Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ctype.h>
#include <stdio.h>

#include "apu_config.h"
#include "apu.h"
#include "apr_pools.h"
#include "apr_dso.h"
#include "apr_strings.h"
#include "apr_hash.h"
#include "apr_thread_mutex.h"
#include "apr_lib.h"

#if APU_HAVE_CRYPTO

#include "apu_internal.h"
#include "apr_crypto_internal.h"
#include "apr_crypto.h"
#include "apu_version.h"

static apr_hash_t *drivers = NULL;

#define ERROR_SIZE 1024

#define CLEANUP_CAST (apr_status_t (*)(void*))

#define APR_TYPEDEF_STRUCT(type, incompletion) \
struct type { \
   incompletion \
   void *unk[]; \
};

APR_TYPEDEF_STRUCT(apr_crypto_t,
    apr_pool_t *pool;
    apr_crypto_driver_t *provider;
)

APR_TYPEDEF_STRUCT(apr_crypto_key_t,
    apr_pool_t *pool;
    apr_crypto_driver_t *provider;
    const apr_crypto_t *f;
)

APR_TYPEDEF_STRUCT(apr_crypto_block_t,
    apr_pool_t *pool;
    apr_crypto_driver_t *provider;
    const apr_crypto_t *f;
)

typedef struct apr_crypto_clear_t {
    void *buffer;
    apr_size_t size;
} apr_crypto_clear_t;

#if !APU_DSO_BUILD
#define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \
    {   \
        extern const apr_crypto_driver_t driver_name; \
        apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \
        if (driver_name.init) {     \
            rv = driver_name.init(pool, params, result); \
        }  \
        *driver = &driver_name; \
    }
#endif

static apr_status_t apr_crypto_term(void *ptr)
{
    /* set drivers to NULL so init can work again */
    drivers = NULL;

    /* Everything else we need is handled by cleanups registered
     * when we created mutexes and loaded DSOs
     */
    return APR_SUCCESS;
}

APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool)
{
    apr_status_t ret = APR_SUCCESS;
    apr_pool_t *parent;

    if (drivers != NULL) {
        return APR_SUCCESS;
    }

    /* Top level pool scope, need process-scope lifetime */
    for (parent = apr_pool_parent_get(pool);
         parent && parent != pool;
         parent = apr_pool_parent_get(pool))
        pool = parent;
#if APU_DSO_BUILD
    /* deprecate in 2.0 - permit implicit initialization */
    apu_dso_init(pool);
#endif
    drivers = apr_hash_make(pool);

    apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
            apr_pool_cleanup_null);

    return ret;
}

static apr_status_t crypto_clear(void *ptr)
{
    apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr;

    apr_crypto_memzero(clear->buffer, clear->size);
    clear->buffer = NULL;
    clear->size = 0;

    return APR_SUCCESS;
}

APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool,
        void *buffer, apr_size_t size)
{
    apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t));

    clear->buffer = buffer;
    clear->size = size;

    apr_pool_cleanup_register(pool, clear, crypto_clear,
            apr_pool_cleanup_null);

    return APR_SUCCESS;
}

#if defined(HAVE_WEAK_SYMBOLS)
void apr__memzero_explicit(void *buffer, apr_size_t size);

__attribute__ ((weak))
void apr__memzero_explicit(void *buffer, apr_size_t size)
{
    memset(buffer, 0, size);
}
#endif

APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size)
{
#if defined(WIN32)
    SecureZeroMemory(buffer, size);
#elif defined(HAVE_MEMSET_S)
    if (size) {
        return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size);
    }
#elif defined(HAVE_EXPLICIT_BZERO)
    explicit_bzero(buffer, size);
#elif defined(HAVE_WEAK_SYMBOLS)
    apr__memzero_explicit(buffer, size);
#else
    apr_size_t i;
    volatile unsigned char *volatile ptr = buffer;
    for (i = 0; i < size; ++i) {
        ptr[i] = 0;
    }
#endif
    return APR_SUCCESS;
}

APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2,
                                   apr_size_t size)
{
    const unsigned char *p1 = buf1;
    const unsigned char *p2 = buf2;
    unsigned char diff = 0;
    apr_size_t i;

    for (i = 0; i < size; ++i) {
        diff |= p1[i] ^ p2[i];
    }

    return 1 & ((diff - 1) >> 8);
}

APU_DECLARE(apr_status_t) apr_crypto_get_driver(
        const apr_crypto_driver_t **driver, const char *name,
        const char *params, const apu_err_t **result, apr_pool_t *pool)
{
#if APU_DSO_BUILD
    char modname[32];
    char symname[34];
    apr_dso_handle_t *dso;
    apr_dso_handle_sym_t symbol;
#endif
    apr_status_t rv;

    if (result) {
        *result = NULL; /* until further notice */
    }

#if APU_DSO_BUILD
    rv = apu_dso_mutex_lock();
    if (rv) {
        return rv;
    }
#endif
    *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
    if (*driver) {
#if APU_DSO_BUILD 
        apu_dso_mutex_unlock();
#endif
        return APR_SUCCESS;
    }

#if APU_DSO_BUILD
    /* The driver DSO must have exactly the same lifetime as the
     * drivers hash table; ignore the passed-in pool */
    pool = apr_hash_pool_get(drivers);

#if defined(NETWARE)
    apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
#elif defined(WIN32) || defined(__CYGWIN__)
    apr_snprintf(modname, sizeof(modname),
            "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
#else
    apr_snprintf(modname, sizeof(modname),
            "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
#endif
    apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
    rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
    if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */
        apr_crypto_driver_t *d = symbol;
        rv = APR_SUCCESS;
        if (d->init) {
            rv = d->init(pool, params, result);
        }
        if (APR_SUCCESS == rv) {
            *driver = symbol;
            name = apr_pstrdup(pool, name);
            apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
        }
    }
    apu_dso_mutex_unlock();

    if (APR_SUCCESS != rv && result && !*result) {
        char *buffer = apr_pcalloc(pool, ERROR_SIZE);
        apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
        if (err && buffer) {
            apr_dso_error(dso, buffer, ERROR_SIZE - 1);
            err->msg = buffer;
            err->reason = apr_pstrdup(pool, modname);
            *result = err;
        }
    }

#else /* not builtin and !APR_HAS_DSO => not implemented */
    rv = APR_ENOTIMPL;

    /* Load statically-linked drivers: */
#if APU_HAVE_OPENSSL
    if (name[0] == 'o' && !strcmp(name, "openssl")) {
        DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result);
    }
#endif
#if APU_HAVE_NSS
    if (name[0] == 'n' && !strcmp(name, "nss")) {
        DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
    }
#endif
#if APU_HAVE_COMMONCRYPTO
    if (name[0] == 'c' && !strcmp(name, "commoncrypto")) {
        DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result);
    }
#endif
#if APU_HAVE_MSCAPI
    if (name[0] == 'm' && !strcmp(name, "mscapi")) {
        DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
    }
#endif
#if APU_HAVE_MSCNG
    if (name[0] == 'm' && !strcmp(name, "mscng")) {
        DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result);
    }
#endif

#endif

    return rv;
}

/**
 * @brief Return the name of the driver.
 *
 * @param driver - The driver in use.
 * @return The name of the driver.
 */
APU_DECLARE(const char *)apr_crypto_driver_name (
        const apr_crypto_driver_t *driver)
{
    return driver->name;
}

/**
 * @brief Get the result of the last operation on a context. If the result
 *        is NULL, the operation was successful.
 * @param result - the result structure
 * @param f - context pointer
 * @return APR_SUCCESS for success
 */
APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
        const apr_crypto_t *f)
{
    return f->provider->error(result, f);
}

/**
 * @brief Create a context for supporting encryption. Keys, certificates,
 *        algorithms and other parameters will be set per context. More than
 *        one context can be created at one time. A cleanup will be automatically
 *        registered with the given pool to guarantee a graceful shutdown.
 * @param f - context pointer will be written here
 * @param driver - driver to use
 * @param params - array of key parameters
 * @param pool - process pool
 * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
 * if the engine cannot be initialised.
 * @remarks NSS: currently no params are supported.
 * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
 *  sign and a value.
 */
APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
        const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool)
{
    return driver->make(f, driver, params, pool);
}

/**
 * @brief Get a hash table of key types, keyed by the name of the type against
 * a pointer to apr_crypto_block_key_type_t, which in turn begins with an
 * integer.
 *
 * @param types - hashtable of key types keyed to constants.
 * @param f - encryption context
 * @return APR_SUCCESS for success
 */
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
        const apr_crypto_t *f)
{
    return f->provider->get_block_key_types(types, f);
}

/**
 * @brief Get a hash table of key modes, keyed by the name of the mode against
 * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an
 * integer.
 *
 * @param modes - hashtable of key modes keyed to constants.
 * @param f - encryption context
 * @return APR_SUCCESS for success
 */
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
        const apr_crypto_t *f)
{
    return f->provider->get_block_key_modes(modes, f);
}

/**
 * @brief Create a key from the provided secret or passphrase. The key is cleaned
 *        up when the context is cleaned, and may be reused with multiple encryption
 *        or decryption operations.
 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
 *       *key is not NULL, *key must point at a previously created structure.
 * @param key The key returned, see note.
 * @param rec The key record, from which the key will be derived.
 * @param f The context to use.
 * @param p The pool to use.
 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
 *         error occurred while generating the key. APR_ENOCIPHER if the type or mode
 *         is not supported by the particular backend. APR_EKEYTYPE if the key type is
 *         not known. APR_EPADDING if padding was requested but is not supported.
 *         APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key,
        const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
{
    return f->provider->key(key, rec, f, p);
}

/**
 * @brief Create a key from the given passphrase. By default, the PBKDF2
 *        algorithm is used to generate the key from the passphrase. It is expected
 *        that the same pass phrase will generate the same key, regardless of the
 *        backend crypto platform used. The key is cleaned up when the context
 *        is cleaned, and may be reused with multiple encryption or decryption
 *        operations.
 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
 *       *key is not NULL, *key must point at a previously created structure.
 * @param key The key returned, see note.
 * @param ivSize The size of the initialisation vector will be returned, based
 *               on whether an IV is relevant for this type of crypto.
 * @param pass The passphrase to use.
 * @param passLen The passphrase length in bytes
 * @param salt The salt to use.
 * @param saltLen The salt length in bytes
 * @param type 3DES_192, AES_128, AES_192, AES_256.
 * @param mode Electronic Code Book / Cipher Block Chaining.
 * @param doPad Pad if necessary.
 * @param iterations Number of iterations to use in algorithm
 * @param f The context to use.
 * @param p The pool to use.
 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
 *         error occurred while generating the key. APR_ENOCIPHER if the type or mode
 *         is not supported by the particular backend. APR_EKEYTYPE if the key type is
 *         not known. APR_EPADDING if padding was requested but is not supported.
 *         APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
        apr_size_t *ivSize, const char *pass, apr_size_t passLen,
        const unsigned char * salt, apr_size_t saltLen,
        const apr_crypto_block_key_type_e type,
        const apr_crypto_block_key_mode_e mode, const int doPad,
        const int iterations, const apr_crypto_t *f, apr_pool_t *p)
{
    return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen,
            type, mode, doPad, iterations, f, p);
}

/**
 * @brief Initialise a context for encrypting arbitrary data using the given key.
 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
 *       *ctx is not NULL, *ctx must point at a previously created structure.
 * @param ctx The block context returned, see note.
 * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
 *           an IV will be created at random, in space allocated from the pool.
 *           If the buffer pointed to is not NULL, the IV in the buffer will be
 *           used.
 * @param key The key structure to use.
 * @param blockSize The block size of the cipher.
 * @param p The pool to use.
 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
 *         Returns APR_EINIT if the backend failed to initialise the context. Returns
 *         APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
        apr_crypto_block_t **ctx, const unsigned char **iv,
        const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p)
{
    return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p);
}

/**
 * @brief Encrypt data provided by in, write it to out.
 * @note The number of bytes written will be written to outlen. If
 *       out is NULL, outlen will contain the maximum size of the
 *       buffer needed to hold the data, including any data
 *       generated by apr_crypto_block_encrypt_finish below. If *out points
 *       to NULL, a buffer sufficiently large will be created from
 *       the pool provided. If *out points to a not-NULL value, this
 *       value will be used as a buffer instead.
 * @param out Address of a buffer to which data will be written,
 *        see note.
 * @param outlen Length of the output will be written here.
 * @param in Address of the buffer to read.
 * @param inlen Length of the buffer to read.
 * @param ctx The block context to use.
 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
 *         not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
        apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
        apr_crypto_block_t *ctx)
{
    return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx);
}

/**
 * @brief Encrypt final data block, write it to out.
 * @note If necessary the final block will be written out after being
 *       padded. Typically the final block will be written to the
 *       same buffer used by apr_crypto_block_encrypt, offset by the
 *       number of bytes returned as actually written by the
 *       apr_crypto_block_encrypt() call. After this call, the context
 *       is cleaned and can be reused by apr_crypto_block_encrypt_init().
 * @param out Address of a buffer to which data will be written. This
 *            buffer must already exist, and is usually the same
 *            buffer used by apr_evp_crypt(). See note.
 * @param outlen Length of the output will be written here.
 * @param ctx The block context to use.
 * @return APR_ECRYPT if an error occurred.
 * @return APR_EPADDING if padding was enabled and the block was incorrectly
 *         formatted.
 * @return APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
        apr_size_t *outlen, apr_crypto_block_t *ctx)
{
    return ctx->provider->block_encrypt_finish(out, outlen, ctx);
}

/**
 * @brief Initialise a context for decrypting arbitrary data using the given key.
 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
 *       *ctx is not NULL, *ctx must point at a previously created structure.
 * @param ctx The block context returned, see note.
 * @param blockSize The block size of the cipher.
 * @param iv Optional initialisation vector.
 * @param key The key structure to use.
 * @param p The pool to use.
 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
 *         Returns APR_EINIT if the backend failed to initialise the context. Returns
 *         APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
        apr_crypto_block_t **ctx, apr_size_t *blockSize,
        const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p)
{
    return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p);
}

/**
 * @brief Decrypt data provided by in, write it to out.
 * @note The number of bytes written will be written to outlen. If
 *       out is NULL, outlen will contain the maximum size of the
 *       buffer needed to hold the data, including any data
 *       generated by apr_crypto_block_decrypt_finish below. If *out points
 *       to NULL, a buffer sufficiently large will be created from
 *       the pool provided. If *out points to a not-NULL value, this
 *       value will be used as a buffer instead.
 * @param out Address of a buffer to which data will be written,
 *        see note.
 * @param outlen Length of the output will be written here.
 * @param in Address of the buffer to read.
 * @param inlen Length of the buffer to read.
 * @param ctx The block context to use.
 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
 *         not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
        apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
        apr_crypto_block_t *ctx)
{
    return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx);
}

/**
 * @brief Decrypt final data block, write it to out.
 * @note If necessary the final block will be written out after being
 *       padded. Typically the final block will be written to the
 *       same buffer used by apr_crypto_block_decrypt, offset by the
 *       number of bytes returned as actually written by the
 *       apr_crypto_block_decrypt() call. After this call, the context
 *       is cleaned and can be reused by apr_crypto_block_decrypt_init().
 * @param out Address of a buffer to which data will be written. This
 *            buffer must already exist, and is usually the same
 *            buffer used by apr_evp_crypt(). See note.
 * @param outlen Length of the output will be written here.
 * @param ctx The block context to use.
 * @return APR_ECRYPT if an error occurred.
 * @return APR_EPADDING if padding was enabled and the block was incorrectly
 *         formatted.
 * @return APR_ENOTIMPL if not implemented.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
        apr_size_t *outlen, apr_crypto_block_t *ctx)
{
    return ctx->provider->block_decrypt_finish(out, outlen, ctx);
}

/**
 * @brief Clean encryption / decryption context.
 * @note After cleanup, a context is free to be reused if necessary.
 * @param ctx The block context to use.
 * @return Returns APR_ENOTIMPL if not supported.
 */
APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx)
{
    return ctx->provider->block_cleanup(ctx);
}

/**
 * @brief Clean encryption / decryption context.
 * @note After cleanup, a context is free to be reused if necessary.
 * @param f The context to use.
 * @return Returns APR_ENOTIMPL if not supported.
 */
APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f)
{
    return f->provider->cleanup(f);
}

/**
 * @brief Shutdown the crypto library.
 * @note After shutdown, it is expected that the init function can be called again.
 * @param driver - driver to use
 * @return Returns APR_ENOTIMPL if not supported.
 */
APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver)
{
    return driver->shutdown();
}

#endif /* APU_HAVE_CRYPTO */