Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef BR_BEARSSL_EC_H__
#define BR_BEARSSL_EC_H__

#include <stddef.h>
#include <stdint.h>

#include "bearssl_rand.h"

#ifdef __cplusplus
extern "C" {
#endif

/** \file bearssl_ec.h
 *
 * # Elliptic Curves
 *
 * This file documents the EC implementations provided with BearSSL, and
 * ECDSA.
 *
 * ## Elliptic Curve API
 *
 * Only "named curves" are supported. Each EC implementation supports
 * one or several named curves, identified by symbolic identifiers.
 * These identifiers are small integers, that correspond to the values
 * registered by the
 * [IANA](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8).
 *
 * Since all currently defined elliptic curve identifiers are in the 0..31
 * range, it is convenient to encode support of some curves in a 32-bit
 * word, such that bit x corresponds to curve of identifier x.
 *
 * An EC implementation is incarnated by a `br_ec_impl` instance, that
 * offers the following fields:
 *
 *   - `supported_curves`
 *
 *      A 32-bit word that documents the identifiers of the curves supported
 *      by this implementation.
 *
 *   - `generator()`
 *
 *      Callback method that returns a pointer to the conventional generator
 *      point for that curve.
 *
 *   - `order()`
 *
 *      Callback method that returns a pointer to the subgroup order for
 *      that curve. That value uses unsigned big-endian encoding.
 *
 *   - `xoff()`
 *
 *      Callback method that returns the offset and length of the X
 *      coordinate in an encoded point.
 *
 *   - `mul()`
 *
 *      Multiply a curve point with an integer.
 *
 *   - `mulgen()`
 *
 *      Multiply the curve generator with an integer. This may be faster
 *      than the generic `mul()`.
 *
 *   - `muladd()`
 *
 *      Multiply two curve points by two integers, and return the sum of
 *      the two products.
 *
 * All curve points are represented in uncompressed format. The `mul()`
 * and `muladd()` methods take care to validate that the provided points
 * are really part of the relevant curve subgroup.
 *
 * For all point multiplication functions, the following holds:
 *
 *   - Functions validate that the provided points are valid members
 *     of the relevant curve subgroup. An error is reported if that is
 *     not the case.
 *
 *   - Processing is constant-time, even if the point operands are not
 *     valid. This holds for both the source and resulting points, and
 *     the multipliers (integers). Only the byte length of the provided
 *     multiplier arrays (not their actual value length in bits) may
 *     leak through timing-based side channels.
 *
 *   - The multipliers (integers) MUST be lower than the subgroup order.
 *     If this property is not met, then the result is indeterminate,
 *     but an error value is not ncessearily returned.
 * 
 *
 * ## ECDSA
 *
 * ECDSA signatures have two standard formats, called "raw" and "asn1".
 * Internally, such a signature is a pair of modular integers `(r,s)`.
 * The "raw" format is the concatenation of the unsigned big-endian
 * encodings of these two integers, possibly left-padded with zeros so
 * that they have the same encoded length. The "asn1" format is the
 * DER encoding of an ASN.1 structure that contains the two integer
 * values:
 *
 *     ECDSASignature ::= SEQUENCE {
 *         r   INTEGER,
 *         s   INTEGER
 *     }
 *
 * In general, in all of X.509 and SSL/TLS, the "asn1" format is used.
 * BearSSL offers ECDSA implementations for both formats; conversion
 * functions between the two formats are also provided. Conversion of a
 * "raw" format signature into "asn1" may enlarge a signature by no more
 * than 9 bytes for all supported curves; conversely, conversion of an
 * "asn1" signature to "raw" may expand the signature but the "raw"
 * length will never be more than twice the length of the "asn1" length
 * (and usually it will be shorter).
 *
 * Note that for a given signature, the "raw" format is not fully
 * deterministic, in that it does not enforce a minimal common length.
 */

/*
 * Standard curve ID. These ID are equal to the assigned numerical
 * identifiers assigned to these curves for TLS:
 *    http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
 */

/** \brief Identifier for named curve sect163k1. */
#define BR_EC_sect163k1           1

/** \brief Identifier for named curve sect163r1. */
#define BR_EC_sect163r1           2

/** \brief Identifier for named curve sect163r2. */
#define BR_EC_sect163r2           3

/** \brief Identifier for named curve sect193r1. */
#define BR_EC_sect193r1           4

/** \brief Identifier for named curve sect193r2. */
#define BR_EC_sect193r2           5

/** \brief Identifier for named curve sect233k1. */
#define BR_EC_sect233k1           6

/** \brief Identifier for named curve sect233r1. */
#define BR_EC_sect233r1           7

/** \brief Identifier for named curve sect239k1. */
#define BR_EC_sect239k1           8

/** \brief Identifier for named curve sect283k1. */
#define BR_EC_sect283k1           9

/** \brief Identifier for named curve sect283r1. */
#define BR_EC_sect283r1          10

/** \brief Identifier for named curve sect409k1. */
#define BR_EC_sect409k1          11

/** \brief Identifier for named curve sect409r1. */
#define BR_EC_sect409r1          12

/** \brief Identifier for named curve sect571k1. */
#define BR_EC_sect571k1          13

/** \brief Identifier for named curve sect571r1. */
#define BR_EC_sect571r1          14

/** \brief Identifier for named curve secp160k1. */
#define BR_EC_secp160k1          15

/** \brief Identifier for named curve secp160r1. */
#define BR_EC_secp160r1          16

/** \brief Identifier for named curve secp160r2. */
#define BR_EC_secp160r2          17

/** \brief Identifier for named curve secp192k1. */
#define BR_EC_secp192k1          18

/** \brief Identifier for named curve secp192r1. */
#define BR_EC_secp192r1          19

/** \brief Identifier for named curve secp224k1. */
#define BR_EC_secp224k1          20

/** \brief Identifier for named curve secp224r1. */
#define BR_EC_secp224r1          21

/** \brief Identifier for named curve secp256k1. */
#define BR_EC_secp256k1          22

/** \brief Identifier for named curve secp256r1. */
#define BR_EC_secp256r1          23

/** \brief Identifier for named curve secp384r1. */
#define BR_EC_secp384r1          24

/** \brief Identifier for named curve secp521r1. */
#define BR_EC_secp521r1          25

/** \brief Identifier for named curve brainpoolP256r1. */
#define BR_EC_brainpoolP256r1    26

/** \brief Identifier for named curve brainpoolP384r1. */
#define BR_EC_brainpoolP384r1    27

/** \brief Identifier for named curve brainpoolP512r1. */
#define BR_EC_brainpoolP512r1    28

/** \brief Identifier for named curve Curve25519. */
#define BR_EC_curve25519         29

/** \brief Identifier for named curve Curve448. */
#define BR_EC_curve448           30

/**
 * \brief Structure for an EC public key.
 */
typedef struct {
	/** \brief Identifier for the curve used by this key. */
	int curve;
	/** \brief Public curve point (uncompressed format). */
	unsigned char *q;
	/** \brief Length of public curve point (in bytes). */
	size_t qlen;
} br_ec_public_key;

/**
 * \brief Structure for an EC private key.
 *
 * The private key is an integer modulo the curve subgroup order. The
 * encoding below tolerates extra leading zeros. In general, it is
 * recommended that the private key has the same length as the curve
 * subgroup order.
 */
typedef struct {
	/** \brief Identifier for the curve used by this key. */
	int curve;
	/** \brief Private key (integer, unsigned big-endian encoding). */
	unsigned char *x;
	/** \brief Private key length (in bytes). */
	size_t xlen;
} br_ec_private_key;

/**
 * \brief Type for an EC implementation.
 */
typedef struct {
	/**
	 * \brief Supported curves.
	 *
	 * This word is a bitfield: bit `x` is set if the curve of ID `x`
	 * is supported. E.g. an implementation supporting both NIST P-256
	 * (secp256r1, ID 23) and NIST P-384 (secp384r1, ID 24) will have
	 * value `0x01800000` in this field.
	 */
	uint32_t supported_curves;

	/**
	 * \brief Get the conventional generator.
	 *
	 * This function returns the conventional generator (encoded
	 * curve point) for the specified curve. This function MUST NOT
	 * be called if the curve is not supported.
	 *
	 * \param curve   curve identifier.
	 * \param len     receiver for the encoded generator length (in bytes).
	 * \return  the encoded generator.
	 */
	const unsigned char *(*generator)(int curve, size_t *len);

	/**
	 * \brief Get the subgroup order.
	 *
	 * This function returns the order of the subgroup generated by
	 * the conventional generator, for the specified curve. Unsigned
	 * big-endian encoding is used. This function MUST NOT be called
	 * if the curve is not supported.
	 *
	 * \param curve   curve identifier.
	 * \param len     receiver for the encoded order length (in bytes).
	 * \return  the encoded order.
	 */
	const unsigned char *(*order)(int curve, size_t *len);

	/**
	 * \brief Get the offset and length for the X coordinate.
	 *
	 * This function returns the offset and length (in bytes) of
	 * the X coordinate in an encoded non-zero point.
	 *
	 * \param curve   curve identifier.
	 * \param len     receiver for the X coordinate length (in bytes).
	 * \return  the offset for the X coordinate (in bytes).
	 */
	size_t (*xoff)(int curve, size_t *len);

	/**
	 * \brief Multiply a curve point by an integer.
	 *
	 * The source point is provided in array `G` (of size `Glen` bytes);
	 * the multiplication result is written over it. The multiplier
	 * `x` (of size `xlen` bytes) uses unsigned big-endian encoding.
	 *
	 * Rules:
	 *
	 *   - The specified curve MUST be supported.
	 *
	 *   - The source point must be a valid point on the relevant curve
	 *     subgroup (and not the "point at infinity" either). If this is
	 *     not the case, then this function returns an error (0).
	 *
	 *   - The multiplier integer MUST be non-zero and less than the
	 *     curve subgroup order. If this property does not hold, then
	 *     the result is indeterminate and an error code is not
	 *     guaranteed.
	 *
	 * Returned value is 1 on success, 0 on error. On error, the
	 * contents of `G` are indeterminate.
	 *
	 * \param G       point to multiply.
	 * \param Glen    length of the encoded point (in bytes).
	 * \param x       multiplier (unsigned big-endian).
	 * \param xlen    multiplier length (in bytes).
	 * \param curve   curve identifier.
	 * \return  1 on success, 0 on error.
	 */
	uint32_t (*mul)(unsigned char *G, size_t Glen,
		const unsigned char *x, size_t xlen, int curve);

	/**
	 * \brief Multiply the generator by an integer.
	 *
	 * The multiplier MUST be non-zero and less than the curve
	 * subgroup order. Results are indeterminate if this property
	 * does not hold.
	 *
	 * \param R       output buffer for the point.
	 * \param x       multiplier (unsigned big-endian).
	 * \param xlen    multiplier length (in bytes).
	 * \param curve   curve identifier.
	 * \return  encoded result point length (in bytes).
	 */
	size_t (*mulgen)(unsigned char *R,
		const unsigned char *x, size_t xlen, int curve);

	/**
	 * \brief Multiply two points by two integers and add the
	 * results.
	 *
	 * The point `x*A + y*B` is computed and written back in the `A`
	 * array.
	 *
	 * Rules:
	 *
	 *   - The specified curve MUST be supported.
	 *
	 *   - The source points (`A` and `B`)  must be valid points on
	 *     the relevant curve subgroup (and not the "point at
	 *     infinity" either). If this is not the case, then this
	 *     function returns an error (0).
	 *
	 *   - If the `B` pointer is `NULL`, then the conventional
	 *     subgroup generator is used. With some implementations,
	 *     this may be faster than providing a pointer to the
	 *     generator.
	 *
	 *   - The multiplier integers (`x` and `y`) MUST be non-zero
	 *     and less than the curve subgroup order. If either integer
	 *     is zero, then an error is reported, but if one of them is
	 *     not lower than the subgroup order, then the result is
	 *     indeterminate and an error code is not guaranteed.
	 *
	 *   - If the final result is the point at infinity, then an
	 *     error is returned.
	 *
	 * Returned value is 1 on success, 0 on error. On error, the
	 * contents of `A` are indeterminate.
	 *
	 * \param A       first point to multiply.
	 * \param B       second point to multiply (`NULL` for the generator).
	 * \param len     common length of the encoded points (in bytes).
	 * \param x       multiplier for `A` (unsigned big-endian).
	 * \param xlen    length of multiplier for `A` (in bytes).
	 * \param y       multiplier for `A` (unsigned big-endian).
	 * \param ylen    length of multiplier for `A` (in bytes).
	 * \param curve   curve identifier.
	 * \return  1 on success, 0 on error.
	 */
	uint32_t (*muladd)(unsigned char *A, const unsigned char *B, size_t len,
		const unsigned char *x, size_t xlen,
		const unsigned char *y, size_t ylen, int curve);
} br_ec_impl;

/**
 * \brief EC implementation "i31".
 *
 * This implementation internally uses generic code for modular integers,
 * with a representation as sequences of 31-bit words. It supports secp256r1,
 * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
 */
extern const br_ec_impl br_ec_prime_i31;

/**
 * \brief EC implementation "i15".
 *
 * This implementation internally uses generic code for modular integers,
 * with a representation as sequences of 15-bit words. It supports secp256r1,
 * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
 */
extern const br_ec_impl br_ec_prime_i15;

/**
 * \brief EC implementation "m15" for P-256.
 *
 * This implementation uses specialised code for curve secp256r1 (also
 * known as NIST P-256), with optional Karatsuba decomposition, and fast
 * modular reduction thanks to the field modulus special format. Only
 * 32-bit multiplications are used (with 32-bit results, not 64-bit).
 */
extern const br_ec_impl br_ec_p256_m15;

/**
 * \brief EC implementation "m31" for P-256.
 *
 * This implementation uses specialised code for curve secp256r1 (also
 * known as NIST P-256), relying on multiplications of 31-bit values
 * (MUL31).
 */
extern const br_ec_impl br_ec_p256_m31;

/**
 * \brief EC implementation "m62" (specialised code) for P-256.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 64 bits, with a 128-bit result. This implementation is
 * defined only on platforms that offer the 64x64->128 multiplication
 * support; use `br_ec_p256_m62_get()` to dynamically obtain a pointer
 * to that implementation.
 */
extern const br_ec_impl br_ec_p256_m62;

/**
 * \brief Get the "m62" implementation of P-256, if available.
 *
 * \return  the implementation, or 0.
 */
const br_ec_impl *br_ec_p256_m62_get(void);

/**
 * \brief EC implementation "m64" (specialised code) for P-256.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 64 bits, with a 128-bit result. This implementation is
 * defined only on platforms that offer the 64x64->128 multiplication
 * support; use `br_ec_p256_m64_get()` to dynamically obtain a pointer
 * to that implementation.
 */
extern const br_ec_impl br_ec_p256_m64;

/**
 * \brief Get the "m64" implementation of P-256, if available.
 *
 * \return  the implementation, or 0.
 */
const br_ec_impl *br_ec_p256_m64_get(void);

/**
 * \brief EC implementation "i15" (generic code) for Curve25519.
 *
 * This implementation uses the generic code for modular integers (with
 * 15-bit words) to support Curve25519. Due to the specificities of the
 * curve definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_i15;

/**
 * \brief EC implementation "i31" (generic code) for Curve25519.
 *
 * This implementation uses the generic code for modular integers (with
 * 31-bit words) to support Curve25519. Due to the specificities of the
 * curve definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_i31;

/**
 * \brief EC implementation "m15" (specialised code) for Curve25519.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 15 bits. Due to the specificities of the curve
 * definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_m15;

/**
 * \brief EC implementation "m31" (specialised code) for Curve25519.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 31 bits. Due to the specificities of the curve
 * definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_m31;

/**
 * \brief EC implementation "m62" (specialised code) for Curve25519.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 62 bits, with a 124-bit result. This implementation is
 * defined only on platforms that offer the 64x64->128 multiplication
 * support; use `br_ec_c25519_m62_get()` to dynamically obtain a pointer
 * to that implementation. Due to the specificities of the curve
 * definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_m62;

/**
 * \brief Get the "m62" implementation of Curve25519, if available.
 *
 * \return  the implementation, or 0.
 */
const br_ec_impl *br_ec_c25519_m62_get(void);

/**
 * \brief EC implementation "m64" (specialised code) for Curve25519.
 *
 * This implementation uses custom code relying on multiplication of
 * integers up to 64 bits, with a 128-bit result. This implementation is
 * defined only on platforms that offer the 64x64->128 multiplication
 * support; use `br_ec_c25519_m64_get()` to dynamically obtain a pointer
 * to that implementation. Due to the specificities of the curve
 * definition, the following applies:
 *
 *   - `muladd()` is not implemented (the function returns 0 systematically).
 *   - `order()` returns 2^255-1, since the point multiplication algorithm
 *     accepts any 32-bit integer as input (it clears the top bit and low
 *     three bits systematically).
 */
extern const br_ec_impl br_ec_c25519_m64;

/**
 * \brief Get the "m64" implementation of Curve25519, if available.
 *
 * \return  the implementation, or 0.
 */
const br_ec_impl *br_ec_c25519_m64_get(void);

/**
 * \brief Aggregate EC implementation "m15".
 *
 * This implementation is a wrapper for:
 *
 *   - `br_ec_c25519_m15` for Curve25519
 *   - `br_ec_p256_m15` for NIST P-256
 *   - `br_ec_prime_i15` for other curves (NIST P-384 and NIST-P512)
 */
extern const br_ec_impl br_ec_all_m15;

/**
 * \brief Aggregate EC implementation "m31".
 *
 * This implementation is a wrapper for:
 *
 *   - `br_ec_c25519_m31` for Curve25519
 *   - `br_ec_p256_m31` for NIST P-256
 *   - `br_ec_prime_i31` for other curves (NIST P-384 and NIST-P512)
 */
extern const br_ec_impl br_ec_all_m31;

/**
 * \brief Get the "default" EC implementation for the current system.
 *
 * This returns a pointer to the preferred implementation on the
 * current system.
 *
 * \return  the default EC implementation.
 */
const br_ec_impl *br_ec_get_default(void);

/**
 * \brief Convert a signature from "raw" to "asn1".
 *
 * Conversion is done "in place" and the new length is returned.
 * Conversion may enlarge the signature, but by no more than 9 bytes at
 * most. On error, 0 is returned (error conditions include an odd raw
 * signature length, or an oversized integer).
 *
 * \param sig       signature to convert.
 * \param sig_len   signature length (in bytes).
 * \return  the new signature length, or 0 on error.
 */
size_t br_ecdsa_raw_to_asn1(void *sig, size_t sig_len);

/**
 * \brief Convert a signature from "asn1" to "raw".
 *
 * Conversion is done "in place" and the new length is returned.
 * Conversion may enlarge the signature, but the new signature length
 * will be less than twice the source length at most. On error, 0 is
 * returned (error conditions include an invalid ASN.1 structure or an
 * oversized integer).
 *
 * \param sig       signature to convert.
 * \param sig_len   signature length (in bytes).
 * \return  the new signature length, or 0 on error.
 */
size_t br_ecdsa_asn1_to_raw(void *sig, size_t sig_len);

/**
 * \brief Type for an ECDSA signer function.
 *
 * A pointer to the EC implementation is provided. The hash value is
 * assumed to have the length inferred from the designated hash function
 * class.
 *
 * Signature is written in the buffer pointed to by `sig`, and the length
 * (in bytes) is returned. On error, nothing is written in the buffer,
 * and 0 is returned. This function returns 0 if the specified curve is
 * not supported by the provided EC implementation.
 *
 * The signature format is either "raw" or "asn1", depending on the
 * implementation; maximum length is predictable from the implemented
 * curve:
 *
 * | curve      | raw | asn1 |
 * | :--------- | --: | ---: |
 * | NIST P-256 |  64 |   72 |
 * | NIST P-384 |  96 |  104 |
 * | NIST P-521 | 132 |  139 |
 *
 * \param impl         EC implementation to use.
 * \param hf           hash function used to process the data.
 * \param hash_value   signed data (hashed).
 * \param sk           EC private key.
 * \param sig          destination buffer.
 * \return  the signature length (in bytes), or 0 on error.
 */
typedef size_t (*br_ecdsa_sign)(const br_ec_impl *impl,
	const br_hash_class *hf, const void *hash_value,
	const br_ec_private_key *sk, void *sig);

/**
 * \brief Type for an ECDSA signature verification function.
 *
 * A pointer to the EC implementation is provided. The hashed value,
 * computed over the purportedly signed data, is also provided with
 * its length.
 *
 * The signature format is either "raw" or "asn1", depending on the
 * implementation.
 *
 * Returned value is 1 on success (valid signature), 0 on error. This
 * function returns 0 if the specified curve is not supported by the
 * provided EC implementation.
 *
 * \param impl       EC implementation to use.
 * \param hash       signed data (hashed).
 * \param hash_len   hash value length (in bytes).
 * \param pk         EC public key.
 * \param sig        signature.
 * \param sig_len    signature length (in bytes).
 * \return  1 on success, 0 on error.
 */
typedef uint32_t (*br_ecdsa_vrfy)(const br_ec_impl *impl,
	const void *hash, size_t hash_len,
	const br_ec_public_key *pk, const void *sig, size_t sig_len);

/**
 * \brief ECDSA signature generator, "i31" implementation, "asn1" format.
 *
 * \see br_ecdsa_sign()
 *
 * \param impl         EC implementation to use.
 * \param hf           hash function used to process the data.
 * \param hash_value   signed data (hashed).
 * \param sk           EC private key.
 * \param sig          destination buffer.
 * \return  the signature length (in bytes), or 0 on error.
 */
size_t br_ecdsa_i31_sign_asn1(const br_ec_impl *impl,
	const br_hash_class *hf, const void *hash_value,
	const br_ec_private_key *sk, void *sig);

/**
 * \brief ECDSA signature generator, "i31" implementation, "raw" format.
 *
 * \see br_ecdsa_sign()
 *
 * \param impl         EC implementation to use.
 * \param hf           hash function used to process the data.
 * \param hash_value   signed data (hashed).
 * \param sk           EC private key.
 * \param sig          destination buffer.
 * \return  the signature length (in bytes), or 0 on error.
 */
size_t br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
	const br_hash_class *hf, const void *hash_value,
	const br_ec_private_key *sk, void *sig);

/**
 * \brief ECDSA signature verifier, "i31" implementation, "asn1" format.
 *
 * \see br_ecdsa_vrfy()
 *
 * \param impl       EC implementation to use.
 * \param hash       signed data (hashed).
 * \param hash_len   hash value length (in bytes).
 * \param pk         EC public key.
 * \param sig        signature.
 * \param sig_len    signature length (in bytes).
 * \return  1 on success, 0 on error.
 */
uint32_t br_ecdsa_i31_vrfy_asn1(const br_ec_impl *impl,
	const void *hash, size_t hash_len,
	const br_ec_public_key *pk, const void *sig, size_t sig_len);

/**
 * \brief ECDSA signature verifier, "i31" implementation, "raw" format.
 *
 * \see br_ecdsa_vrfy()
 *
 * \param impl       EC implementation to use.
 * \param hash       signed data (hashed).
 * \param hash_len   hash value length (in bytes).
 * \param pk         EC public key.
 * \param sig        signature.
 * \param sig_len    signature length (in bytes).
 * \return  1 on success, 0 on error.
 */
uint32_t br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl,
	const void *hash, size_t hash_len,
	const br_ec_public_key *pk, const void *sig, size_t sig_len);

/**
 * \brief ECDSA signature generator, "i15" implementation, "asn1" format.
 *
 * \see br_ecdsa_sign()
 *
 * \param impl         EC implementation to use.
 * \param hf           hash function used to process the data.
 * \param hash_value   signed data (hashed).
 * \param sk           EC private key.
 * \param sig          destination buffer.
 * \return  the signature length (in bytes), or 0 on error.
 */
size_t br_ecdsa_i15_sign_asn1(const br_ec_impl *impl,
	const br_hash_class *hf, const void *hash_value,
	const br_ec_private_key *sk, void *sig);

/**
 * \brief ECDSA signature generator, "i15" implementation, "raw" format.
 *
 * \see br_ecdsa_sign()
 *
 * \param impl         EC implementation to use.
 * \param hf           hash function used to process the data.
 * \param hash_value   signed data (hashed).
 * \param sk           EC private key.
 * \param sig          destination buffer.
 * \return  the signature length (in bytes), or 0 on error.
 */
size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl,
	const br_hash_class *hf, const void *hash_value,
	const br_ec_private_key *sk, void *sig);

/**
 * \brief ECDSA signature verifier, "i15" implementation, "asn1" format.
 *
 * \see br_ecdsa_vrfy()
 *
 * \param impl       EC implementation to use.
 * \param hash       signed data (hashed).
 * \param hash_len   hash value length (in bytes).
 * \param pk         EC public key.
 * \param sig        signature.
 * \param sig_len    signature length (in bytes).
 * \return  1 on success, 0 on error.
 */
uint32_t br_ecdsa_i15_vrfy_asn1(const br_ec_impl *impl,
	const void *hash, size_t hash_len,
	const br_ec_public_key *pk, const void *sig, size_t sig_len);

/**
 * \brief ECDSA signature verifier, "i15" implementation, "raw" format.
 *
 * \see br_ecdsa_vrfy()
 *
 * \param impl       EC implementation to use.
 * \param hash       signed data (hashed).
 * \param hash_len   hash value length (in bytes).
 * \param pk         EC public key.
 * \param sig        signature.
 * \param sig_len    signature length (in bytes).
 * \return  1 on success, 0 on error.
 */
uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl,
	const void *hash, size_t hash_len,
	const br_ec_public_key *pk, const void *sig, size_t sig_len);

/**
 * \brief Get "default" ECDSA implementation (signer, asn1 format).
 *
 * This returns the preferred implementation of ECDSA signature generation
 * ("asn1" output format) on the current system.
 *
 * \return  the default implementation.
 */
br_ecdsa_sign br_ecdsa_sign_asn1_get_default(void);

/**
 * \brief Get "default" ECDSA implementation (signer, raw format).
 *
 * This returns the preferred implementation of ECDSA signature generation
 * ("raw" output format) on the current system.
 *
 * \return  the default implementation.
 */
br_ecdsa_sign br_ecdsa_sign_raw_get_default(void);

/**
 * \brief Get "default" ECDSA implementation (verifier, asn1 format).
 *
 * This returns the preferred implementation of ECDSA signature verification
 * ("asn1" output format) on the current system.
 *
 * \return  the default implementation.
 */
br_ecdsa_vrfy br_ecdsa_vrfy_asn1_get_default(void);

/**
 * \brief Get "default" ECDSA implementation (verifier, raw format).
 *
 * This returns the preferred implementation of ECDSA signature verification
 * ("raw" output format) on the current system.
 *
 * \return  the default implementation.
 */
br_ecdsa_vrfy br_ecdsa_vrfy_raw_get_default(void);

/**
 * \brief Maximum size for EC private key element buffer.
 *
 * This is the largest number of bytes that `br_ec_keygen()` may need or
 * ever return.
 */
#define BR_EC_KBUF_PRIV_MAX_SIZE   72

/**
 * \brief Maximum size for EC public key element buffer.
 *
 * This is the largest number of bytes that `br_ec_compute_public()` may
 * need or ever return.
 */
#define BR_EC_KBUF_PUB_MAX_SIZE    145

/**
 * \brief Generate a new EC private key.
 *
 * If the specified `curve` is not supported by the elliptic curve
 * implementation (`impl`), then this function returns zero.
 *
 * The `sk` structure fields are set to the new private key data. In
 * particular, `sk.x` is made to point to the provided key buffer (`kbuf`),
 * in which the actual private key data is written. That buffer is assumed
 * to be large enough. The `BR_EC_KBUF_PRIV_MAX_SIZE` defines the maximum
 * size for all supported curves.
 *
 * The number of bytes used in `kbuf` is returned. If `kbuf` is `NULL`, then
 * the private key is not actually generated, and `sk` may also be `NULL`;
 * the minimum length for `kbuf` is still computed and returned.
 *
 * If `sk` is `NULL` but `kbuf` is not `NULL`, then the private key is
 * still generated and stored in `kbuf`.
 *
 * \param rng_ctx   source PRNG context (already initialized).
 * \param impl      the elliptic curve implementation.
 * \param sk        the private key structure to fill, or `NULL`.
 * \param kbuf      the key element buffer, or `NULL`.
 * \param curve     the curve identifier.
 * \return  the key data length (in bytes), or zero.
 */
size_t br_ec_keygen(const br_prng_class **rng_ctx,
	const br_ec_impl *impl, br_ec_private_key *sk,
	void *kbuf, int curve);

/**
 * \brief Compute EC public key from EC private key.
 *
 * This function uses the provided elliptic curve implementation (`impl`)
 * to compute the public key corresponding to the private key held in `sk`.
 * The public key point is written into `kbuf`, which is then linked from
 * the `*pk` structure. The size of the public key point, i.e. the number
 * of bytes used in `kbuf`, is returned.
 *
 * If `kbuf` is `NULL`, then the public key point is NOT computed, and
 * the public key structure `*pk` is unmodified (`pk` may be `NULL` in
 * that case). The size of the public key point is still returned.
 *
 * If `pk` is `NULL` but `kbuf` is not `NULL`, then the public key
 * point is computed and stored in `kbuf`, and its size is returned.
 *
 * If the curve used by the private key is not supported by the curve
 * implementation, then this function returns zero.
 *
 * The private key MUST be valid. An off-range private key value is not
 * necessarily detected, and leads to unpredictable results.
 *
 * \param impl   the elliptic curve implementation.
 * \param pk     the public key structure to fill (or `NULL`).
 * \param kbuf   the public key point buffer (or `NULL`).
 * \param sk     the source private key.
 * \return  the public key point length (in bytes), or zero.
 */
size_t br_ec_compute_pub(const br_ec_impl *impl, br_ec_public_key *pk,
	void *kbuf, const br_ec_private_key *sk);

#ifdef __cplusplus
}
#endif

#endif