Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*-
 * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in thereg
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/event.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/un.h>

#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libutil.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "agents/passwd.h"
#include "agents/group.h"
#include "agents/services.h"
#include "cachelib.h"
#include "config.h"
#include "debug.h"
#include "log.h"
#include "nscdcli.h"
#include "parser.h"
#include "query.h"
#include "singletons.h"

#ifndef CONFIG_PATH
#define CONFIG_PATH "/etc/nscd.conf"
#endif
#define DEFAULT_CONFIG_PATH	"nscd.conf"

#define MAX_SOCKET_IO_SIZE	4096

struct processing_thread_args {
	cache	the_cache;
	struct configuration	*the_configuration;
	struct runtime_env		*the_runtime_env;
};

static void accept_connection(struct kevent *, struct runtime_env *,
	struct configuration *);
static void destroy_cache_(cache);
static void destroy_runtime_env(struct runtime_env *);
static cache init_cache_(struct configuration *);
static struct runtime_env *init_runtime_env(struct configuration *);
static void processing_loop(cache, struct runtime_env *,
	struct configuration *);
static void process_socket_event(struct kevent *, struct runtime_env *,
	struct configuration *);
static void process_timer_event(struct kevent *, struct runtime_env *,
	struct configuration *);
static void *processing_thread(void *);
static void usage(void);

void get_time_func(struct timeval *);

static void
usage(void)
{
	fprintf(stderr,
	    "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
	exit(1);
}

static cache
init_cache_(struct configuration *config)
{
	struct cache_params params;
	cache retval;

	struct configuration_entry *config_entry;
	size_t	size, i;
	int res;

	TRACE_IN(init_cache_);

	memset(&params, 0, sizeof(struct cache_params));
	params.get_time_func = get_time_func;
	retval = init_cache(&params);

	size = configuration_get_entries_size(config);
	for (i = 0; i < size; ++i) {
		config_entry = configuration_get_entry(config, i);
	    	/*
	    	 * We should register common entries now - multipart entries
	    	 * would be registered automatically during the queries.
	    	 */
		res = register_cache_entry(retval, (struct cache_entry_params *)
			&config_entry->positive_cache_params);
		config_entry->positive_cache_entry = find_cache_entry(retval,
			config_entry->positive_cache_params.cep.entry_name);
		assert(config_entry->positive_cache_entry !=
			INVALID_CACHE_ENTRY);

		res = register_cache_entry(retval, (struct cache_entry_params *)
			&config_entry->negative_cache_params);
		config_entry->negative_cache_entry = find_cache_entry(retval,
			config_entry->negative_cache_params.cep.entry_name);
		assert(config_entry->negative_cache_entry !=
			INVALID_CACHE_ENTRY);
	}

	LOG_MSG_2("cache", "cache was successfully initialized");
	TRACE_OUT(init_cache_);
	return (retval);
}

static void
destroy_cache_(cache the_cache)
{
	TRACE_IN(destroy_cache_);
	destroy_cache(the_cache);
	TRACE_OUT(destroy_cache_);
}

/*
 * Socket and kqueues are prepared here. We have one global queue for both
 * socket and timers events.
 */
static struct runtime_env *
init_runtime_env(struct configuration *config)
{
	int serv_addr_len;
	struct sockaddr_un serv_addr;

	struct kevent eventlist;
	struct timespec timeout;

	struct runtime_env *retval;

	TRACE_IN(init_runtime_env);
	retval = calloc(1, sizeof(*retval));
	assert(retval != NULL);

	retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);

	if (config->force_unlink == 1)
		unlink(config->socket_path);

	memset(&serv_addr, 0, sizeof(struct sockaddr_un));
	serv_addr.sun_family = PF_LOCAL;
	strlcpy(serv_addr.sun_path, config->socket_path,
		sizeof(serv_addr.sun_path));
	serv_addr_len = sizeof(serv_addr.sun_family) +
		strlen(serv_addr.sun_path) + 1;

	if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
		serv_addr_len) == -1) {
		close(retval->sockfd);
		free(retval);

		LOG_ERR_2("runtime environment", "can't bind socket to path: "
			"%s", config->socket_path);
		TRACE_OUT(init_runtime_env);
		return (NULL);
	}
	LOG_MSG_2("runtime environment", "using socket %s",
		config->socket_path);

	/*
	 * Here we're marking socket as non-blocking and setting its backlog
	 * to the maximum value
	 */
	chmod(config->socket_path, config->socket_mode);
	listen(retval->sockfd, -1);
	fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);

	retval->queue = kqueue();
	assert(retval->queue != -1);

	EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
		0, 0, 0);
	memset(&timeout, 0, sizeof(struct timespec));
	kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);

	LOG_MSG_2("runtime environment", "successfully initialized");
	TRACE_OUT(init_runtime_env);
	return (retval);
}

static void
destroy_runtime_env(struct runtime_env *env)
{
	TRACE_IN(destroy_runtime_env);
	close(env->queue);
	close(env->sockfd);
	free(env);
	TRACE_OUT(destroy_runtime_env);
}

static void
accept_connection(struct kevent *event_data, struct runtime_env *env,
	struct configuration *config)
{
	struct kevent	eventlist[2];
	struct timespec	timeout;
	struct query_state	*qstate;

	int	fd;
	int	res;

	uid_t	euid;
	gid_t	egid;

	TRACE_IN(accept_connection);
	fd = accept(event_data->ident, NULL, NULL);
	if (fd == -1) {
		LOG_ERR_2("accept_connection", "error %d during accept()",
		    errno);
		TRACE_OUT(accept_connection);
		return;
	}

	if (getpeereid(fd, &euid, &egid) != 0) {
		LOG_ERR_2("accept_connection", "error %d during getpeereid()",
			errno);
		TRACE_OUT(accept_connection);
		return;
	}

	qstate = init_query_state(fd, sizeof(int), euid, egid);
	if (qstate == NULL) {
		LOG_ERR_2("accept_connection", "can't init query_state");
		TRACE_OUT(accept_connection);
		return;
	}

	memset(&timeout, 0, sizeof(struct timespec));
	EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
		0, qstate->timeout.tv_sec * 1000, qstate);
	EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
		NOTE_LOWAT, qstate->kevent_watermark, qstate);
	res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
	if (res < 0)
		LOG_ERR_2("accept_connection", "kevent error");

	TRACE_OUT(accept_connection);
}

static void
process_socket_event(struct kevent *event_data, struct runtime_env *env,
	struct configuration *config)
{
	struct kevent	eventlist[2];
	struct timeval	query_timeout;
	struct timespec	kevent_timeout;
	int	nevents;
	int	eof_res, res;
	ssize_t	io_res;
	struct query_state *qstate;

	TRACE_IN(process_socket_event);
	eof_res = event_data->flags & EV_EOF ? 1 : 0;
	res = 0;

	memset(&kevent_timeout, 0, sizeof(struct timespec));
	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
		0, 0, NULL);
	nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
	if (nevents == -1) {
		if (errno == ENOENT) {
			/* the timer is already handling this event */
			TRACE_OUT(process_socket_event);
			return;
		} else {
			/* some other error happened */
			LOG_ERR_2("process_socket_event", "kevent error, errno"
				" is %d", errno);
			TRACE_OUT(process_socket_event);
			return;
		}
	}
	qstate = (struct query_state *)event_data->udata;

	/*
	 * If the buffer that is to be send/received is too large,
	 * we send it implicitly, by using query_io_buffer_read and
	 * query_io_buffer_write functions in the query_state. These functions
	 * use the temporary buffer, which is later send/received in parts.
	 * The code below implements buffer splitting/mergind for send/receive
	 * operations. It also does the actual socket IO operations.
	 */
	if (((qstate->use_alternate_io == 0) &&
		(qstate->kevent_watermark <= (size_t)event_data->data)) ||
		((qstate->use_alternate_io != 0) &&
		(qstate->io_buffer_watermark <= (size_t)event_data->data))) {
		if (qstate->use_alternate_io != 0) {
			switch (qstate->io_buffer_filter) {
			case EVFILT_READ:
				io_res = query_socket_read(qstate,
					qstate->io_buffer_p,
					qstate->io_buffer_watermark);
				if (io_res < 0) {
					qstate->use_alternate_io = 0;
					qstate->process_func = NULL;
				} else {
					qstate->io_buffer_p += io_res;
					if (qstate->io_buffer_p ==
					    	qstate->io_buffer +
						qstate->io_buffer_size) {
						qstate->io_buffer_p =
						    qstate->io_buffer;
						qstate->use_alternate_io = 0;
					}
				}
			break;
			default:
			break;
			}
		}

		if (qstate->use_alternate_io == 0) {
			do {
				res = qstate->process_func(qstate);
			} while ((qstate->kevent_watermark == 0) &&
					(qstate->process_func != NULL) &&
					(res == 0));

			if (res != 0)
				qstate->process_func = NULL;
		}

		if ((qstate->use_alternate_io != 0) &&
			(qstate->io_buffer_filter == EVFILT_WRITE)) {
			io_res = query_socket_write(qstate, qstate->io_buffer_p,
				qstate->io_buffer_watermark);
			if (io_res < 0) {
				qstate->use_alternate_io = 0;
				qstate->process_func = NULL;
			} else
				qstate->io_buffer_p += io_res;
		}
	} else {
		/* assuming that socket was closed */
		qstate->process_func = NULL;
		qstate->use_alternate_io = 0;
	}

	if (((qstate->process_func == NULL) &&
	    	(qstate->use_alternate_io == 0)) ||
		(eof_res != 0) || (res != 0)) {
		destroy_query_state(qstate);
		close(event_data->ident);
		TRACE_OUT(process_socket_event);
		return;
	}

	/* updating the query_state lifetime variable */
	get_time_func(&query_timeout);
	query_timeout.tv_usec = 0;
	query_timeout.tv_sec -= qstate->creation_time.tv_sec;
	if (query_timeout.tv_sec > qstate->timeout.tv_sec)
		query_timeout.tv_sec = 0;
	else
		query_timeout.tv_sec = qstate->timeout.tv_sec -
			query_timeout.tv_sec;

	if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
		qstate->io_buffer + qstate->io_buffer_size))
		qstate->use_alternate_io = 0;

	if (qstate->use_alternate_io == 0) {
		/*
		 * If we must send/receive the large block of data,
		 * we should prepare the query_state's io_XXX fields.
		 * We should also substitute its write_func and read_func
		 * with the query_io_buffer_write and query_io_buffer_read,
		 * which will allow us to implicitly send/receive this large
		 * buffer later (in the subsequent calls to the
		 * process_socket_event).
		 */
		if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
#if 0
			/*
			 * XXX: Uncommenting this code makes nscd(8) fail for
			 *      entries larger than a few kB, causing few second
			 *      worth of delay for each call to retrieve them.
			 */
			if (qstate->io_buffer != NULL)
				free(qstate->io_buffer);

			qstate->io_buffer = calloc(1,
				qstate->kevent_watermark);
			assert(qstate->io_buffer != NULL);

			qstate->io_buffer_p = qstate->io_buffer;
			qstate->io_buffer_size = qstate->kevent_watermark;
			qstate->io_buffer_filter = qstate->kevent_filter;

			qstate->write_func = query_io_buffer_write;
			qstate->read_func = query_io_buffer_read;

			if (qstate->kevent_filter == EVFILT_READ)
				qstate->use_alternate_io = 1;
#endif

			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
			EV_SET(&eventlist[1], event_data->ident,
				qstate->kevent_filter, EV_ADD | EV_ONESHOT,
				NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
		} else {
			EV_SET(&eventlist[1], event_data->ident,
		    		qstate->kevent_filter, EV_ADD | EV_ONESHOT,
		    		NOTE_LOWAT, qstate->kevent_watermark, qstate);
		}
	} else {
		if (qstate->io_buffer + qstate->io_buffer_size -
		    	qstate->io_buffer_p <
			MAX_SOCKET_IO_SIZE) {
			qstate->io_buffer_watermark = qstate->io_buffer +
				qstate->io_buffer_size - qstate->io_buffer_p;
			EV_SET(&eventlist[1], event_data->ident,
			    	qstate->io_buffer_filter,
				EV_ADD | EV_ONESHOT, NOTE_LOWAT,
				qstate->io_buffer_watermark,
				qstate);
		} else {
			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
			EV_SET(&eventlist[1], event_data->ident,
		    		qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
		    		NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
		}
	}
	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
		EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
	kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);

	TRACE_OUT(process_socket_event);
}

/*
 * This routine is called if timer event has been signaled in the kqueue. It
 * just closes the socket and destroys the query_state.
 */
static void
process_timer_event(struct kevent *event_data, struct runtime_env *env,
	struct configuration *config)
{
	struct query_state	*qstate;

	TRACE_IN(process_timer_event);
	qstate = (struct query_state *)event_data->udata;
	destroy_query_state(qstate);
	close(event_data->ident);
	TRACE_OUT(process_timer_event);
}

/*
 * Processing loop is the basic processing routine, that forms a body of each
 * procssing thread
 */
static void
processing_loop(cache the_cache, struct runtime_env *env,
	struct configuration *config)
{
	struct timespec timeout;
	const int eventlist_size = 1;
	struct kevent eventlist[eventlist_size];
	int nevents, i;

	TRACE_MSG("=> processing_loop");
	memset(&timeout, 0, sizeof(struct timespec));
	memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);

	for (;;) {
		nevents = kevent(env->queue, NULL, 0, eventlist,
	    		eventlist_size, NULL);
		/*
		 * we can only receive 1 event on success
		 */
		if (nevents == 1) {
			struct kevent *event_data;
			event_data = &eventlist[0];

			if ((int)event_data->ident == env->sockfd) {
				for (i = 0; i < event_data->data; ++i)
				    accept_connection(event_data, env, config);

				EV_SET(eventlist, s_runtime_env->sockfd,
				    EVFILT_READ, EV_ADD | EV_ONESHOT,
				    0, 0, 0);
				memset(&timeout, 0,
				    sizeof(struct timespec));
				kevent(s_runtime_env->queue, eventlist,
				    1, NULL, 0, &timeout);

			} else {
				switch (event_data->filter) {
				case EVFILT_READ:
				case EVFILT_WRITE:
					process_socket_event(event_data,
						env, config);
					break;
				case EVFILT_TIMER:
					process_timer_event(event_data,
						env, config);
					break;
				default:
					break;
				}
			}
		} else {
			/* this branch shouldn't be currently executed */
		}
	}

	TRACE_MSG("<= processing_loop");
}

/*
 * Wrapper above the processing loop function. It sets the thread signal mask
 * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
 */
static void *
processing_thread(void *data)
{
	struct processing_thread_args	*args;
	sigset_t new;

	TRACE_MSG("=> processing_thread");
	args = (struct processing_thread_args *)data;

	sigemptyset(&new);
	sigaddset(&new, SIGPIPE);
	if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
		LOG_ERR_1("processing thread",
			"thread can't block the SIGPIPE signal");

	processing_loop(args->the_cache, args->the_runtime_env,
		args->the_configuration);
	free(args);
	TRACE_MSG("<= processing_thread");

	return (NULL);
}

void
get_time_func(struct timeval *time)
{
	struct timespec res;
	memset(&res, 0, sizeof(struct timespec));
	clock_gettime(CLOCK_MONOTONIC, &res);

	time->tv_sec = res.tv_sec;
	time->tv_usec = 0;
}

/*
 * The idea of _nss_cache_cycle_prevention_function is that nsdispatch
 * will search for this symbol in the executable. This symbol is the
 * attribute of the caching daemon. So, if it exists, nsdispatch won't try
 * to connect to the caching daemon and will just ignore the 'cache'
 * source in the nsswitch.conf. This method helps to avoid cycles and
 * organize self-performing requests.
 *
 * (not actually a function; it used to be, but it doesn't make any
 * difference, as long as it has external linkage)
 */
void *_nss_cache_cycle_prevention_function;

int
main(int argc, char *argv[])
{
	struct processing_thread_args *thread_args;
	pthread_t *threads;

	struct pidfh *pidfile;
	pid_t pid;

	char const *config_file;
	char const *error_str;
	int error_line;
	int i, res;

	int trace_mode_enabled;
	int force_single_threaded;
	int do_not_daemonize;
	int clear_user_cache_entries, clear_all_cache_entries;
	char *user_config_entry_name, *global_config_entry_name;
	int show_statistics;
	int daemon_mode, interactive_mode;


	/* by default all debug messages are omitted */
	TRACE_OFF();

	/* parsing command line arguments */
	trace_mode_enabled = 0;
	force_single_threaded = 0;
	do_not_daemonize = 0;
	clear_user_cache_entries = 0;
	clear_all_cache_entries = 0;
	show_statistics = 0;
	user_config_entry_name = NULL;
	global_config_entry_name = NULL;
	while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
		switch (res) {
		case 'n':
			do_not_daemonize = 1;
			break;
		case 's':
			force_single_threaded = 1;
			break;
		case 't':
			trace_mode_enabled = 1;
			break;
		case 'i':
			clear_user_cache_entries = 1;
			if (optarg != NULL)
				if (strcmp(optarg, "all") != 0)
					user_config_entry_name = strdup(optarg);
			break;
		case 'I':
			clear_all_cache_entries = 1;
			if (optarg != NULL)
				if (strcmp(optarg, "all") != 0)
					global_config_entry_name =
						strdup(optarg);
			break;
		case 'd':
			show_statistics = 1;
			break;
		case '?':
		default:
			usage();
			/* NOT REACHED */
		}
	}

	daemon_mode = do_not_daemonize | force_single_threaded |
		trace_mode_enabled;
	interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
		show_statistics;

	if ((daemon_mode != 0) && (interactive_mode != 0)) {
		LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
			"can't be used together");
		usage();
	}

	if (interactive_mode != 0) {
		FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
		char pidbuf[256];

		struct nscd_connection_params connection_params;
		nscd_connection connection;

		int result;

		if (pidfin == NULL)
			errx(EXIT_FAILURE, "There is no daemon running.");

		memset(pidbuf, 0, sizeof(pidbuf));
		fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
		fclose(pidfin);

		if (ferror(pidfin) != 0)
			errx(EXIT_FAILURE, "Can't read from pidfile.");

		if (sscanf(pidbuf, "%d", &pid) != 1)
			errx(EXIT_FAILURE, "Invalid pidfile.");
		LOG_MSG_1("main", "daemon PID is %d", pid);


		memset(&connection_params, 0,
			sizeof(struct nscd_connection_params));
		connection_params.socket_path = DEFAULT_SOCKET_PATH;
		connection = open_nscd_connection__(&connection_params);
		if (connection == INVALID_NSCD_CONNECTION)
			errx(EXIT_FAILURE, "Can't connect to the daemon.");

		if (clear_user_cache_entries != 0) {
			result = nscd_transform__(connection,
				user_config_entry_name, TT_USER);
			if (result != 0)
				LOG_MSG_1("main",
					"user cache transformation failed");
			else
				LOG_MSG_1("main",
					"user cache_transformation "
					"succeeded");
		}

		if (clear_all_cache_entries != 0) {
			if (geteuid() != 0)
				errx(EXIT_FAILURE, "Only root can initiate "
					"global cache transformation.");

			result = nscd_transform__(connection,
				global_config_entry_name, TT_ALL);
			if (result != 0)
				LOG_MSG_1("main",
					"global cache transformation "
					"failed");
			else
				LOG_MSG_1("main",
					"global cache transformation "
					"succeeded");
		}

		close_nscd_connection__(connection);

		free(user_config_entry_name);
		free(global_config_entry_name);
		return (EXIT_SUCCESS);
	}

	pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
	if (pidfile == NULL) {
		if (errno == EEXIST)
			errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
				pid);
		warn("Cannot open or create pidfile");
	}

	if (trace_mode_enabled == 1)
		TRACE_ON();

	/* blocking the main thread from receiving SIGPIPE signal */
	sigblock(sigmask(SIGPIPE));

	/* daemonization */
	if (do_not_daemonize == 0) {
		res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
		if (res != 0) {
			LOG_ERR_1("main", "can't daemonize myself: %s",
		    		strerror(errno));
			pidfile_remove(pidfile);
			goto fin;
		} else
			LOG_MSG_1("main", "successfully daemonized");
	}

	pidfile_write(pidfile);

	s_agent_table = init_agent_table();
	register_agent(s_agent_table, init_passwd_agent());
	register_agent(s_agent_table, init_passwd_mp_agent());
	register_agent(s_agent_table, init_group_agent());
	register_agent(s_agent_table, init_group_mp_agent());
	register_agent(s_agent_table, init_services_agent());
	register_agent(s_agent_table, init_services_mp_agent());
	LOG_MSG_1("main", "request agents registered successfully");

	/*
 	 * Hosts agent can't work properly until we have access to the
	 * appropriate dtab structures, which are used in nsdispatch
	 * calls
	 *
	 register_agent(s_agent_table, init_hosts_agent());
	*/

	/* configuration initialization */
	s_configuration = init_configuration();
	fill_configuration_defaults(s_configuration);

	error_str = NULL;
	error_line = 0;
	config_file = CONFIG_PATH;

	res = parse_config_file(s_configuration, config_file, &error_str,
		&error_line);
	if ((res != 0) && (error_str == NULL)) {
		config_file = DEFAULT_CONFIG_PATH;
		res = parse_config_file(s_configuration, config_file,
			&error_str, &error_line);
	}

	if (res != 0) {
		if (error_str != NULL) {
		LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
			config_file, error_line, error_str);
		} else {
		LOG_ERR_1("main", "no configuration file found "
		    	"- was looking for %s and %s",
			CONFIG_PATH, DEFAULT_CONFIG_PATH);
		}
		destroy_configuration(s_configuration);
		return (-1);
	}

	if (force_single_threaded == 1)
		s_configuration->threads_num = 1;

	/* cache initialization */
	s_cache = init_cache_(s_configuration);
	if (s_cache == NULL) {
		LOG_ERR_1("main", "can't initialize the cache");
		destroy_configuration(s_configuration);
		return (-1);
	}

	/* runtime environment initialization */
	s_runtime_env = init_runtime_env(s_configuration);
	if (s_runtime_env == NULL) {
		LOG_ERR_1("main", "can't initialize the runtime environment");
		destroy_configuration(s_configuration);
		destroy_cache_(s_cache);
		return (-1);
	}

	if (s_configuration->threads_num > 1) {
		threads = calloc(s_configuration->threads_num,
			sizeof(*threads));
		for (i = 0; i < s_configuration->threads_num; ++i) {
			thread_args = malloc(
				sizeof(*thread_args));
			thread_args->the_cache = s_cache;
			thread_args->the_runtime_env = s_runtime_env;
			thread_args->the_configuration = s_configuration;

			LOG_MSG_1("main", "thread #%d was successfully created",
				i);
			pthread_create(&threads[i], NULL, processing_thread,
				thread_args);

			thread_args = NULL;
		}

		for (i = 0; i < s_configuration->threads_num; ++i)
			pthread_join(threads[i], NULL);
	} else {
		LOG_MSG_1("main", "working in single-threaded mode");
		processing_loop(s_cache, s_runtime_env, s_configuration);
	}

fin:
	/* runtime environment destruction */
	destroy_runtime_env(s_runtime_env);

	/* cache destruction */
	destroy_cache_(s_cache);

	/* configuration destruction */
	destroy_configuration(s_configuration);

	/* agents table destruction */
	destroy_agent_table(s_agent_table);

	pidfile_remove(pidfile);
	return (EXIT_SUCCESS);
}