/*
* Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "inner.h"
/*
* If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_
* that right-shifting a signed negative integer copies the sign bit
* (arithmetic right-shift). This is "implementation-defined behaviour",
* i.e. it is not undefined, but it may differ between compilers. Each
* compiler is supposed to document its behaviour in that respect. GCC
* explicitly defines that an arithmetic right shift is used. We expect
* all other compilers to do the same, because underlying CPU offer an
* arithmetic right shift opcode that could not be used otherwise.
*/
#if BR_NO_ARITH_SHIFT
#define ARSH(x, n) (((uint32_t)(x) >> (n)) \
| ((-((uint32_t)(x) >> 31)) << (32 - (n))))
#else
#define ARSH(x, n) ((*(int32_t *)&(x)) >> (n))
#endif
/*
* Convert an integer from unsigned big-endian encoding to a sequence of
* 13-bit words in little-endian order. The final "partial" word is
* returned.
*/
static uint32_t
be8_to_le13(uint32_t *dst, const unsigned char *src, size_t len)
{
uint32_t acc;
int acc_len;
acc = 0;
acc_len = 0;
while (len -- > 0) {
acc |= (uint32_t)src[len] << acc_len;
acc_len += 8;
if (acc_len >= 13) {
*dst ++ = acc & 0x1FFF;
acc >>= 13;
acc_len -= 13;
}
}
return acc;
}
/*
* Convert an integer (13-bit words, little-endian) to unsigned
* big-endian encoding. The total encoding length is provided; all
* the destination bytes will be filled.
*/
static void
le13_to_be8(unsigned char *dst, size_t len, const uint32_t *src)
{
uint32_t acc;
int acc_len;
acc = 0;
acc_len = 0;
while (len -- > 0) {
if (acc_len < 8) {
acc |= (*src ++) << acc_len;
acc_len += 13;
}
dst[len] = (unsigned char)acc;
acc >>= 8;
acc_len -= 8;
}
}
/*
* Normalise an array of words to a strict 13 bits per word. Returned
* value is the resulting carry. The source (w) and destination (d)
* arrays may be identical, but shall not overlap partially.
*/
static inline uint32_t
norm13(uint32_t *d, const uint32_t *w, size_t len)
{
size_t u;
uint32_t cc;
cc = 0;
for (u = 0; u < len; u ++) {
int32_t z;
z = w[u] + cc;
d[u] = z & 0x1FFF;
cc = ARSH(z, 13);
}
return cc;
}
/*
* mul20() multiplies two 260-bit integers together. Each word must fit
* on 13 bits; source operands use 20 words, destination operand
* receives 40 words. All overlaps allowed.
*
* square20() computes the square of a 260-bit integer. Each word must
* fit on 13 bits; source operand uses 20 words, destination operand
* receives 40 words. All overlaps allowed.
*/
#if BR_SLOW_MUL15
static void
mul20(uint32_t *d, const uint32_t *a, const uint32_t *b)
{
/*
* Two-level Karatsuba: turns a 20x20 multiplication into
* nine 5x5 multiplications. We use 13-bit words but do not
* propagate carries immediately, so words may expand:
*
* - First Karatsuba decomposition turns the 20x20 mul on
* 13-bit words into three 10x10 muls, two on 13-bit words
* and one on 14-bit words.
*
* - Second Karatsuba decomposition further splits these into:
*
* * four 5x5 muls on 13-bit words
* * four 5x5 muls on 14-bit words
* * one 5x5 mul on 15-bit words
*
* Highest word value is 8191, 16382 or 32764, for 13-bit, 14-bit
* or 15-bit words, respectively.
*/
uint32_t u[45], v[45], w[90];
uint32_t cc;
int i;
#define ZADD(dw, d_off, s1w, s1_off, s2w, s2_off) do { \
(dw)[5 * (d_off) + 0] = (s1w)[5 * (s1_off) + 0] \
+ (s2w)[5 * (s2_off) + 0]; \
(dw)[5 * (d_off) + 1] = (s1w)[5 * (s1_off) + 1] \
+ (s2w)[5 * (s2_off) + 1]; \
(dw)[5 * (d_off) + 2] = (s1w)[5 * (s1_off) + 2] \
+ (s2w)[5 * (s2_off) + 2]; \
(dw)[5 * (d_off) + 3] = (s1w)[5 * (s1_off) + 3] \
+ (s2w)[5 * (s2_off) + 3]; \
(dw)[5 * (d_off) + 4] = (s1w)[5 * (s1_off) + 4] \
+ (s2w)[5 * (s2_off) + 4]; \
} while (0)
#define ZADDT(dw, d_off, sw, s_off) do { \
(dw)[5 * (d_off) + 0] += (sw)[5 * (s_off) + 0]; \
(dw)[5 * (d_off) + 1] += (sw)[5 * (s_off) + 1]; \
(dw)[5 * (d_off) + 2] += (sw)[5 * (s_off) + 2]; \
(dw)[5 * (d_off) + 3] += (sw)[5 * (s_off) + 3]; \
(dw)[5 * (d_off) + 4] += (sw)[5 * (s_off) + 4]; \
} while (0)
#define ZSUB2F(dw, d_off, s1w, s1_off, s2w, s2_off) do { \
(dw)[5 * (d_off) + 0] -= (s1w)[5 * (s1_off) + 0] \
+ (s2w)[5 * (s2_off) + 0]; \
(dw)[5 * (d_off) + 1] -= (s1w)[5 * (s1_off) + 1] \
+ (s2w)[5 * (s2_off) + 1]; \
(dw)[5 * (d_off) + 2] -= (s1w)[5 * (s1_off) + 2] \
+ (s2w)[5 * (s2_off) + 2]; \
(dw)[5 * (d_off) + 3] -= (s1w)[5 * (s1_off) + 3] \
+ (s2w)[5 * (s2_off) + 3]; \
(dw)[5 * (d_off) + 4] -= (s1w)[5 * (s1_off) + 4] \
+ (s2w)[5 * (s2_off) + 4]; \
} while (0)
#define CPR1(w, cprcc) do { \
uint32_t cprz = (w) + cprcc; \
(w) = cprz & 0x1FFF; \
cprcc = cprz >> 13; \
} while (0)
#define CPR(dw, d_off) do { \
uint32_t cprcc; \
cprcc = 0; \
CPR1((dw)[(d_off) + 0], cprcc); \
CPR1((dw)[(d_off) + 1], cprcc); \
CPR1((dw)[(d_off) + 2], cprcc); \
CPR1((dw)[(d_off) + 3], cprcc); \
CPR1((dw)[(d_off) + 4], cprcc); \
CPR1((dw)[(d_off) + 5], cprcc); \
CPR1((dw)[(d_off) + 6], cprcc); \
CPR1((dw)[(d_off) + 7], cprcc); \
CPR1((dw)[(d_off) + 8], cprcc); \
(dw)[(d_off) + 9] = cprcc; \
} while (0)
memcpy(u, a, 20 * sizeof *a);
ZADD(u, 4, a, 0, a, 1);
ZADD(u, 5, a, 2, a, 3);
ZADD(u, 6, a, 0, a, 2);
ZADD(u, 7, a, 1, a, 3);
ZADD(u, 8, u, 6, u, 7);
memcpy(v, b, 20 * sizeof *b);
ZADD(v, 4, b, 0, b, 1);
ZADD(v, 5, b, 2, b, 3);
ZADD(v, 6, b, 0, b, 2);
ZADD(v, 7, b, 1, b, 3);
ZADD(v, 8, v, 6, v, 7);
/*
* Do the eight first 8x8 muls. Source words are at most 16382
* each, so we can add product results together "as is" in 32-bit
* words.
*/
for (i = 0; i < 40; i += 5) {
w[(i << 1) + 0] = MUL15(u[i + 0], v[i + 0]);
w[(i << 1) + 1] = MUL15(u[i + 0], v[i + 1])
+ MUL15(u[i + 1], v[i + 0]);
w[(i << 1) + 2] = MUL15(u[i + 0], v[i + 2])
+ MUL15(u[i + 1], v[i + 1])
+ MUL15(u[i + 2], v[i + 0]);
w[(i << 1) + 3] = MUL15(u[i + 0], v[i + 3])
+ MUL15(u[i + 1], v[i + 2])
+ MUL15(u[i + 2], v[i + 1])
+ MUL15(u[i + 3], v[i + 0]);
w[(i << 1) + 4] = MUL15(u[i + 0], v[i + 4])
+ MUL15(u[i + 1], v[i + 3])
+ MUL15(u[i + 2], v[i + 2])
+ MUL15(u[i + 3], v[i + 1])
+ MUL15(u[i + 4], v[i + 0]);
w[(i << 1) + 5] = MUL15(u[i + 1], v[i + 4])
+ MUL15(u[i + 2], v[i + 3])
+ MUL15(u[i + 3], v[i + 2])
+ MUL15(u[i + 4], v[i + 1]);
w[(i << 1) + 6] = MUL15(u[i + 2], v[i + 4])
+ MUL15(u[i + 3], v[i + 3])
+ MUL15(u[i + 4], v[i + 2]);
w[(i << 1) + 7] = MUL15(u[i + 3], v[i + 4])
+ MUL15(u[i + 4], v[i + 3]);
w[(i << 1) + 8] = MUL15(u[i + 4], v[i + 4]);
w[(i << 1) + 9] = 0;
}
/*
* For the 9th multiplication, source words are up to 32764,
* so we must do some carry propagation. If we add up to
* 4 products and the carry is no more than 524224, then the
* result fits in 32 bits, and the next carry will be no more
* than 524224 (because 4*(32764^2)+524224 < 8192*524225).
*
* We thus just skip one of the products in the middle word,
* then do a carry propagation (this reduces words to 13 bits
* each, except possibly the last, which may use up to 17 bits
* or so), then add the missing product.
*/
w[80 + 0] = MUL15(u[40 + 0], v[40 + 0]);
w[80 + 1] = MUL15(u[40 + 0], v[40 + 1])
+ MUL15(u[40 + 1], v[40 + 0]);
w[80 + 2] = MUL15(u[40 + 0], v[40 + 2])
+ MUL15(u[40 + 1], v[40 + 1])
+ MUL15(u[40 + 2], v[40 + 0]);
w[80 + 3] = MUL15(u[40 + 0], v[40 + 3])
+ MUL15(u[40 + 1], v[40 + 2])
+ MUL15(u[40 + 2], v[40 + 1])
+ MUL15(u[40 + 3], v[40 + 0]);
w[80 + 4] = MUL15(u[40 + 0], v[40 + 4])
+ MUL15(u[40 + 1], v[40 + 3])
+ MUL15(u[40 + 2], v[40 + 2])
+ MUL15(u[40 + 3], v[40 + 1]);
/* + MUL15(u[40 + 4], v[40 + 0]) */
w[80 + 5] = MUL15(u[40 + 1], v[40 + 4])
+ MUL15(u[40 + 2], v[40 + 3])
+ MUL15(u[40 + 3], v[40 + 2])
+ MUL15(u[40 + 4], v[40 + 1]);
w[80 + 6] = MUL15(u[40 + 2], v[40 + 4])
+ MUL15(u[40 + 3], v[40 + 3])
+ MUL15(u[40 + 4], v[40 + 2]);
w[80 + 7] = MUL15(u[40 + 3], v[40 + 4])
+ MUL15(u[40 + 4], v[40 + 3]);
w[80 + 8] = MUL15(u[40 + 4], v[40 + 4]);
CPR(w, 80);
w[80 + 4] += MUL15(u[40 + 4], v[40 + 0]);
/*
* The products on 14-bit words in slots 6 and 7 yield values
* up to 5*(16382^2) each, and we need to subtract two such
* values from the higher word. We need the subtraction to fit
* in a _signed_ 32-bit integer, i.e. 31 bits + a sign bit.
* However, 10*(16382^2) does not fit. So we must perform a
* bit of reduction here.
*/
CPR(w, 60);
CPR(w, 70);
/*
* Recompose results.
*/
/* 0..1*0..1 into 0..3 */
ZSUB2F(w, 8, w, 0, w, 2);
ZSUB2F(w, 9, w, 1, w, 3);
ZADDT(w, 1, w, 8);
ZADDT(w, 2, w, 9);
/* 2..3*2..3 into 4..7 */
ZSUB2F(w, 10, w, 4, w, 6);
ZSUB2F(w, 11, w, 5, w, 7);
ZADDT(w, 5, w, 10);
ZADDT(w, 6, w, 11);
/* (0..1+2..3)*(0..1+2..3) into 12..15 */
ZSUB2F(w, 16, w, 12, w, 14);
ZSUB2F(w, 17, w, 13, w, 15);
ZADDT(w, 13, w, 16);
ZADDT(w, 14, w, 17);
/* first-level recomposition */
ZSUB2F(w, 12, w, 0, w, 4);
ZSUB2F(w, 13, w, 1, w, 5);
ZSUB2F(w, 14, w, 2, w, 6);
ZSUB2F(w, 15, w, 3, w, 7);
ZADDT(w, 2, w, 12);
ZADDT(w, 3, w, 13);
ZADDT(w, 4, w, 14);
ZADDT(w, 5, w, 15);
/*
* Perform carry propagation to bring all words down to 13 bits.
*/
cc = norm13(d, w, 40);
d[39] += (cc << 13);
#undef ZADD
#undef ZADDT
#undef ZSUB2F
#undef CPR1
#undef CPR
}
static inline void
square20(uint32_t *d, const uint32_t *a)
{
mul20(d, a, a);
}
#else
static void
mul20(uint32_t *d, const uint32_t *a, const uint32_t *b)
{
uint32_t t[39];
t[ 0] = MUL15(a[ 0], b[ 0]);
t[ 1] = MUL15(a[ 0], b[ 1])
+ MUL15(a[ 1], b[ 0]);
t[ 2] = MUL15(a[ 0], b[ 2])
+ MUL15(a[ 1], b[ 1])
+ MUL15(a[ 2], b[ 0]);
t[ 3] = MUL15(a[ 0], b[ 3])
+ MUL15(a[ 1], b[ 2])
+ MUL15(a[ 2], b[ 1])
+ MUL15(a[ 3], b[ 0]);
t[ 4] = MUL15(a[ 0], b[ 4])
+ MUL15(a[ 1], b[ 3])
+ MUL15(a[ 2], b[ 2])
+ MUL15(a[ 3], b[ 1])
+ MUL15(a[ 4], b[ 0]);
t[ 5] = MUL15(a[ 0], b[ 5])
+ MUL15(a[ 1], b[ 4])
+ MUL15(a[ 2], b[ 3])
+ MUL15(a[ 3], b[ 2])
+ MUL15(a[ 4], b[ 1])
+ MUL15(a[ 5], b[ 0]);
t[ 6] = MUL15(a[ 0], b[ 6])
+ MUL15(a[ 1], b[ 5])
+ MUL15(a[ 2], b[ 4])
+ MUL15(a[ 3], b[ 3])
+ MUL15(a[ 4], b[ 2])
+ MUL15(a[ 5], b[ 1])
+ MUL15(a[ 6], b[ 0]);
t[ 7] = MUL15(a[ 0], b[ 7])
+ MUL15(a[ 1], b[ 6])
+ MUL15(a[ 2], b[ 5])
+ MUL15(a[ 3], b[ 4])
+ MUL15(a[ 4], b[ 3])
+ MUL15(a[ 5], b[ 2])
+ MUL15(a[ 6], b[ 1])
+ MUL15(a[ 7], b[ 0]);
t[ 8] = MUL15(a[ 0], b[ 8])
+ MUL15(a[ 1], b[ 7])
+ MUL15(a[ 2], b[ 6])
+ MUL15(a[ 3], b[ 5])
+ MUL15(a[ 4], b[ 4])
+ MUL15(a[ 5], b[ 3])
+ MUL15(a[ 6], b[ 2])
+ MUL15(a[ 7], b[ 1])
+ MUL15(a[ 8], b[ 0]);
t[ 9] = MUL15(a[ 0], b[ 9])
+ MUL15(a[ 1], b[ 8])
+ MUL15(a[ 2], b[ 7])
+ MUL15(a[ 3], b[ 6])
+ MUL15(a[ 4], b[ 5])
+ MUL15(a[ 5], b[ 4])
+ MUL15(a[ 6], b[ 3])
+ MUL15(a[ 7], b[ 2])
+ MUL15(a[ 8], b[ 1])
+ MUL15(a[ 9], b[ 0]);
t[10] = MUL15(a[ 0], b[10])
+ MUL15(a[ 1], b[ 9])
+ MUL15(a[ 2], b[ 8])
+ MUL15(a[ 3], b[ 7])
+ MUL15(a[ 4], b[ 6])
+ MUL15(a[ 5], b[ 5])
+ MUL15(a[ 6], b[ 4])
+ MUL15(a[ 7], b[ 3])
+ MUL15(a[ 8], b[ 2])
+ MUL15(a[ 9], b[ 1])
+ MUL15(a[10], b[ 0]);
t[11] = MUL15(a[ 0], b[11])
+ MUL15(a[ 1], b[10])
+ MUL15(a[ 2], b[ 9])
+ MUL15(a[ 3], b[ 8])
+ MUL15(a[ 4], b[ 7])
+ MUL15(a[ 5], b[ 6])
+ MUL15(a[ 6], b[ 5])
+ MUL15(a[ 7], b[ 4])
+ MUL15(a[ 8], b[ 3])
+ MUL15(a[ 9], b[ 2])
+ MUL15(a[10], b[ 1])
+ MUL15(a[11], b[ 0]);
t[12] = MUL15(a[ 0], b[12])
+ MUL15(a[ 1], b[11])
+ MUL15(a[ 2], b[10])
+ MUL15(a[ 3], b[ 9])
+ MUL15(a[ 4], b[ 8])
+ MUL15(a[ 5], b[ 7])
+ MUL15(a[ 6], b[ 6])
+ MUL15(a[ 7], b[ 5])
+ MUL15(a[ 8], b[ 4])
+ MUL15(a[ 9], b[ 3])
+ MUL15(a[10], b[ 2])
+ MUL15(a[11], b[ 1])
+ MUL15(a[12], b[ 0]);
t[13] = MUL15(a[ 0], b[13])
+ MUL15(a[ 1], b[12])
+ MUL15(a[ 2], b[11])
+ MUL15(a[ 3], b[10])
+ MUL15(a[ 4], b[ 9])
+ MUL15(a[ 5], b[ 8])
+ MUL15(a[ 6], b[ 7])
+ MUL15(a[ 7], b[ 6])
+ MUL15(a[ 8], b[ 5])
+ MUL15(a[ 9], b[ 4])
+ MUL15(a[10], b[ 3])
+ MUL15(a[11], b[ 2])
+ MUL15(a[12], b[ 1])
+ MUL15(a[13], b[ 0]);
t[14] = MUL15(a[ 0], b[14])
+ MUL15(a[ 1], b[13])
+ MUL15(a[ 2], b[12])
+ MUL15(a[ 3], b[11])
+ MUL15(a[ 4], b[10])
+ MUL15(a[ 5], b[ 9])
+ MUL15(a[ 6], b[ 8])
+ MUL15(a[ 7], b[ 7])
+ MUL15(a[ 8], b[ 6])
+ MUL15(a[ 9], b[ 5])
+ MUL15(a[10], b[ 4])
+ MUL15(a[11], b[ 3])
+ MUL15(a[12], b[ 2])
+ MUL15(a[13], b[ 1])
+ MUL15(a[14], b[ 0]);
t[15] = MUL15(a[ 0], b[15])
+ MUL15(a[ 1], b[14])
+ MUL15(a[ 2], b[13])
+ MUL15(a[ 3], b[12])
+ MUL15(a[ 4], b[11])
+ MUL15(a[ 5], b[10])
+ MUL15(a[ 6], b[ 9])
+ MUL15(a[ 7], b[ 8])
+ MUL15(a[ 8], b[ 7])
+ MUL15(a[ 9], b[ 6])
+ MUL15(a[10], b[ 5])
+ MUL15(a[11], b[ 4])
+ MUL15(a[12], b[ 3])
+ MUL15(a[13], b[ 2])
+ MUL15(a[14], b[ 1])
+ MUL15(a[15], b[ 0]);
t[16] = MUL15(a[ 0], b[16])
+ MUL15(a[ 1], b[15])
+ MUL15(a[ 2], b[14])
+ MUL15(a[ 3], b[13])
+ MUL15(a[ 4], b[12])
+ MUL15(a[ 5], b[11])
+ MUL15(a[ 6], b[10])
+ MUL15(a[ 7], b[ 9])
+ MUL15(a[ 8], b[ 8])
+ MUL15(a[ 9], b[ 7])
+ MUL15(a[10], b[ 6])
+ MUL15(a[11], b[ 5])
+ MUL15(a[12], b[ 4])
+ MUL15(a[13], b[ 3])
+ MUL15(a[14], b[ 2])
+ MUL15(a[15], b[ 1])
+ MUL15(a[16], b[ 0]);
t[17] = MUL15(a[ 0], b[17])
+ MUL15(a[ 1], b[16])
+ MUL15(a[ 2], b[15])
+ MUL15(a[ 3], b[14])
+ MUL15(a[ 4], b[13])
+ MUL15(a[ 5], b[12])
+ MUL15(a[ 6], b[11])
+ MUL15(a[ 7], b[10])
+ MUL15(a[ 8], b[ 9])
+ MUL15(a[ 9], b[ 8])
+ MUL15(a[10], b[ 7])
+ MUL15(a[11], b[ 6])
+ MUL15(a[12], b[ 5])
+ MUL15(a[13], b[ 4])
+ MUL15(a[14], b[ 3])
+ MUL15(a[15], b[ 2])
+ MUL15(a[16], b[ 1])
+ MUL15(a[17], b[ 0]);
t[18] = MUL15(a[ 0], b[18])
+ MUL15(a[ 1], b[17])
+ MUL15(a[ 2], b[16])
+ MUL15(a[ 3], b[15])
+ MUL15(a[ 4], b[14])
+ MUL15(a[ 5], b[13])
+ MUL15(a[ 6], b[12])
+ MUL15(a[ 7], b[11])
+ MUL15(a[ 8], b[10])
+ MUL15(a[ 9], b[ 9])
+ MUL15(a[10], b[ 8])
+ MUL15(a[11], b[ 7])
+ MUL15(a[12], b[ 6])
+ MUL15(a[13], b[ 5])
+ MUL15(a[14], b[ 4])
+ MUL15(a[15], b[ 3])
+ MUL15(a[16], b[ 2])
+ MUL15(a[17], b[ 1])
+ MUL15(a[18], b[ 0]);
t[19] = MUL15(a[ 0], b[19])
+ MUL15(a[ 1], b[18])
+ MUL15(a[ 2], b[17])
+ MUL15(a[ 3], b[16])
+ MUL15(a[ 4], b[15])
+ MUL15(a[ 5], b[14])
+ MUL15(a[ 6], b[13])
+ MUL15(a[ 7], b[12])
+ MUL15(a[ 8], b[11])
+ MUL15(a[ 9], b[10])
+ MUL15(a[10], b[ 9])
+ MUL15(a[11], b[ 8])
+ MUL15(a[12], b[ 7])
+ MUL15(a[13], b[ 6])
+ MUL15(a[14], b[ 5])
+ MUL15(a[15], b[ 4])
+ MUL15(a[16], b[ 3])
+ MUL15(a[17], b[ 2])
+ MUL15(a[18], b[ 1])
+ MUL15(a[19], b[ 0]);
t[20] = MUL15(a[ 1], b[19])
+ MUL15(a[ 2], b[18])
+ MUL15(a[ 3], b[17])
+ MUL15(a[ 4], b[16])
+ MUL15(a[ 5], b[15])
+ MUL15(a[ 6], b[14])
+ MUL15(a[ 7], b[13])
+ MUL15(a[ 8], b[12])
+ MUL15(a[ 9], b[11])
+ MUL15(a[10], b[10])
+ MUL15(a[11], b[ 9])
+ MUL15(a[12], b[ 8])
+ MUL15(a[13], b[ 7])
+ MUL15(a[14], b[ 6])
+ MUL15(a[15], b[ 5])
+ MUL15(a[16], b[ 4])
+ MUL15(a[17], b[ 3])
+ MUL15(a[18], b[ 2])
+ MUL15(a[19], b[ 1]);
t[21] = MUL15(a[ 2], b[19])
+ MUL15(a[ 3], b[18])
+ MUL15(a[ 4], b[17])
+ MUL15(a[ 5], b[16])
+ MUL15(a[ 6], b[15])
+ MUL15(a[ 7], b[14])
+ MUL15(a[ 8], b[13])
+ MUL15(a[ 9], b[12])
+ MUL15(a[10], b[11])
+ MUL15(a[11], b[10])
+ MUL15(a[12], b[ 9])
+ MUL15(a[13], b[ 8])
+ MUL15(a[14], b[ 7])
+ MUL15(a[15], b[ 6])
+ MUL15(a[16], b[ 5])
+ MUL15(a[17], b[ 4])
+ MUL15(a[18], b[ 3])
+ MUL15(a[19], b[ 2]);
t[22] = MUL15(a[ 3], b[19])
+ MUL15(a[ 4], b[18])
+ MUL15(a[ 5], b[17])
+ MUL15(a[ 6], b[16])
+ MUL15(a[ 7], b[15])
+ MUL15(a[ 8], b[14])
+ MUL15(a[ 9], b[13])
+ MUL15(a[10], b[12])
+ MUL15(a[11], b[11])
+ MUL15(a[12], b[10])
+ MUL15(a[13], b[ 9])
+ MUL15(a[14], b[ 8])
+ MUL15(a[15], b[ 7])
+ MUL15(a[16], b[ 6])
+ MUL15(a[17], b[ 5])
+ MUL15(a[18], b[ 4])
+ MUL15(a[19], b[ 3]);
t[23] = MUL15(a[ 4], b[19])
+ MUL15(a[ 5], b[18])
+ MUL15(a[ 6], b[17])
+ MUL15(a[ 7], b[16])
+ MUL15(a[ 8], b[15])
+ MUL15(a[ 9], b[14])
+ MUL15(a[10], b[13])
+ MUL15(a[11], b[12])
+ MUL15(a[12], b[11])
+ MUL15(a[13], b[10])
+ MUL15(a[14], b[ 9])
+ MUL15(a[15], b[ 8])
+ MUL15(a[16], b[ 7])
+ MUL15(a[17], b[ 6])
+ MUL15(a[18], b[ 5])
+ MUL15(a[19], b[ 4]);
t[24] = MUL15(a[ 5], b[19])
+ MUL15(a[ 6], b[18])
+ MUL15(a[ 7], b[17])
+ MUL15(a[ 8], b[16])
+ MUL15(a[ 9], b[15])
+ MUL15(a[10], b[14])
+ MUL15(a[11], b[13])
+ MUL15(a[12], b[12])
+ MUL15(a[13], b[11])
+ MUL15(a[14], b[10])
+ MUL15(a[15], b[ 9])
+ MUL15(a[16], b[ 8])
+ MUL15(a[17], b[ 7])
+ MUL15(a[18], b[ 6])
+ MUL15(a[19], b[ 5]);
t[25] = MUL15(a[ 6], b[19])
+ MUL15(a[ 7], b[18])
+ MUL15(a[ 8], b[17])
+ MUL15(a[ 9], b[16])
+ MUL15(a[10], b[15])
+ MUL15(a[11], b[14])
+ MUL15(a[12], b[13])
+ MUL15(a[13], b[12])
+ MUL15(a[14], b[11])
+ MUL15(a[15], b[10])
+ MUL15(a[16], b[ 9])
+ MUL15(a[17], b[ 8])
+ MUL15(a[18], b[ 7])
+ MUL15(a[19], b[ 6]);
t[26] = MUL15(a[ 7], b[19])
+ MUL15(a[ 8], b[18])
+ MUL15(a[ 9], b[17])
+ MUL15(a[10], b[16])
+ MUL15(a[11], b[15])
+ MUL15(a[12], b[14])
+ MUL15(a[13], b[13])
+ MUL15(a[14], b[12])
+ MUL15(a[15], b[11])
+ MUL15(a[16], b[10])
+ MUL15(a[17], b[ 9])
+ MUL15(a[18], b[ 8])
+ MUL15(a[19], b[ 7]);
t[27] = MUL15(a[ 8], b[19])
+ MUL15(a[ 9], b[18])
+ MUL15(a[10], b[17])
+ MUL15(a[11], b[16])
+ MUL15(a[12], b[15])
+ MUL15(a[13], b[14])
+ MUL15(a[14], b[13])
+ MUL15(a[15], b[12])
+ MUL15(a[16], b[11])
+ MUL15(a[17], b[10])
+ MUL15(a[18], b[ 9])
+ MUL15(a[19], b[ 8]);
t[28] = MUL15(a[ 9], b[19])
+ MUL15(a[10], b[18])
+ MUL15(a[11], b[17])
+ MUL15(a[12], b[16])
+ MUL15(a[13], b[15])
+ MUL15(a[14], b[14])
+ MUL15(a[15], b[13])
+ MUL15(a[16], b[12])
+ MUL15(a[17], b[11])
+ MUL15(a[18], b[10])
+ MUL15(a[19], b[ 9]);
t[29] = MUL15(a[10], b[19])
+ MUL15(a[11], b[18])
+ MUL15(a[12], b[17])
+ MUL15(a[13], b[16])
+ MUL15(a[14], b[15])
+ MUL15(a[15], b[14])
+ MUL15(a[16], b[13])
+ MUL15(a[17], b[12])
+ MUL15(a[18], b[11])
+ MUL15(a[19], b[10]);
t[30] = MUL15(a[11], b[19])
+ MUL15(a[12], b[18])
+ MUL15(a[13], b[17])
+ MUL15(a[14], b[16])
+ MUL15(a[15], b[15])
+ MUL15(a[16], b[14])
+ MUL15(a[17], b[13])
+ MUL15(a[18], b[12])
+ MUL15(a[19], b[11]);
t[31] = MUL15(a[12], b[19])
+ MUL15(a[13], b[18])
+ MUL15(a[14], b[17])
+ MUL15(a[15], b[16])
+ MUL15(a[16], b[15])
+ MUL15(a[17], b[14])
+ MUL15(a[18], b[13])
+ MUL15(a[19], b[12]);
t[32] = MUL15(a[13], b[19])
+ MUL15(a[14], b[18])
+ MUL15(a[15], b[17])
+ MUL15(a[16], b[16])
+ MUL15(a[17], b[15])
+ MUL15(a[18], b[14])
+ MUL15(a[19], b[13]);
t[33] = MUL15(a[14], b[19])
+ MUL15(a[15], b[18])
+ MUL15(a[16], b[17])
+ MUL15(a[17], b[16])
+ MUL15(a[18], b[15])
+ MUL15(a[19], b[14]);
t[34] = MUL15(a[15], b[19])
+ MUL15(a[16], b[18])
+ MUL15(a[17], b[17])
+ MUL15(a[18], b[16])
+ MUL15(a[19], b[15]);
t[35] = MUL15(a[16], b[19])
+ MUL15(a[17], b[18])
+ MUL15(a[18], b[17])
+ MUL15(a[19], b[16]);
t[36] = MUL15(a[17], b[19])
+ MUL15(a[18], b[18])
+ MUL15(a[19], b[17]);
t[37] = MUL15(a[18], b[19])
+ MUL15(a[19], b[18]);
t[38] = MUL15(a[19], b[19]);
d[39] = norm13(d, t, 39);
}
static void
square20(uint32_t *d, const uint32_t *a)
{
uint32_t t[39];
t[ 0] = MUL15(a[ 0], a[ 0]);
t[ 1] = ((MUL15(a[ 0], a[ 1])) << 1);
t[ 2] = MUL15(a[ 1], a[ 1])
+ ((MUL15(a[ 0], a[ 2])) << 1);
t[ 3] = ((MUL15(a[ 0], a[ 3])
+ MUL15(a[ 1], a[ 2])) << 1);
t[ 4] = MUL15(a[ 2], a[ 2])
+ ((MUL15(a[ 0], a[ 4])
+ MUL15(a[ 1], a[ 3])) << 1);
t[ 5] = ((MUL15(a[ 0], a[ 5])
+ MUL15(a[ 1], a[ 4])
+ MUL15(a[ 2], a[ 3])) << 1);
t[ 6] = MUL15(a[ 3], a[ 3])
+ ((MUL15(a[ 0], a[ 6])
+ MUL15(a[ 1], a[ 5])
+ MUL15(a[ 2], a[ 4])) << 1);
t[ 7] = ((MUL15(a[ 0], a[ 7])
+ MUL15(a[ 1], a[ 6])
+ MUL15(a[ 2], a[ 5])
+ MUL15(a[ 3], a[ 4])) << 1);
t[ 8] = MUL15(a[ 4], a[ 4])
+ ((MUL15(a[ 0], a[ 8])
+ MUL15(a[ 1], a[ 7])
+ MUL15(a[ 2], a[ 6])
+ MUL15(a[ 3], a[ 5])) << 1);
t[ 9] = ((MUL15(a[ 0], a[ 9])
+ MUL15(a[ 1], a[ 8])
+ MUL15(a[ 2], a[ 7])
+ MUL15(a[ 3], a[ 6])
+ MUL15(a[ 4], a[ 5])) << 1);
t[10] = MUL15(a[ 5], a[ 5])
+ ((MUL15(a[ 0], a[10])
+ MUL15(a[ 1], a[ 9])
+ MUL15(a[ 2], a[ 8])
+ MUL15(a[ 3], a[ 7])
+ MUL15(a[ 4], a[ 6])) << 1);
t[11] = ((MUL15(a[ 0], a[11])
+ MUL15(a[ 1], a[10])
+ MUL15(a[ 2], a[ 9])
+ MUL15(a[ 3], a[ 8])
+ MUL15(a[ 4], a[ 7])
+ MUL15(a[ 5], a[ 6])) << 1);
t[12] = MUL15(a[ 6], a[ 6])
+ ((MUL15(a[ 0], a[12])
+ MUL15(a[ 1], a[11])
+ MUL15(a[ 2], a[10])
+ MUL15(a[ 3], a[ 9])
+ MUL15(a[ 4], a[ 8])
+ MUL15(a[ 5], a[ 7])) << 1);
t[13] = ((MUL15(a[ 0], a[13])
+ MUL15(a[ 1], a[12])
+ MUL15(a[ 2], a[11])
+ MUL15(a[ 3], a[10])
+ MUL15(a[ 4], a[ 9])
+ MUL15(a[ 5], a[ 8])
+ MUL15(a[ 6], a[ 7])) << 1);
t[14] = MUL15(a[ 7], a[ 7])
+ ((MUL15(a[ 0], a[14])
+ MUL15(a[ 1], a[13])
+ MUL15(a[ 2], a[12])
+ MUL15(a[ 3], a[11])
+ MUL15(a[ 4], a[10])
+ MUL15(a[ 5], a[ 9])
+ MUL15(a[ 6], a[ 8])) << 1);
t[15] = ((MUL15(a[ 0], a[15])
+ MUL15(a[ 1], a[14])
+ MUL15(a[ 2], a[13])
+ MUL15(a[ 3], a[12])
+ MUL15(a[ 4], a[11])
+ MUL15(a[ 5], a[10])
+ MUL15(a[ 6], a[ 9])
+ MUL15(a[ 7], a[ 8])) << 1);
t[16] = MUL15(a[ 8], a[ 8])
+ ((MUL15(a[ 0], a[16])
+ MUL15(a[ 1], a[15])
+ MUL15(a[ 2], a[14])
+ MUL15(a[ 3], a[13])
+ MUL15(a[ 4], a[12])
+ MUL15(a[ 5], a[11])
+ MUL15(a[ 6], a[10])
+ MUL15(a[ 7], a[ 9])) << 1);
t[17] = ((MUL15(a[ 0], a[17])
+ MUL15(a[ 1], a[16])
+ MUL15(a[ 2], a[15])
+ MUL15(a[ 3], a[14])
+ MUL15(a[ 4], a[13])
+ MUL15(a[ 5], a[12])
+ MUL15(a[ 6], a[11])
+ MUL15(a[ 7], a[10])
+ MUL15(a[ 8], a[ 9])) << 1);
t[18] = MUL15(a[ 9], a[ 9])
+ ((MUL15(a[ 0], a[18])
+ MUL15(a[ 1], a[17])
+ MUL15(a[ 2], a[16])
+ MUL15(a[ 3], a[15])
+ MUL15(a[ 4], a[14])
+ MUL15(a[ 5], a[13])
+ MUL15(a[ 6], a[12])
+ MUL15(a[ 7], a[11])
+ MUL15(a[ 8], a[10])) << 1);
t[19] = ((MUL15(a[ 0], a[19])
+ MUL15(a[ 1], a[18])
+ MUL15(a[ 2], a[17])
+ MUL15(a[ 3], a[16])
+ MUL15(a[ 4], a[15])
+ MUL15(a[ 5], a[14])
+ MUL15(a[ 6], a[13])
+ MUL15(a[ 7], a[12])
+ MUL15(a[ 8], a[11])
+ MUL15(a[ 9], a[10])) << 1);
t[20] = MUL15(a[10], a[10])
+ ((MUL15(a[ 1], a[19])
+ MUL15(a[ 2], a[18])
+ MUL15(a[ 3], a[17])
+ MUL15(a[ 4], a[16])
+ MUL15(a[ 5], a[15])
+ MUL15(a[ 6], a[14])
+ MUL15(a[ 7], a[13])
+ MUL15(a[ 8], a[12])
+ MUL15(a[ 9], a[11])) << 1);
t[21] = ((MUL15(a[ 2], a[19])
+ MUL15(a[ 3], a[18])
+ MUL15(a[ 4], a[17])
+ MUL15(a[ 5], a[16])
+ MUL15(a[ 6], a[15])
+ MUL15(a[ 7], a[14])
+ MUL15(a[ 8], a[13])
+ MUL15(a[ 9], a[12])
+ MUL15(a[10], a[11])) << 1);
t[22] = MUL15(a[11], a[11])
+ ((MUL15(a[ 3], a[19])
+ MUL15(a[ 4], a[18])
+ MUL15(a[ 5], a[17])
+ MUL15(a[ 6], a[16])
+ MUL15(a[ 7], a[15])
+ MUL15(a[ 8], a[14])
+ MUL15(a[ 9], a[13])
+ MUL15(a[10], a[12])) << 1);
t[23] = ((MUL15(a[ 4], a[19])
+ MUL15(a[ 5], a[18])
+ MUL15(a[ 6], a[17])
+ MUL15(a[ 7], a[16])
+ MUL15(a[ 8], a[15])
+ MUL15(a[ 9], a[14])
+ MUL15(a[10], a[13])
+ MUL15(a[11], a[12])) << 1);
t[24] = MUL15(a[12], a[12])
+ ((MUL15(a[ 5], a[19])
+ MUL15(a[ 6], a[18])
+ MUL15(a[ 7], a[17])
+ MUL15(a[ 8], a[16])
+ MUL15(a[ 9], a[15])
+ MUL15(a[10], a[14])
+ MUL15(a[11], a[13])) << 1);
t[25] = ((MUL15(a[ 6], a[19])
+ MUL15(a[ 7], a[18])
+ MUL15(a[ 8], a[17])
+ MUL15(a[ 9], a[16])
+ MUL15(a[10], a[15])
+ MUL15(a[11], a[14])
+ MUL15(a[12], a[13])) << 1);
t[26] = MUL15(a[13], a[13])
+ ((MUL15(a[ 7], a[19])
+ MUL15(a[ 8], a[18])
+ MUL15(a[ 9], a[17])
+ MUL15(a[10], a[16])
+ MUL15(a[11], a[15])
+ MUL15(a[12], a[14])) << 1);
t[27] = ((MUL15(a[ 8], a[19])
+ MUL15(a[ 9], a[18])
+ MUL15(a[10], a[17])
+ MUL15(a[11], a[16])
+ MUL15(a[12], a[15])
+ MUL15(a[13], a[14])) << 1);
t[28] = MUL15(a[14], a[14])
+ ((MUL15(a[ 9], a[19])
+ MUL15(a[10], a[18])
+ MUL15(a[11], a[17])
+ MUL15(a[12], a[16])
+ MUL15(a[13], a[15])) << 1);
t[29] = ((MUL15(a[10], a[19])
+ MUL15(a[11], a[18])
+ MUL15(a[12], a[17])
+ MUL15(a[13], a[16])
+ MUL15(a[14], a[15])) << 1);
t[30] = MUL15(a[15], a[15])
+ ((MUL15(a[11], a[19])
+ MUL15(a[12], a[18])
+ MUL15(a[13], a[17])
+ MUL15(a[14], a[16])) << 1);
t[31] = ((MUL15(a[12], a[19])
+ MUL15(a[13], a[18])
+ MUL15(a[14], a[17])
+ MUL15(a[15], a[16])) << 1);
t[32] = MUL15(a[16], a[16])
+ ((MUL15(a[13], a[19])
+ MUL15(a[14], a[18])
+ MUL15(a[15], a[17])) << 1);
t[33] = ((MUL15(a[14], a[19])
+ MUL15(a[15], a[18])
+ MUL15(a[16], a[17])) << 1);
t[34] = MUL15(a[17], a[17])
+ ((MUL15(a[15], a[19])
+ MUL15(a[16], a[18])) << 1);
t[35] = ((MUL15(a[16], a[19])
+ MUL15(a[17], a[18])) << 1);
t[36] = MUL15(a[18], a[18])
+ ((MUL15(a[17], a[19])) << 1);
t[37] = ((MUL15(a[18], a[19])) << 1);
t[38] = MUL15(a[19], a[19]);
d[39] = norm13(d, t, 39);
}
#endif
/*
* Modulus for field F256 (field for point coordinates in curve P-256).
*/
static const uint32_t F256[] = {
0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x001F,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0400, 0x0000,
0x0000, 0x1FF8, 0x1FFF, 0x01FF
};
/*
* The 'b' curve equation coefficient for P-256.
*/
static const uint32_t P256_B[] = {
0x004B, 0x1E93, 0x0F89, 0x1C78, 0x03BC, 0x187B, 0x114E, 0x1619,
0x1D06, 0x0328, 0x01AF, 0x0D31, 0x1557, 0x15DE, 0x1ECF, 0x127C,
0x0A3A, 0x0EC5, 0x118D, 0x00B5
};
/*
* Perform a "short reduction" in field F256 (field for curve P-256).
* The source value should be less than 262 bits; on output, it will
* be at most 257 bits, and less than twice the modulus.
*/
static void
reduce_f256(uint32_t *d)
{
uint32_t x;
x = d[19] >> 9;
d[19] &= 0x01FF;
d[17] += x << 3;
d[14] -= x << 10;
d[7] -= x << 5;
d[0] += x;
norm13(d, d, 20);
}
/*
* Perform a "final reduction" in field F256 (field for curve P-256).
* The source value must be less than twice the modulus. If the value
* is not lower than the modulus, then the modulus is subtracted and
* this function returns 1; otherwise, it leaves it untouched and it
* returns 0.
*/
static uint32_t
reduce_final_f256(uint32_t *d)
{
uint32_t t[20];
uint32_t cc;
int i;
memcpy(t, d, sizeof t);
cc = 0;
for (i = 0; i < 20; i ++) {
uint32_t w;
w = t[i] - F256[i] - cc;
cc = w >> 31;
t[i] = w & 0x1FFF;
}
cc ^= 1;
CCOPY(cc, d, t, sizeof t);
return cc;
}
/*
* Perform a multiplication of two integers modulo
* 2^256-2^224+2^192+2^96-1 (for NIST curve P-256). Operands are arrays
* of 20 words, each containing 13 bits of data, in little-endian order.
* On input, upper word may be up to 13 bits (hence value up to 2^260-1);
* on output, value fits on 257 bits and is lower than twice the modulus.
*/
static void
mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
{
uint32_t t[40], cc;
int i;
/*
* Compute raw multiplication. All result words fit in 13 bits
* each.
*/
mul20(t, a, b);
/*
* Modular reduction: each high word in added/subtracted where
* necessary.
*
* The modulus is:
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1
* Therefore:
* 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
*
* For a word x at bit offset n (n >= 256), we have:
* x*2^n = x*2^(n-32) - x*2^(n-64)
* - x*2^(n - 160) + x*2^(n-256) mod p
*
* Thus, we can nullify the high word if we reinject it at some
* proper emplacements.
*/
for (i = 39; i >= 20; i --) {
uint32_t x;
x = t[i];
t[i - 2] += ARSH(x, 6);
t[i - 3] += (x << 7) & 0x1FFF;
t[i - 4] -= ARSH(x, 12);
t[i - 5] -= (x << 1) & 0x1FFF;
t[i - 12] -= ARSH(x, 4);
t[i - 13] -= (x << 9) & 0x1FFF;
t[i - 19] += ARSH(x, 9);
t[i - 20] += (x << 4) & 0x1FFF;
}
/*
* Propagate carries. This is a signed propagation, and the
* result may be negative. The loop above may enlarge values,
* but not two much: worst case is the chain involving t[i - 3],
* in which a value may be added to itself up to 7 times. Since
* starting values are 13-bit each, all words fit on 20 bits
* (21 to account for the sign bit).
*/
cc = norm13(t, t, 20);
/*
* Perform modular reduction again for the bits beyond 256 (the carry
* and the bits 256..259). Since the largest shift below is by 10
* bits, and the values fit on 21 bits, values fit in 32-bit words,
* thereby allowing injecting full word values.
*/
cc = (cc << 4) | (t[19] >> 9);
t[19] &= 0x01FF;
t[17] += cc << 3;
t[14] -= cc << 10;
t[7] -= cc << 5;
t[0] += cc;
/*
* If the carry is negative, then after carry propagation, we may
* end up with a value which is negative, and we don't want that.
* Thus, in that case, we add the modulus. Note that the subtraction
* result, when the carry is negative, is always smaller than the
* modulus, so the extra addition will not make the value exceed
* twice the modulus.
*/
cc >>= 31;
t[0] -= cc;
t[7] += cc << 5;
t[14] += cc << 10;
t[17] -= cc << 3;
t[19] += cc << 9;
norm13(d, t, 20);
}
/*
* Square an integer modulo 2^256-2^224+2^192+2^96-1 (for NIST curve
* P-256). Operand is an array of 20 words, each containing 13 bits of
* data, in little-endian order. On input, upper word may be up to 13
* bits (hence value up to 2^260-1); on output, value fits on 257 bits
* and is lower than twice the modulus.
*/
static void
square_f256(uint32_t *d, const uint32_t *a)
{
uint32_t t[40], cc;
int i;
/*
* Compute raw square. All result words fit in 13 bits each.
*/
square20(t, a);
/*
* Modular reduction: each high word in added/subtracted where
* necessary.
*
* The modulus is:
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1
* Therefore:
* 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
*
* For a word x at bit offset n (n >= 256), we have:
* x*2^n = x*2^(n-32) - x*2^(n-64)
* - x*2^(n - 160) + x*2^(n-256) mod p
*
* Thus, we can nullify the high word if we reinject it at some
* proper emplacements.
*/
for (i = 39; i >= 20; i --) {
uint32_t x;
x = t[i];
t[i - 2] += ARSH(x, 6);
t[i - 3] += (x << 7) & 0x1FFF;
t[i - 4] -= ARSH(x, 12);
t[i - 5] -= (x << 1) & 0x1FFF;
t[i - 12] -= ARSH(x, 4);
t[i - 13] -= (x << 9) & 0x1FFF;
t[i - 19] += ARSH(x, 9);
t[i - 20] += (x << 4) & 0x1FFF;
}
/*
* Propagate carries. This is a signed propagation, and the
* result may be negative. The loop above may enlarge values,
* but not two much: worst case is the chain involving t[i - 3],
* in which a value may be added to itself up to 7 times. Since
* starting values are 13-bit each, all words fit on 20 bits
* (21 to account for the sign bit).
*/
cc = norm13(t, t, 20);
/*
* Perform modular reduction again for the bits beyond 256 (the carry
* and the bits 256..259). Since the largest shift below is by 10
* bits, and the values fit on 21 bits, values fit in 32-bit words,
* thereby allowing injecting full word values.
*/
cc = (cc << 4) | (t[19] >> 9);
t[19] &= 0x01FF;
t[17] += cc << 3;
t[14] -= cc << 10;
t[7] -= cc << 5;
t[0] += cc;
/*
* If the carry is negative, then after carry propagation, we may
* end up with a value which is negative, and we don't want that.
* Thus, in that case, we add the modulus. Note that the subtraction
* result, when the carry is negative, is always smaller than the
* modulus, so the extra addition will not make the value exceed
* twice the modulus.
*/
cc >>= 31;
t[0] -= cc;
t[7] += cc << 5;
t[14] += cc << 10;
t[17] -= cc << 3;
t[19] += cc << 9;
norm13(d, t, 20);
}
/*
* Jacobian coordinates for a point in P-256: affine coordinates (X,Y)
* are such that:
* X = x / z^2
* Y = y / z^3
* For the point at infinity, z = 0.
* Each point thus admits many possible representations.
*
* Coordinates are represented in arrays of 32-bit integers, each holding
* 13 bits of data. Values may also be slightly greater than the modulus,
* but they will always be lower than twice the modulus.
*/
typedef struct {
uint32_t x[20];
uint32_t y[20];
uint32_t z[20];
} p256_jacobian;
/*
* Convert a point to affine coordinates:
* - If the point is the point at infinity, then all three coordinates
* are set to 0.
* - Otherwise, the 'z' coordinate is set to 1, and the 'x' and 'y'
* coordinates are the 'X' and 'Y' affine coordinates.
* The coordinates are guaranteed to be lower than the modulus.
*/
static void
p256_to_affine(p256_jacobian *P)
{
uint32_t t1[20], t2[20];
int i;
/*
* Invert z with a modular exponentiation: the modulus is
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1, and the exponent is
* p-2. Exponent bit pattern (from high to low) is:
* - 32 bits of value 1
* - 31 bits of value 0
* - 1 bit of value 1
* - 96 bits of value 0
* - 94 bits of value 1
* - 1 bit of value 0
* - 1 bit of value 1
* Thus, we precompute z^(2^31-1) to speed things up.
*
* If z = 0 (point at infinity) then the modular exponentiation
* will yield 0, which leads to the expected result (all three
* coordinates set to 0).
*/
/*
* A simple square-and-multiply for z^(2^31-1). We could save about
* two dozen multiplications here with an addition chain, but
* this would require a bit more code, and extra stack buffers.
*/
memcpy(t1, P->z, sizeof P->z);
for (i = 0; i < 30; i ++) {
square_f256(t1, t1);
mul_f256(t1, t1, P->z);
}
/*
* Square-and-multiply. Apart from the squarings, we have a few
* multiplications to set bits to 1; we multiply by the original z
* for setting 1 bit, and by t1 for setting 31 bits.
*/
memcpy(t2, P->z, sizeof P->z);
for (i = 1; i < 256; i ++) {
square_f256(t2, t2);
switch (i) {
case 31:
case 190:
case 221:
case 252:
mul_f256(t2, t2, t1);
break;
case 63:
case 253:
case 255:
mul_f256(t2, t2, P->z);
break;
}
}
/*
* Now that we have 1/z, multiply x by 1/z^2 and y by 1/z^3.
*/
mul_f256(t1, t2, t2);
mul_f256(P->x, t1, P->x);
mul_f256(t1, t1, t2);
mul_f256(P->y, t1, P->y);
reduce_final_f256(P->x);
reduce_final_f256(P->y);
/*
* Multiply z by 1/z. If z = 0, then this will yield 0, otherwise
* this will set z to 1.
*/
mul_f256(P->z, P->z, t2);
reduce_final_f256(P->z);
}
/*
* Double a point in P-256. This function works for all valid points,
* including the point at infinity.
*/
static void
p256_double(p256_jacobian *Q)
{
/*
* Doubling formulas are:
*
* s = 4*x*y^2
* m = 3*(x + z^2)*(x - z^2)
* x' = m^2 - 2*s
* y' = m*(s - x') - 8*y^4
* z' = 2*y*z
*
* These formulas work for all points, including points of order 2
* and points at infinity:
* - If y = 0 then z' = 0. But there is no such point in P-256
* anyway.
* - If z = 0 then z' = 0.
*/
uint32_t t1[20], t2[20], t3[20], t4[20];
int i;
/*
* Compute z^2 in t1.
*/
square_f256(t1, Q->z);
/*
* Compute x-z^2 in t2 and x+z^2 in t1.
*/
for (i = 0; i < 20; i ++) {
t2[i] = (F256[i] << 1) + Q->x[i] - t1[i];
t1[i] += Q->x[i];
}
norm13(t1, t1, 20);
norm13(t2, t2, 20);
/*
* Compute 3*(x+z^2)*(x-z^2) in t1.
*/
mul_f256(t3, t1, t2);
for (i = 0; i < 20; i ++) {
t1[i] = MUL15(3, t3[i]);
}
norm13(t1, t1, 20);
/*
* Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
*/
square_f256(t3, Q->y);
for (i = 0; i < 20; i ++) {
t3[i] <<= 1;
}
norm13(t3, t3, 20);
mul_f256(t2, Q->x, t3);
for (i = 0; i < 20; i ++) {
t2[i] <<= 1;
}
norm13(t2, t2, 20);
reduce_f256(t2);
/*
* Compute x' = m^2 - 2*s.
*/
square_f256(Q->x, t1);
for (i = 0; i < 20; i ++) {
Q->x[i] += (F256[i] << 2) - (t2[i] << 1);
}
norm13(Q->x, Q->x, 20);
reduce_f256(Q->x);
/*
* Compute z' = 2*y*z.
*/
mul_f256(t4, Q->y, Q->z);
for (i = 0; i < 20; i ++) {
Q->z[i] = t4[i] << 1;
}
norm13(Q->z, Q->z, 20);
reduce_f256(Q->z);
/*
* Compute y' = m*(s - x') - 8*y^4. Note that we already have
* 2*y^2 in t3.
*/
for (i = 0; i < 20; i ++) {
t2[i] += (F256[i] << 1) - Q->x[i];
}
norm13(t2, t2, 20);
mul_f256(Q->y, t1, t2);
square_f256(t4, t3);
for (i = 0; i < 20; i ++) {
Q->y[i] += (F256[i] << 2) - (t4[i] << 1);
}
norm13(Q->y, Q->y, 20);
reduce_f256(Q->y);
}
/*
* Add point P2 to point P1.
*
* This function computes the wrong result in the following cases:
*
* - If P1 == 0 but P2 != 0
* - If P1 != 0 but P2 == 0
* - If P1 == P2
*
* In all three cases, P1 is set to the point at infinity.
*
* Returned value is 0 if one of the following occurs:
*
* - P1 and P2 have the same Y coordinate
* - P1 == 0 and P2 == 0
* - The Y coordinate of one of the points is 0 and the other point is
* the point at infinity.
*
* The third case cannot actually happen with valid points, since a point
* with Y == 0 is a point of order 2, and there is no point of order 2 on
* curve P-256.
*
* Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
* can apply the following:
*
* - If the result is not the point at infinity, then it is correct.
* - Otherwise, if the returned value is 1, then this is a case of
* P1+P2 == 0, so the result is indeed the point at infinity.
* - Otherwise, P1 == P2, so a "double" operation should have been
* performed.
*/
static uint32_t
p256_add(p256_jacobian *P1, const p256_jacobian *P2)
{
/*
* Addtions formulas are:
*
* u1 = x1 * z2^2
* u2 = x2 * z1^2
* s1 = y1 * z2^3
* s2 = y2 * z1^3
* h = u2 - u1
* r = s2 - s1
* x3 = r^2 - h^3 - 2 * u1 * h^2
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
* z3 = h * z1 * z2
*/
uint32_t t1[20], t2[20], t3[20], t4[20], t5[20], t6[20], t7[20];
uint32_t ret;
int i;
/*
* Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
*/
square_f256(t3, P2->z);
mul_f256(t1, P1->x, t3);
mul_f256(t4, P2->z, t3);
mul_f256(t3, P1->y, t4);
/*
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
*/
square_f256(t4, P1->z);
mul_f256(t2, P2->x, t4);
mul_f256(t5, P1->z, t4);
mul_f256(t4, P2->y, t5);
/*
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
* We need to test whether r is zero, so we will do some extra
* reduce.
*/
for (i = 0; i < 20; i ++) {
t2[i] += (F256[i] << 1) - t1[i];
t4[i] += (F256[i] << 1) - t3[i];
}
norm13(t2, t2, 20);
norm13(t4, t4, 20);
reduce_f256(t4);
reduce_final_f256(t4);
ret = 0;
for (i = 0; i < 20; i ++) {
ret |= t4[i];
}
ret = (ret | -ret) >> 31;
/*
* Compute u1*h^2 (in t6) and h^3 (in t5);
*/
square_f256(t7, t2);
mul_f256(t6, t1, t7);
mul_f256(t5, t7, t2);
/*
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
*/
square_f256(P1->x, t4);
for (i = 0; i < 20; i ++) {
P1->x[i] += (F256[i] << 3) - t5[i] - (t6[i] << 1);
}
norm13(P1->x, P1->x, 20);
reduce_f256(P1->x);
/*
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
*/
for (i = 0; i < 20; i ++) {
t6[i] += (F256[i] << 1) - P1->x[i];
}
norm13(t6, t6, 20);
mul_f256(P1->y, t4, t6);
mul_f256(t1, t5, t3);
for (i = 0; i < 20; i ++) {
P1->y[i] += (F256[i] << 1) - t1[i];
}
norm13(P1->y, P1->y, 20);
reduce_f256(P1->y);
/*
* Compute z3 = h*z1*z2.
*/
mul_f256(t1, P1->z, P2->z);
mul_f256(P1->z, t1, t2);
return ret;
}
/*
* Add point P2 to point P1. This is a specialised function for the
* case when P2 is a non-zero point in affine coordinate.
*
* This function computes the wrong result in the following cases:
*
* - If P1 == 0
* - If P1 == P2
*
* In both cases, P1 is set to the point at infinity.
*
* Returned value is 0 if one of the following occurs:
*
* - P1 and P2 have the same Y coordinate
* - The Y coordinate of P2 is 0 and P1 is the point at infinity.
*
* The second case cannot actually happen with valid points, since a point
* with Y == 0 is a point of order 2, and there is no point of order 2 on
* curve P-256.
*
* Therefore, assuming that P1 != 0 on input, then the caller
* can apply the following:
*
* - If the result is not the point at infinity, then it is correct.
* - Otherwise, if the returned value is 1, then this is a case of
* P1+P2 == 0, so the result is indeed the point at infinity.
* - Otherwise, P1 == P2, so a "double" operation should have been
* performed.
*/
static uint32_t
p256_add_mixed(p256_jacobian *P1, const p256_jacobian *P2)
{
/*
* Addtions formulas are:
*
* u1 = x1
* u2 = x2 * z1^2
* s1 = y1
* s2 = y2 * z1^3
* h = u2 - u1
* r = s2 - s1
* x3 = r^2 - h^3 - 2 * u1 * h^2
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
* z3 = h * z1
*/
uint32_t t1[20], t2[20], t3[20], t4[20], t5[20], t6[20], t7[20];
uint32_t ret;
int i;
/*
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
*/
memcpy(t1, P1->x, sizeof t1);
memcpy(t3, P1->y, sizeof t3);
/*
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
*/
square_f256(t4, P1->z);
mul_f256(t2, P2->x, t4);
mul_f256(t5, P1->z, t4);
mul_f256(t4, P2->y, t5);
/*
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
* We need to test whether r is zero, so we will do some extra
* reduce.
*/
for (i = 0; i < 20; i ++) {
t2[i] += (F256[i] << 1) - t1[i];
t4[i] += (F256[i] << 1) - t3[i];
}
norm13(t2, t2, 20);
norm13(t4, t4, 20);
reduce_f256(t4);
reduce_final_f256(t4);
ret = 0;
for (i = 0; i < 20; i ++) {
ret |= t4[i];
}
ret = (ret | -ret) >> 31;
/*
* Compute u1*h^2 (in t6) and h^3 (in t5);
*/
square_f256(t7, t2);
mul_f256(t6, t1, t7);
mul_f256(t5, t7, t2);
/*
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
*/
square_f256(P1->x, t4);
for (i = 0; i < 20; i ++) {
P1->x[i] += (F256[i] << 3) - t5[i] - (t6[i] << 1);
}
norm13(P1->x, P1->x, 20);
reduce_f256(P1->x);
/*
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
*/
for (i = 0; i < 20; i ++) {
t6[i] += (F256[i] << 1) - P1->x[i];
}
norm13(t6, t6, 20);
mul_f256(P1->y, t4, t6);
mul_f256(t1, t5, t3);
for (i = 0; i < 20; i ++) {
P1->y[i] += (F256[i] << 1) - t1[i];
}
norm13(P1->y, P1->y, 20);
reduce_f256(P1->y);
/*
* Compute z3 = h*z1*z2.
*/
mul_f256(P1->z, P1->z, t2);
return ret;
}
/*
* Decode a P-256 point. This function does not support the point at
* infinity. Returned value is 0 if the point is invalid, 1 otherwise.
*/
static uint32_t
p256_decode(p256_jacobian *P, const void *src, size_t len)
{
const unsigned char *buf;
uint32_t tx[20], ty[20], t1[20], t2[20];
uint32_t bad;
int i;
if (len != 65) {
return 0;
}
buf = src;
/*
* First byte must be 0x04 (uncompressed format). We could support
* "hybrid format" (first byte is 0x06 or 0x07, and encodes the
* least significant bit of the Y coordinate), but it is explicitly
* forbidden by RFC 5480 (section 2.2).
*/
bad = NEQ(buf[0], 0x04);
/*
* Decode the coordinates, and check that they are both lower
* than the modulus.
*/
tx[19] = be8_to_le13(tx, buf + 1, 32);
ty[19] = be8_to_le13(ty, buf + 33, 32);
bad |= reduce_final_f256(tx);
bad |= reduce_final_f256(ty);
/*
* Check curve equation.
*/
square_f256(t1, tx);
mul_f256(t1, tx, t1);
square_f256(t2, ty);
for (i = 0; i < 20; i ++) {
t1[i] += (F256[i] << 3) - MUL15(3, tx[i]) + P256_B[i] - t2[i];
}
norm13(t1, t1, 20);
reduce_f256(t1);
reduce_final_f256(t1);
for (i = 0; i < 20; i ++) {
bad |= t1[i];
}
/*
* Copy coordinates to the point structure.
*/
memcpy(P->x, tx, sizeof tx);
memcpy(P->y, ty, sizeof ty);
memset(P->z, 0, sizeof P->z);
P->z[0] = 1;
return EQ(bad, 0);
}
/*
* Encode a point into a buffer. This function assumes that the point is
* valid, in affine coordinates, and not the point at infinity.
*/
static void
p256_encode(void *dst, const p256_jacobian *P)
{
unsigned char *buf;
buf = dst;
buf[0] = 0x04;
le13_to_be8(buf + 1, 32, P->x);
le13_to_be8(buf + 33, 32, P->y);
}
/*
* Multiply a curve point by an integer. The integer is assumed to be
* lower than the curve order, and the base point must not be the point
* at infinity.
*/
static void
p256_mul(p256_jacobian *P, const unsigned char *x, size_t xlen)
{
/*
* qz is a flag that is initially 1, and remains equal to 1
* as long as the point is the point at infinity.
*
* We use a 2-bit window to handle multiplier bits by pairs.
* The precomputed window really is the points P2 and P3.
*/
uint32_t qz;
p256_jacobian P2, P3, Q, T, U;
/*
* Compute window values.
*/
P2 = *P;
p256_double(&P2);
P3 = *P;
p256_add(&P3, &P2);
/*
* We start with Q = 0. We process multiplier bits 2 by 2.
*/
memset(&Q, 0, sizeof Q);
qz = 1;
while (xlen -- > 0) {
int k;
for (k = 6; k >= 0; k -= 2) {
uint32_t bits;
uint32_t bnz;
p256_double(&Q);
p256_double(&Q);
T = *P;
U = Q;
bits = (*x >> k) & (uint32_t)3;
bnz = NEQ(bits, 0);
CCOPY(EQ(bits, 2), &T, &P2, sizeof T);
CCOPY(EQ(bits, 3), &T, &P3, sizeof T);
p256_add(&U, &T);
CCOPY(bnz & qz, &Q, &T, sizeof Q);
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
qz &= ~bnz;
}
x ++;
}
*P = Q;
}
/*
* Precomputed window: k*G points, where G is the curve generator, and k
* is an integer from 1 to 15 (inclusive). The X and Y coordinates of
* the point are encoded as 20 words of 13 bits each (little-endian
* order); 13-bit words are then grouped 2-by-2 into 32-bit words
* (little-endian order within each word).
*/
static const uint32_t Gwin[15][20] = {
{ 0x04C60296, 0x02721176, 0x19D00F4A, 0x102517AC,
0x13B8037D, 0x0748103C, 0x1E730E56, 0x08481FE2,
0x0F97012C, 0x00D605F4, 0x1DFA11F5, 0x0C801A0D,
0x0F670CBB, 0x0AED0CC5, 0x115E0E33, 0x181F0785,
0x13F514A7, 0x0FF30E3B, 0x17171E1A, 0x009F18D0 },
{ 0x1B341978, 0x16911F11, 0x0D9A1A60, 0x1C4E1FC8,
0x1E040969, 0x096A06B0, 0x091C0030, 0x09EF1A29,
0x18C40D03, 0x00F91C9E, 0x13C313D1, 0x096F0748,
0x011419E0, 0x1CC713A6, 0x1DD31DAD, 0x1EE80C36,
0x1ECD0C69, 0x1A0800A4, 0x08861B8E, 0x000E1DD5 },
{ 0x173F1D6C, 0x02CC06F1, 0x14C21FB4, 0x043D1EB6,
0x0F3606B7, 0x1A971C59, 0x1BF71951, 0x01481323,
0x068D0633, 0x00BD12F9, 0x13EA1032, 0x136209E8,
0x1C1E19A7, 0x06C7013E, 0x06C10AB0, 0x14C908BB,
0x05830CE1, 0x1FEF18DD, 0x00620998, 0x010E0D19 },
{ 0x18180852, 0x0604111A, 0x0B771509, 0x1B6F0156,
0x00181FE2, 0x1DCC0AF4, 0x16EF0659, 0x11F70E80,
0x11A912D0, 0x01C414D2, 0x027618C6, 0x05840FC6,
0x100215C4, 0x187E0C3B, 0x12771C96, 0x150C0B5D,
0x0FF705FD, 0x07981C67, 0x1AD20C63, 0x01C11C55 },
{ 0x1E8113ED, 0x0A940370, 0x12920215, 0x1FA31D6F,
0x1F7C0C82, 0x10CD03F7, 0x02640560, 0x081A0B5E,
0x1BD21151, 0x00A21642, 0x0D0B0DA4, 0x0176113F,
0x04440D1D, 0x001A1360, 0x1068012F, 0x1F141E49,
0x10DF136B, 0x0E4F162B, 0x0D44104A, 0x01C1105F },
{ 0x011411A9, 0x01551A4F, 0x0ADA0C6B, 0x01BD0EC8,
0x18120C74, 0x112F1778, 0x099202CB, 0x0C05124B,
0x195316A4, 0x01600685, 0x1E3B1FE2, 0x189014E3,
0x0B5E1FD7, 0x0E0311F8, 0x08E000F7, 0x174E00DE,
0x160702DF, 0x1B5A15BF, 0x03A11237, 0x01D01704 },
{ 0x0C3D12A3, 0x0C501C0C, 0x17AD1300, 0x1715003F,
0x03F719F8, 0x18031ED8, 0x1D980667, 0x0F681896,
0x1B7D00BF, 0x011C14CE, 0x0FA000B4, 0x1C3501B0,
0x0D901C55, 0x06790C10, 0x029E0736, 0x0DEB0400,
0x034F183A, 0x030619B4, 0x0DEF0033, 0x00E71AC7 },
{ 0x1B7D1393, 0x1B3B1076, 0x0BED1B4D, 0x13011F3A,
0x0E0E1238, 0x156A132B, 0x013A02D3, 0x160A0D01,
0x1CED1EE9, 0x00C5165D, 0x184C157E, 0x08141A83,
0x153C0DA5, 0x1ED70F9D, 0x05170D51, 0x02CF13B8,
0x18AE1771, 0x1B04113F, 0x05EC11E9, 0x015A16B3 },
{ 0x04A41EE0, 0x1D1412E4, 0x1C591D79, 0x118511B7,
0x14F00ACB, 0x1AE31E1C, 0x049C0D51, 0x016E061E,
0x1DB71EDF, 0x01D41A35, 0x0E8208FA, 0x14441293,
0x011F1E85, 0x1D54137A, 0x026B114F, 0x151D0832,
0x00A50964, 0x1F9C1E1C, 0x064B12C9, 0x005409D1 },
{ 0x062B123F, 0x0C0D0501, 0x183704C3, 0x08E31120,
0x0A2E0A6C, 0x14440FED, 0x090A0D1E, 0x13271964,
0x0B590A3A, 0x019D1D9B, 0x05780773, 0x09770A91,
0x0F770CA3, 0x053F19D4, 0x02C80DED, 0x1A761304,
0x091E0DD9, 0x15D201B8, 0x151109AA, 0x010F0198 },
{ 0x05E101D1, 0x072314DD, 0x045F1433, 0x1A041541,
0x10B3142E, 0x01840736, 0x1C1B19DB, 0x098B0418,
0x1DBC083B, 0x007D1444, 0x01511740, 0x11DD1F3A,
0x04ED0E2F, 0x1B4B1A62, 0x10480D04, 0x09E911A2,
0x04211AFA, 0x19140893, 0x04D60CC4, 0x01210648 },
{ 0x112703C4, 0x018B1BA1, 0x164C1D50, 0x05160BE0,
0x0BCC1830, 0x01CB1554, 0x13291732, 0x1B2B1918,
0x0DED0817, 0x00E80775, 0x0A2401D3, 0x0BFE08B3,
0x0E531199, 0x058616E9, 0x04770B91, 0x110F0C55,
0x19C11554, 0x0BFB1159, 0x03541C38, 0x000E1C2D },
{ 0x10390C01, 0x02BB0751, 0x0AC5098E, 0x096C17AB,
0x03C90E28, 0x10BD18BF, 0x002E1F2D, 0x092B0986,
0x1BD700AC, 0x002E1F20, 0x1E3D1FD8, 0x077718BB,
0x06F919C4, 0x187407ED, 0x11370E14, 0x081E139C,
0x00481ADB, 0x14AB0289, 0x066A0EBE, 0x00C70ED6 },
{ 0x0694120B, 0x124E1CC9, 0x0E2F0570, 0x17CF081A,
0x078906AC, 0x066D17CF, 0x1B3207F4, 0x0C5705E9,
0x10001C38, 0x00A919DE, 0x06851375, 0x0F900BD8,
0x080401BA, 0x0EEE0D42, 0x1B8B11EA, 0x0B4519F0,
0x090F18C0, 0x062E1508, 0x0DD909F4, 0x01EB067C },
{ 0x0CDC1D5F, 0x0D1818F9, 0x07781636, 0x125B18E8,
0x0D7003AF, 0x13110099, 0x1D9B1899, 0x175C1EB7,
0x0E34171A, 0x01E01153, 0x081A0F36, 0x0B391783,
0x1D1F147E, 0x19CE16D7, 0x11511B21, 0x1F2C10F9,
0x12CA0E51, 0x05A31D39, 0x171A192E, 0x016B0E4F }
};
/*
* Lookup one of the Gwin[] values, by index. This is constant-time.
*/
static void
lookup_Gwin(p256_jacobian *T, uint32_t idx)
{
uint32_t xy[20];
uint32_t k;
size_t u;
memset(xy, 0, sizeof xy);
for (k = 0; k < 15; k ++) {
uint32_t m;
m = -EQ(idx, k + 1);
for (u = 0; u < 20; u ++) {
xy[u] |= m & Gwin[k][u];
}
}
for (u = 0; u < 10; u ++) {
T->x[(u << 1) + 0] = xy[u] & 0xFFFF;
T->x[(u << 1) + 1] = xy[u] >> 16;
T->y[(u << 1) + 0] = xy[u + 10] & 0xFFFF;
T->y[(u << 1) + 1] = xy[u + 10] >> 16;
}
memset(T->z, 0, sizeof T->z);
T->z[0] = 1;
}
/*
* Multiply the generator by an integer. The integer is assumed non-zero
* and lower than the curve order.
*/
static void
p256_mulgen(p256_jacobian *P, const unsigned char *x, size_t xlen)
{
/*
* qz is a flag that is initially 1, and remains equal to 1
* as long as the point is the point at infinity.
*
* We use a 4-bit window to handle multiplier bits by groups
* of 4. The precomputed window is constant static data, with
* points in affine coordinates; we use a constant-time lookup.
*/
p256_jacobian Q;
uint32_t qz;
memset(&Q, 0, sizeof Q);
qz = 1;
while (xlen -- > 0) {
int k;
unsigned bx;
bx = *x ++;
for (k = 0; k < 2; k ++) {
uint32_t bits;
uint32_t bnz;
p256_jacobian T, U;
p256_double(&Q);
p256_double(&Q);
p256_double(&Q);
p256_double(&Q);
bits = (bx >> 4) & 0x0F;
bnz = NEQ(bits, 0);
lookup_Gwin(&T, bits);
U = Q;
p256_add_mixed(&U, &T);
CCOPY(bnz & qz, &Q, &T, sizeof Q);
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
qz &= ~bnz;
bx <<= 4;
}
}
*P = Q;
}
static const unsigned char P256_G[] = {
0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
0x68, 0x37, 0xBF, 0x51, 0xF5
};
static const unsigned char P256_N[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
0x25, 0x51
};
static const unsigned char *
api_generator(int curve, size_t *len)
{
(void)curve;
*len = sizeof P256_G;
return P256_G;
}
static const unsigned char *
api_order(int curve, size_t *len)
{
(void)curve;
*len = sizeof P256_N;
return P256_N;
}
static size_t
api_xoff(int curve, size_t *len)
{
(void)curve;
*len = 32;
return 1;
}
static uint32_t
api_mul(unsigned char *G, size_t Glen,
const unsigned char *x, size_t xlen, int curve)
{
uint32_t r;
p256_jacobian P;
(void)curve;
r = p256_decode(&P, G, Glen);
p256_mul(&P, x, xlen);
if (Glen >= 65) {
p256_to_affine(&P);
p256_encode(G, &P);
}
return r;
}
static size_t
api_mulgen(unsigned char *R,
const unsigned char *x, size_t xlen, int curve)
{
p256_jacobian P;
(void)curve;
p256_mulgen(&P, x, xlen);
p256_to_affine(&P);
p256_encode(R, &P);
return 65;
/*
const unsigned char *G;
size_t Glen;
G = api_generator(curve, &Glen);
memcpy(R, G, Glen);
api_mul(R, Glen, x, xlen, curve);
return Glen;
*/
}
static uint32_t
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
const unsigned char *x, size_t xlen,
const unsigned char *y, size_t ylen, int curve)
{
p256_jacobian P, Q;
uint32_t r, t, z;
int i;
(void)curve;
r = p256_decode(&P, A, len);
p256_mul(&P, x, xlen);
if (B == NULL) {
p256_mulgen(&Q, y, ylen);
} else {
r &= p256_decode(&Q, B, len);
p256_mul(&Q, y, ylen);
}
/*
* The final addition may fail in case both points are equal.
*/
t = p256_add(&P, &Q);
reduce_final_f256(P.z);
z = 0;
for (i = 0; i < 20; i ++) {
z |= P.z[i];
}
z = EQ(z, 0);
p256_double(&Q);
/*
* If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
* have the following:
*
* z = 0, t = 0 return P (normal addition)
* z = 0, t = 1 return P (normal addition)
* z = 1, t = 0 return Q (a 'double' case)
* z = 1, t = 1 report an error (P+Q = 0)
*/
CCOPY(z & ~t, &P, &Q, sizeof Q);
p256_to_affine(&P);
p256_encode(A, &P);
r &= ~(z & t);
return r;
}
/* see bearssl_ec.h */
const br_ec_impl br_ec_p256_m15 = {
(uint32_t)0x00800000,
&api_generator,
&api_order,
&api_xoff,
&api_mul,
&api_mulgen,
&api_muladd
};