */
static void
resetpriority(struct thread *td)
{
	u_int newpriority;

	if (td->td_pri_class != PRI_TIMESHARE)
		return;
	newpriority = PUSER +
	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
	    PRI_MAX_TIMESHARE);
	sched_user_prio(td, newpriority);
}

/*
 * Update the thread's priority when the associated process's user
 * priority changes.
 */
static void
resetpriority_thread(struct thread *td)
{

	/* Only change threads with a time sharing user priority. */
	if (td->td_priority < PRI_MIN_TIMESHARE ||
	    td->td_priority > PRI_MAX_TIMESHARE)
		return;

	/* XXX the whole needresched thing is broken, but not silly. */
	maybe_resched(td);

	sched_prio(td, td->td_user_pri);
}

/* ARGSUSED */
static void
sched_setup(void *dummy)
{

	setup_runqs();

	/* Account for thread0. */
	sched_load_add();
}

/*
 * This routine determines time constants after stathz and hz are setup.
 */
static void
sched_initticks(void *dummy)
{

	realstathz = stathz ? stathz : hz;
	sched_slice = realstathz / 10;	/* ~100ms */
	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
	    realstathz);
}

/* External interfaces start here */

/*
 * Very early in the boot some setup of scheduler-specific
 * parts of proc0 and of some scheduler resources needs to be done.
 * Called from:
 *  proc0_init()
 */
void
schedinit(void)
{

	/*
	 * Set up the scheduler specific parts of thread0.
	 */
	thread0.td_lock = &sched_lock;
	td_get_sched(&thread0)->ts_slice = sched_slice;
	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
}

int
sched_runnable(void)
{
#ifdef SMP
	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
#else
	return runq_check(&runq);
#endif
}

int
sched_rr_interval(void)
{

	/* Convert sched_slice from stathz to hz. */
	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
}

/*
 * We adjust the priority of the current process.  The priority of a
 * process gets worse as it accumulates CPU time.  The cpu usage
 * estimator (ts_estcpu) is increased here.  resetpriority() will
 * compute a different priority each time ts_estcpu increases by
 * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
 * cpu usage estimator ramps up quite quickly when the process is
 * running (linearly), and decays away exponentially, at a rate which
 * is proportionally slower when the system is busy.  The basic
 * principle is that the system will 90% forget that the process used
 * a lot of CPU time in 5 * loadav seconds.  This causes the system to
 * favor processes which haven't run much recently, and to round-robin
 * among other processes.
 */
static void
sched_clock_tick(struct thread *td)
{
	struct pcpuidlestat *stat;
	struct td_sched *ts;

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	ts = td_get_sched(td);

	ts->ts_cpticks++;
	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
		resetpriority(td);
		resetpriority_thread(td);
	}

	/*
	 * Force a context switch if the current thread has used up a full
	 * time slice (default is 100ms).
	 */
	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
		ts->ts_slice = sched_slice;
		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
	}

	stat = DPCPU_PTR(idlestat);
	stat->oldidlecalls = stat->idlecalls;
	stat->idlecalls = 0;
}

void
sched_clock(struct thread *td, int cnt)
{

	for ( ; cnt > 0; cnt--)
		sched_clock_tick(td);
}

/*
 * Charge child's scheduling CPU usage to parent.
 */
void
sched_exit(struct proc *p, struct thread *td)
{

	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
	    "prio:%d", td->td_priority);

	PROC_LOCK_ASSERT(p, MA_OWNED);
	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
}

void
sched_exit_thread(struct thread *td, struct thread *child)
{

	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
	    "prio:%d", child->td_priority);
	thread_lock(td);
	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
	    td_get_sched(child)->ts_estcpu);
	thread_unlock(td);
	thread_lock(child);
	if ((child->td_flags & TDF_NOLOAD) == 0)
		sched_load_rem();
	thread_unlock(child);
}

void
sched_fork(struct thread *td, struct thread *childtd)
{
	sched_fork_thread(td, childtd);
}

void
sched_fork_thread(struct thread *td, struct thread *childtd)
{
	struct td_sched *ts, *tsc;

	childtd->td_oncpu = NOCPU;
	childtd->td_lastcpu = NOCPU;
	childtd->td_lock = &sched_lock;
	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
	childtd->td_priority = childtd->td_base_pri;
	ts = td_get_sched(childtd);
	bzero(ts, sizeof(*ts));
	tsc = td_get_sched(td);
	ts->ts_estcpu = tsc->ts_estcpu;
	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
	ts->ts_slice = 1;
}

void
sched_nice(struct proc *p, int nice)
{
	struct thread *td;

	PROC_LOCK_ASSERT(p, MA_OWNED);
	p->p_nice = nice;
	FOREACH_THREAD_IN_PROC(p, td) {
		thread_lock(td);
		resetpriority(td);
		resetpriority_thread(td);
		thread_unlock(td);
	}
}

void
sched_class(struct thread *td, int class)
{
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	td->td_pri_class = class;
}

/*
 * Adjust the priority of a thread.
 */
static void
sched_priority(struct thread *td, u_char prio)
{

	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
	    sched_tdname(curthread));
	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
	if (td != curthread && prio > td->td_priority) {
		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
		    prio, KTR_ATTR_LINKED, sched_tdname(td));
		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
		    curthread);
	}
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	if (td->td_priority == prio)
		return;
	td->td_priority = prio;
	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
		sched_rem(td);
		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
	}
}

/*
 * Update a thread's priority when it is lent another thread's
 * priority.
 */
void
sched_lend_prio(struct thread *td, u_char prio)
{

	td->td_flags |= TDF_BORROWING;
	sched_priority(td, prio);
}

/*
 * Restore a thread's priority when priority propagation is
 * over.  The prio argument is the minimum priority the thread
 * needs to have to satisfy other possible priority lending
 * requests.  If the thread's regulary priority is less
 * important than prio the thread will keep a priority boost
 * of prio.
 */
void
sched_unlend_prio(struct thread *td, u_char prio)
{
	u_char base_pri;

	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
	    td->td_base_pri <= PRI_MAX_TIMESHARE)
		base_pri = td->td_user_pri;
	else
		base_pri = td->td_base_pri;
	if (prio >= base_pri) {
		td->td_flags &= ~TDF_BORROWING;
		sched_prio(td, base_pri);
	} else
		sched_lend_prio(td, prio);
}

void
sched_prio(struct thread *td, u_char prio)
{
	u_char oldprio;

	/* First, update the base priority. */
	td->td_base_pri = prio;

	/*
	 * If the thread is borrowing another thread's priority, don't ever
	 * lower the priority.
	 */
	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
		return;

	/* Change the real priority. */
	oldprio = td->td_priority;
	sched_priority(td, prio);

	/*
	 * If the thread is on a turnstile, then let the turnstile update
	 * its state.
	 */
	if (TD_ON_LOCK(td) && oldprio != prio)
		turnstile_adjust(td, oldprio);
}

void
sched_user_prio(struct thread *td, u_char prio)
{

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	td->td_base_user_pri = prio;
	if (td->td_lend_user_pri <= prio)
		return;
	td->td_user_pri = prio;
}

void
sched_lend_user_prio(struct thread *td, u_char prio)
{

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	td->td_lend_user_pri = prio;
	td->td_user_pri = min(prio, td->td_base_user_pri);
	if (td->td_priority > td->td_user_pri)
		sched_prio(td, td->td_user_pri);
	else if (td->td_priority != td->td_user_pri)
		td->td_flags |= TDF_NEEDRESCHED;
}

/*
 * Like the above but first check if there is anything to do.
 */
void
sched_lend_user_prio_cond(struct thread *td, u_char prio)
{

	if (td->td_lend_user_pri != prio)
		goto lend;
	if (td->td_user_pri != min(prio, td->td_base_user_pri))
		goto lend;
	if (td->td_priority >= td->td_user_pri)
		goto lend;
	return;

lend:
	thread_lock(td);
	sched_lend_user_prio(td, prio);
	thread_unlock(td);
}

void
sched_sleep(struct thread *td, int pri)
{

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	td->td_slptick = ticks;
	td_get_sched(td)->ts_slptime = 0;
	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
		sched_prio(td, pri);
	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
		td->td_flags |= TDF_CANSWAP;
}

void
sched_switch(struct thread *td, int flags)
{
	struct thread *newtd;
	struct mtx *tmtx;
	struct td_sched *ts;
	struct proc *p;
	int preempted;

	tmtx = &sched_lock;
	ts = td_get_sched(td);
	p = td->td_proc;

	THREAD_LOCK_ASSERT(td, MA_OWNED);

	td->td_lastcpu = td->td_oncpu;
	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
	    (flags & SW_PREEMPT) != 0;
	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
	td->td_owepreempt = 0;
	td->td_oncpu = NOCPU;

	/*
	 * At the last moment, if this thread is still marked RUNNING,
	 * then put it back on the run queue as it has not been suspended
	 * or stopped or any thing else similar.  We never put the idle
	 * threads on the run queue, however.
	 */
	if (td->td_flags & TDF_IDLETD) {
		TD_SET_CAN_RUN(td);
#ifdef SMP
		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
#endif
	} else {
		if (TD_IS_RUNNING(td)) {
			/* Put us back on the run queue. */
			sched_add(td, preempted ?
			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING);
		}
	}

	/* 
	 * Switch to the sched lock to fix things up and pick
	 * a new thread.  Block the td_lock in order to avoid
	 * breaking the critical path.
	 */
	if (td->td_lock != &sched_lock) {
		mtx_lock_spin(&sched_lock);
		tmtx = thread_lock_block(td);
		mtx_unlock_spin(tmtx);
	}

	if ((td->td_flags & TDF_NOLOAD) == 0)
		sched_load_rem();

	newtd = choosethread();
	MPASS(newtd->td_lock == &sched_lock);

#if (KTR_COMPILE & KTR_SCHED) != 0
	if (TD_IS_IDLETHREAD(td))
		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
		    "prio:%d", td->td_priority);
	else
		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
		    "lockname:\"%s\"", td->td_lockname);
#endif

	if (td != newtd) {
#ifdef	HWPMC_HOOKS
		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
#endif

		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);

                /* I feel sleepy */
		lock_profile_release_lock(&sched_lock.lock_object);
#ifdef KDTRACE_HOOKS
		/*
		 * If DTrace has set the active vtime enum to anything
		 * other than INACTIVE (0), then it should have set the
		 * function to call.
		 */
		if (dtrace_vtime_active)
			(*dtrace_vtime_switch_func)(newtd);
#endif

		cpu_switch(td, newtd, tmtx);
		lock_profile_obtain_lock_success(&sched_lock.lock_object,
		    0, 0, __FILE__, __LINE__);
		/*
		 * Where am I?  What year is it?
		 * We are in the same thread that went to sleep above,
		 * but any amount of time may have passed. All our context
		 * will still be available as will local variables.
		 * PCPU values however may have changed as we may have
		 * changed CPU so don't trust cached values of them.
		 * New threads will go to fork_exit() instead of here
		 * so if you change things here you may need to change
		 * things there too.
		 *
		 * If the thread above was exiting it will never wake
		 * up again here, so either it has saved everything it
		 * needed to, or the thread_wait() or wait() will
		 * need to reap it.
		 */

		SDT_PROBE0(sched, , , on__cpu);
#ifdef	HWPMC_HOOKS
		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
#endif
	} else {
		td->td_lock = &sched_lock;
		SDT_PROBE0(sched, , , remain__cpu);
	}

	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
	    "prio:%d", td->td_priority);

#ifdef SMP
	if (td->td_flags & TDF_IDLETD)
		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
#endif
	sched_lock.mtx_lock = (uintptr_t)td;
	td->td_oncpu = PCPU_GET(cpuid);
	spinlock_enter();
	mtx_unlock_spin(&sched_lock);
}

void
sched_wakeup(struct thread *td, int srqflags)
{
	struct td_sched *ts;

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	ts = td_get_sched(td);
	td->td_flags &= ~TDF_CANSWAP;
	if (ts->ts_slptime > 1) {
		updatepri(td);
		resetpriority(td);
	}
	td->td_slptick = 0;
	ts->ts_slptime = 0;
	ts->ts_slice = sched_slice;
	sched_add(td, srqflags);
}

#ifdef SMP
static int
forward_wakeup(int cpunum)
{
	struct pcpu *pc;
	cpuset_t dontuse, map, map2;
	u_int id, me;
	int iscpuset;

	mtx_assert(&sched_lock, MA_OWNED);

	CTR0(KTR_RUNQ, "forward_wakeup()");

	if ((!forward_wakeup_enabled) ||
	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
		return (0);
	if (!smp_started || KERNEL_PANICKED())
		return (0);

	forward_wakeups_requested++;

	/*
	 * Check the idle mask we received against what we calculated
	 * before in the old version.
	 */
	me = PCPU_GET(cpuid);

	/* Don't bother if we should be doing it ourself. */
	if (CPU_ISSET(me, &idle_cpus_mask) &&
	    (cpunum == NOCPU || me == cpunum))
		return (0);

	CPU_SETOF(me, &dontuse);
	CPU_OR(&dontuse, &stopped_cpus);
	CPU_OR(&dontuse, &hlt_cpus_mask);
	CPU_ZERO(&map2);
	if (forward_wakeup_use_loop) {
		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
			id = pc->pc_cpuid;
			if (!CPU_ISSET(id, &dontuse) &&
			    pc->pc_curthread == pc->pc_idlethread) {
				CPU_SET(id, &map2);
			}
		}
	}

	if (forward_wakeup_use_mask) {
		map = idle_cpus_mask;
		CPU_ANDNOT(&map, &dontuse);

		/* If they are both on, compare and use loop if different. */
		if (forward_wakeup_use_loop) {
			if (CPU_CMP(&map, &map2)) {
				printf("map != map2, loop method preferred\n");
				map = map2;
			}
		}
	} else {
		map = map2;
	}

	/* If we only allow a specific CPU, then mask off all the others. */
	if (cpunum != NOCPU) {
		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
		iscpuset = CPU_ISSET(cpunum, &map);
		if (iscpuset == 0)
			CPU_ZERO(&map);
		else
			CPU_SETOF(cpunum, &map);
	}
	if (!CPU_EMPTY(&map)) {
		forward_wakeups_delivered++;
		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
			id = pc->pc_cpuid;
			if (!CPU_ISSET(id, &map))
				continue;
			if (cpu_idle_wakeup(pc->pc_cpuid))
				CPU_CLR(id, &map);
		}
		if (!CPU_EMPTY(&map))
			ipi_selected(map, IPI_AST);
		return (1);
	}
	if (cpunum == NOCPU)
		printf("forward_wakeup: Idle processor not found\n");
	return (0);
}

static void
kick_other_cpu(int pri, int cpuid)
{
	struct pcpu *pcpu;
	int cpri;

	pcpu = pcpu_find(cpuid);
	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
		forward_wakeups_delivered++;
		if (!cpu_idle_wakeup(cpuid))
			ipi_cpu(cpuid, IPI_AST);
		return;
	}

	cpri = pcpu->pc_curthread->td_priority;
	if (pri >= cpri)
		return;

#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
#if !defined(FULL_PREEMPTION)
	if (pri <= PRI_MAX_ITHD)
#endif /* ! FULL_PREEMPTION */
	{
		ipi_cpu(cpuid, IPI_PREEMPT);
		return;
	}
#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */

	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
	ipi_cpu(cpuid, IPI_AST);
	return;
}
#endif /* SMP */

#ifdef SMP
static int
sched_pickcpu(struct thread *td)
{
	int best, cpu;

	mtx_assert(&sched_lock, MA_OWNED);

	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
		best = td->td_lastcpu;
	else
		best = NOCPU;
	CPU_FOREACH(cpu) {
		if (!THREAD_CAN_SCHED(td, cpu))
			continue;

		if (best == NOCPU)
			best = cpu;
		else if (runq_length[cpu] < runq_length[best])
			best = cpu;
	}
	KASSERT(best != NOCPU, ("no valid CPUs"));

	return (best);
}
#endif

void
sched_add(struct thread *td, int flags)
#ifdef SMP
{
	cpuset_t tidlemsk;
	struct td_sched *ts;
	u_int cpu, cpuid;
	int forwarded = 0;
	int single_cpu = 0;

	ts = td_get_sched(td);
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	KASSERT((td->td_inhibitors == 0),
	    ("sched_add: trying to run inhibited thread"));
	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
	    ("sched_add: bad thread state"));
	KASSERT(td->td_flags & TDF_INMEM,
	    ("sched_add: thread swapped out"));

	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
	    sched_tdname(curthread));
	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
	    KTR_ATTR_LINKED, sched_tdname(td));
	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
	    flags & SRQ_PREEMPTED);

	/*
	 * Now that the thread is moving to the run-queue, set the lock
	 * to the scheduler's lock.
	 */
	if (td->td_lock != &sched_lock) {
		mtx_lock_spin(&sched_lock);
		if ((flags & SRQ_HOLD) != 0)
			td->td_lock = &sched_lock;
		else
			thread_lock_set(td, &sched_lock);
	}
	TD_SET_RUNQ(td);

	/*
	 * If SMP is started and the thread is pinned or otherwise limited to
	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
	 * Otherwise, queue the thread to the global run queue.
	 *
	 * If SMP has not yet been started we must use the global run queue
	 * as per-CPU state may not be initialized yet and we may crash if we
	 * try to access the per-CPU run queues.
	 */
	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
	    ts->ts_flags & TSF_AFFINITY)) {
		if (td->td_pinned != 0)
			cpu = td->td_lastcpu;
		else if (td->td_flags & TDF_BOUND) {
			/* Find CPU from bound runq. */
			KASSERT(SKE_RUNQ_PCPU(ts),
			    ("sched_add: bound td_sched not on cpu runq"));
			cpu = ts->ts_runq - &runq_pcpu[0];
		} else
			/* Find a valid CPU for our cpuset */
			cpu = sched_pickcpu(td);
		ts->ts_runq = &runq_pcpu[cpu];
		single_cpu = 1;
		CTR3(KTR_RUNQ,
		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
		    cpu);
	} else {
		CTR2(KTR_RUNQ,
		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
		    td);
		cpu = NOCPU;
		ts->ts_runq = &runq;
	}

	if ((td->td_flags & TDF_NOLOAD) == 0)
		sched_load_add();
	runq_add(ts->ts_runq, td, flags);
	if (cpu != NOCPU)
		runq_length[cpu]++;

	cpuid = PCPU_GET(cpuid);
	if (single_cpu && cpu != cpuid) {
	        kick_other_cpu(td->td_priority, cpu);
	} else {
		if (!single_cpu) {
			tidlemsk = idle_cpus_mask;
			CPU_ANDNOT(&tidlemsk, &hlt_cpus_mask);
			CPU_CLR(cpuid, &tidlemsk);

			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
			    ((flags & SRQ_INTR) == 0) &&
			    !CPU_EMPTY(&tidlemsk))
				forwarded = forward_wakeup(cpu);
		}

		if (!forwarded) {
			if (!maybe_preempt(td))
				maybe_resched(td);
		}
	}
	if ((flags & SRQ_HOLDTD) == 0)
		thread_unlock(td);
}
#else /* SMP */
{
	struct td_sched *ts;

	ts = td_get_sched(td);
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	KASSERT((td->td_inhibitors == 0),
	    ("sched_add: trying to run inhibited thread"));
	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
	    ("sched_add: bad thread state"));
	KASSERT(td->td_flags & TDF_INMEM,
	    ("sched_add: thread swapped out"));
	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
	    sched_tdname(curthread));
	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
	    KTR_ATTR_LINKED, sched_tdname(td));
	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
	    flags & SRQ_PREEMPTED);

	/*
	 * Now that the thread is moving to the run-queue, set the lock
	 * to the scheduler's lock.
	 */
	if (td->td_lock != &sched_lock) {
		mtx_lock_spin(&sched_lock);
		if ((flags & SRQ_HOLD) != 0)
			td->td_lock = &sched_lock;
		else
			thread_lock_set(td, &sched_lock);
	}
	TD_SET_RUNQ(td);
	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
	ts->ts_runq = &runq;

	if ((td->td_flags & TDF_NOLOAD) == 0)
		sched_load_add();
	runq_add(ts->ts_runq, td, flags);
	if (!maybe_preempt(td))
		maybe_resched(td);
	if ((flags & SRQ_HOLDTD) == 0)
		thread_unlock(td);
}
#endif /* SMP */

void
sched_rem(struct thread *td)
{
	struct td_sched *ts;

	ts = td_get_sched(td);
	KASSERT(td->td_flags & TDF_INMEM,
	    ("sched_rem: thread swapped out"));
	KASSERT(TD_ON_RUNQ(td),
	    ("sched_rem: thread not on run queue"));
	mtx_assert(&sched_lock, MA_OWNED);
	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
	    sched_tdname(curthread));
	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);

	if ((td->td_flags & TDF_NOLOAD) == 0)
		sched_load_rem();
#ifdef SMP
	if (ts->ts_runq != &runq)
		runq_length[ts->ts_runq - runq_pcpu]--;
#endif
	runq_remove(ts->ts_runq, td);
	TD_SET_CAN_RUN(td);
}

/*
 * Select threads to run.  Note that running threads still consume a
 * slot.
 */
struct thread *
sched_choose(void)
{
	struct thread *td;
	struct runq *rq;

	mtx_assert(&sched_lock,  MA_OWNED);
#ifdef SMP
	struct thread *tdcpu;

	rq = &runq;
	td = runq_choose_fuzz(&runq, runq_fuzz);
	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);

	if (td == NULL ||
	    (tdcpu != NULL &&
	     tdcpu->td_priority < td->td_priority)) {
		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
		     PCPU_GET(cpuid));
		td = tdcpu;
		rq = &runq_pcpu[PCPU_GET(cpuid)];
	} else {
		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
	}

#else
	rq = &runq;
	td = runq_choose(&runq);
#endif

	if (td) {
#ifdef SMP
		if (td == tdcpu)
			runq_length[PCPU_GET(cpuid)]--;
#endif
		runq_remove(rq, td);
		td->td_flags |= TDF_DIDRUN;

		KASSERT(td->td_flags & TDF_INMEM,
		    ("sched_choose: thread swapped out"));
		return (td);
	}
	return (PCPU_GET(idlethread));
}

void
sched_preempt(struct thread *td)
{

	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
	if (td->td_critnest > 1) {
		td->td_owepreempt = 1;
	} else {
		thread_lock(td);
		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT);
	}
}

void
sched_userret_slowpath(struct thread *td)
{

	thread_lock(td);
	td->td_priority = td->td_user_pri;
	td->td_base_pri = td->td_user_pri;
	thread_unlock(td);
}

void
sched_bind(struct thread *td, int cpu)
{
	struct td_sched *ts;

	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));

	ts = td_get_sched(td);

	td->td_flags |= TDF_BOUND;
#ifdef SMP
	ts->ts_runq = &runq_pcpu[cpu];
	if (PCPU_GET(cpuid) == cpu)
		return;

	mi_switch(SW_VOL);
	thread_lock(td);
#endif
}

void
sched_unbind(struct thread* td)
{
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
	td->td_flags &= ~TDF_BOUND;
}

int
sched_is_bound(struct thread *td)
{
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	return (td->td_flags & TDF_BOUND);
}

void
sched_relinquish(struct thread *td)
{
	thread_lock(td);
	mi_switch(SW_VOL | SWT_RELINQUISH);
}

int
sched_load(void)
{
	return (sched_tdcnt);
}

int
sched_sizeof_proc(void)
{
	return (sizeof(struct proc));
}

int
sched_sizeof_thread(void)
{
	return (sizeof(struct thread) + sizeof(struct td_sched));
}

fixpt_t
sched_pctcpu(struct thread *td)
{
	struct td_sched *ts;

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	ts = td_get_sched(td);
	return (ts->ts_pctcpu);
}

#ifdef RACCT
/*
 * Calculates the contribution to the thread cpu usage for the latest
 * (unfinished) second.
 */
fixpt_t
sched_pctcpu_delta(struct thread *td)
{
	struct td_sched *ts;
	fixpt_t delta;
	int realstathz;

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	ts = td_get_sched(td);
	delta = 0;
	realstathz = stathz ? stathz : hz;
	if (ts->ts_cpticks != 0) {
#if	(FSHIFT >= CCPU_SHIFT)
		delta = (realstathz == 100)
		    ? ((fixpt_t) ts->ts_cpticks) <<
		    (FSHIFT - CCPU_SHIFT) :
		    100 * (((fixpt_t) ts->ts_cpticks)
		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
#else
		delta = ((FSCALE - ccpu) *
		    (ts->ts_cpticks *
		    FSCALE / realstathz)) >> FSHIFT;
#endif
	}

	return (delta);
}
#endif

u_int
sched_estcpu(struct thread *td)
{

	return (td_get_sched(td)->ts_estcpu);
}

/*
 * The actual idle process.
 */
void
sched_idletd(void *dummy)
{
	struct pcpuidlestat *stat;

	THREAD_NO_SLEEPING();
	stat = DPCPU_PTR(idlestat);
	for (;;) {
		mtx_assert(&Giant, MA_NOTOWNED);

		while (sched_runnable() == 0) {
			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
			stat->idlecalls++;
		}

		mtx_lock_spin(&sched_lock);
		mi_switch(SW_VOL | SWT_IDLE);
	}
}

/*
 * A CPU is entering for the first time or a thread is exiting.
 */
void
sched_throw(struct thread *td)
{
	/*
	 * Correct spinlock nesting.  The idle thread context that we are
	 * borrowing was created so that it would start out with a single
	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
	 * explicitly acquired locks in this function, the nesting count
	 * is now 2 rather than 1.  Since we are nested, calling
	 * spinlock_exit() will simply adjust the counts without allowing
	 * spin lock using code to interrupt us.
	 */
	if (td == NULL) {
		mtx_lock_spin(&sched_lock);
		spinlock_exit();
		PCPU_SET(switchtime, cpu_ticks());
		PCPU_SET(switchticks, ticks);
	} else {
		lock_profile_release_lock(&sched_lock.lock_object);
		MPASS(td->td_lock == &sched_lock);
		td->td_lastcpu = td->td_oncpu;
		td->td_oncpu = NOCPU;
	}
	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
	cpu_throw(td, choosethread());	/* doesn't return */
}

void
sched_fork_exit(struct thread *td)
{

	/*
	 * Finish setting up thread glue so that it begins execution in a
	 * non-nested critical section with sched_lock held but not recursed.
	 */
	td->td_oncpu = PCPU_GET(cpuid);
	sched_lock.mtx_lock = (uintptr_t)td;
	lock_profile_obtain_lock_success(&sched_lock.lock_object,
	    0, 0, __FILE__, __LINE__);
	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);

	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
	    "prio:%d", td->td_priority);
	SDT_PROBE0(sched, , , on__cpu);
}

char *
sched_tdname(struct thread *td)
{
#ifdef KTR
	struct td_sched *ts;

	ts = td_get_sched(td);
	if (ts->ts_name[0] == '\0')
		snprintf(ts->ts_name, sizeof(ts->ts_name),
		    "%s tid %d", td->td_name, td->td_tid);
	return (ts->ts_name);
#else   
	return (td->td_name);
#endif
}

#ifdef KTR
void
sched_clear_tdname(struct thread *td)
{
	struct td_sched *ts;

	ts = td_get_sched(td);
	ts->ts_name[0] = '\0';
}
#endif

void
sched_affinity(struct thread *td)
{
#ifdef SMP
	struct td_sched *ts;
	int cpu;

	THREAD_LOCK_ASSERT(td, MA_OWNED);	

	/*
	 * Set the TSF_AFFINITY flag if there is at least one CPU this
	 * thread can't run on.
	 */
	ts = td_get_sched(td);
	ts->ts_flags &= ~TSF_AFFINITY;
	CPU_FOREACH(cpu) {
		if (!THREAD_CAN_SCHED(td, cpu)) {
			ts->ts_flags |= TSF_AFFINITY;
			break;
		}
	}

	/*
	 * If this thread can run on all CPUs, nothing else to do.
	 */
	if (!(ts->ts_flags & TSF_AFFINITY))
		return;

	/* Pinned threads and bound threads should be left alone. */
	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
		return;

	switch (td->td_state) {
	case TDS_RUNQ:
		/*
		 * If we are on a per-CPU runqueue that is in the set,
		 * then nothing needs to be done.
		 */
		if (ts->ts_runq != &runq &&
		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
			return;

		/* Put this thread on a valid per-CPU runqueue. */
		sched_rem(td);
		sched_add(td, SRQ_HOLDTD | SRQ_BORING);
		break;
	case TDS_RUNNING:
		/*
		 * See if our current CPU is in the set.  If not, force a
		 * context switch.
		 */
		if (THREAD_CAN_SCHED(td, td->td_oncpu))
			return;

		td->td_flags |= TDF_NEEDRESCHED;
		if (td != curthread)
			ipi_cpu(cpu, IPI_AST);
		break;
	default:
		break;
	}
#endif
}