Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
/*
 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

#if BR_INT128 || BR_UMUL128

#if BR_UMUL128
#include <intrin.h>
#endif

static const unsigned char P256_G[] = {
	0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
	0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
	0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
	0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
	0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
	0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
	0x68, 0x37, 0xBF, 0x51, 0xF5
};

static const unsigned char P256_N[] = {
	0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
	0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
	0x25, 0x51
};

static const unsigned char *
api_generator(int curve, size_t *len)
{
	(void)curve;
	*len = sizeof P256_G;
	return P256_G;
}

static const unsigned char *
api_order(int curve, size_t *len)
{
	(void)curve;
	*len = sizeof P256_N;
	return P256_N;
}

static size_t
api_xoff(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return 1;
}

/*
 * A field element is encoded as four 64-bit integers, in basis 2^64.
 * Values may reach up to 2^256-1. Montgomery multiplication is used.
 */

/* R = 2^256 mod p */
static const uint64_t F256_R[] = {
	0x0000000000000001, 0xFFFFFFFF00000000,
	0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE
};

/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
   (Montgomery representation of B). */
static const uint64_t P256_B_MONTY[] = {
	0xD89CDF6229C4BDDF, 0xACF005CD78843090,
	0xE5A220ABF7212ED6, 0xDC30061D04874834
};

/*
 * Addition in the field.
 */
static inline void
f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
#if BR_INT128
	unsigned __int128 w;
	uint64_t t;

	w = (unsigned __int128)a[0] + b[0];
	d[0] = (uint64_t)w;
	w = (unsigned __int128)a[1] + b[1] + (w >> 64);
	d[1] = (uint64_t)w;
	w = (unsigned __int128)a[2] + b[2] + (w >> 64);
	d[2] = (uint64_t)w;
	w = (unsigned __int128)a[3] + b[3] + (w >> 64);
	d[3] = (uint64_t)w;
	t = (uint64_t)(w >> 64);

	/*
	 * 2^256 = 2^224 - 2^192 - 2^96 + 1 in the field.
	 */
	w = (unsigned __int128)d[0] + t;
	d[0] = (uint64_t)w;
	w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
	d[1] = (uint64_t)w;
	/* Here, carry "w >> 64" can only be 0 or -1 */
	w = (unsigned __int128)d[2] - ((w >> 64) & 1);
	d[2] = (uint64_t)w;
	/* Again, carry is 0 or -1 */
	d[3] += (uint64_t)(w >> 64) + (t << 32) - t;

#elif BR_UMUL128

	unsigned char cc;
	uint64_t t;

	cc = _addcarry_u64(0, a[0], b[0], &d[0]);
	cc = _addcarry_u64(cc, a[1], b[1], &d[1]);
	cc = _addcarry_u64(cc, a[2], b[2], &d[2]);
	cc = _addcarry_u64(cc, a[3], b[3], &d[3]);

	/*
	 * If there is a carry, then we want to subtract p, which we
	 * do by adding 2^256 - p.
	 */
	t = cc;
	cc = _addcarry_u64(cc, d[0], 0, &d[0]);
	cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
	cc = _addcarry_u64(cc, d[2], -t, &d[2]);
	(void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);

#endif
}

/*
 * Subtraction in the field.
 */
static inline void
f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
#if BR_INT128

	unsigned __int128 w;
	uint64_t t;

	w = (unsigned __int128)a[0] - b[0];
	d[0] = (uint64_t)w;
	w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1);
	d[1] = (uint64_t)w;
	w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1);
	d[2] = (uint64_t)w;
	w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1);
	d[3] = (uint64_t)w;
	t = (uint64_t)(w >> 64) & 1;

	/*
	 * p = 2^256 - 2^224 + 2^192 + 2^96 - 1.
	 */
	w = (unsigned __int128)d[0] - t;
	d[0] = (uint64_t)w;
	w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
	d[1] = (uint64_t)w;
	/* Here, carry "w >> 64" can only be 0 or +1 */
	w = (unsigned __int128)d[2] + (w >> 64);
	d[2] = (uint64_t)w;
	/* Again, carry is 0 or +1 */
	d[3] += (uint64_t)(w >> 64) - (t << 32) + t;

#elif BR_UMUL128

	unsigned char cc;
	uint64_t t;

	cc = _subborrow_u64(0, a[0], b[0], &d[0]);
	cc = _subborrow_u64(cc, a[1], b[1], &d[1]);
	cc = _subborrow_u64(cc, a[2], b[2], &d[2]);
	cc = _subborrow_u64(cc, a[3], b[3], &d[3]);

	/*
	 * If there is a carry, then we need to add p.
	 */
	t = cc;
	cc = _addcarry_u64(0, d[0], -t, &d[0]);
	cc = _addcarry_u64(cc, d[1], (-t) >> 32, &d[1]);
	cc = _addcarry_u64(cc, d[2], 0, &d[2]);
	(void)_addcarry_u64(cc, d[3], t - (t << 32), &d[3]);

#endif
}

/*
 * Montgomery multiplication in the field.
 */
static void
f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
#if BR_INT128

	uint64_t x, f, t0, t1, t2, t3, t4;
	unsigned __int128 z, ff;
	int i;

	/*
	 * When computing d <- d + a[u]*b, we also add f*p such
	 * that d + a[u]*b + f*p is a multiple of 2^64. Since
	 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
	 */

	/*
	 * Step 1: t <- (a[0]*b + f*p) / 2^64
	 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
	 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
	 *
	 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
	 */
	x = a[0];
	z = (unsigned __int128)b[0] * x;
	f = (uint64_t)z;
	z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32);
	t0 = (uint64_t)z;
	z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32);
	t1 = (uint64_t)z;
	z = (unsigned __int128)b[3] * x + (z >> 64) + f;
	t2 = (uint64_t)z;
	t3 = (uint64_t)(z >> 64);
	ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32);
	z = (unsigned __int128)t2 + (uint64_t)ff;
	t2 = (uint64_t)z;
	z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
	t3 = (uint64_t)z;
	t4 = (uint64_t)(z >> 64);

	/*
	 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
	 */
	for (i = 1; i < 4; i ++) {
		x = a[i];

		/* t <- (t + x*b - f) / 2^64 */
		z = (unsigned __int128)b[0] * x + t0;
		f = (uint64_t)z;
		z = (unsigned __int128)b[1] * x + t1 + (z >> 64);
		t0 = (uint64_t)z;
		z = (unsigned __int128)b[2] * x + t2 + (z >> 64);
		t1 = (uint64_t)z;
		z = (unsigned __int128)b[3] * x + t3 + (z >> 64);
		t2 = (uint64_t)z;
		z = t4 + (z >> 64);
		t3 = (uint64_t)z;
		t4 = (uint64_t)(z >> 64);

		/* t <- t + f*2^32, carry in the upper half of z */
		z = (unsigned __int128)t0 + (uint64_t)(f << 32);
		t0 = (uint64_t)z;
		z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32);
		t1 = (uint64_t)z;

		/* t <- t + f*2^192 - f*2^160 + f*2^128 */
		ff = ((unsigned __int128)f << 64) 
			- ((unsigned __int128)f << 32) + f;
		z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff;
		t2 = (uint64_t)z;
		z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
		t3 = (uint64_t)z;
		t4 += (uint64_t)(z >> 64);
	}

	/*
	 * At that point, we have computed t = (a*b + F*p) / 2^256, where
	 * F is a 256-bit integer whose limbs are the "f" coefficients
	 * in the steps above. We have:
	 *   a <= 2^256-1
	 *   b <= 2^256-1
	 *   F <= 2^256-1
	 * Hence:
	 *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
	 *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
	 * Therefore:
	 *   t < 2^256 + p - 2
	 * Since p < 2^256, it follows that:
	 *   t4 can be only 0 or 1
	 *   t - p < 2^256
	 * We can therefore subtract p from t, conditionally on t4, to
	 * get a nonnegative result that fits on 256 bits.
	 */
	z = (unsigned __int128)t0 + t4;
	t0 = (uint64_t)z;
	z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)t2 - (z >> 127);
	t2 = (uint64_t)z;
	t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32);

	d[0] = t0;
	d[1] = t1;
	d[2] = t2;
	d[3] = t3;

#elif BR_UMUL128

	uint64_t x, f, t0, t1, t2, t3, t4;
	uint64_t zl, zh, ffl, ffh;
	unsigned char k, m;
	int i;

	/*
	 * When computing d <- d + a[u]*b, we also add f*p such
	 * that d + a[u]*b + f*p is a multiple of 2^64. Since
	 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
	 */

	/*
	 * Step 1: t <- (a[0]*b + f*p) / 2^64
	 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
	 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
	 *
	 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
	 */
	x = a[0];

	zl = _umul128(b[0], x, &zh);
	f = zl;
	t0 = zh;

	zl = _umul128(b[1], x, &zh);
	k = _addcarry_u64(0, zl, t0, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	k = _addcarry_u64(0, zl, f << 32, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	t0 = zl;
	t1 = zh;

	zl = _umul128(b[2], x, &zh);
	k = _addcarry_u64(0, zl, t1, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	k = _addcarry_u64(0, zl, f >> 32, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	t1 = zl;
	t2 = zh;

	zl = _umul128(b[3], x, &zh);
	k = _addcarry_u64(0, zl, t2, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	k = _addcarry_u64(0, zl, f, &zl);
	(void)_addcarry_u64(k, zh, 0, &zh);
	t2 = zl;
	t3 = zh;

	t4 = _addcarry_u64(0, t3, f, &t3);
	k = _subborrow_u64(0, t2, f << 32, &t2);
	k = _subborrow_u64(k, t3, f >> 32, &t3);
	(void)_subborrow_u64(k, t4, 0, &t4);

	/*
	 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
	 */
	for (i = 1; i < 4; i ++) {
		x = a[i];
		/* f = t0 + x * b[0]; -- computed below */

		/* t <- (t + x*b - f) / 2^64 */
		zl = _umul128(b[0], x, &zh);
		k = _addcarry_u64(0, zl, t0, &f);
		(void)_addcarry_u64(k, zh, 0, &t0);

		zl = _umul128(b[1], x, &zh);
		k = _addcarry_u64(0, zl, t0, &zl);
		(void)_addcarry_u64(k, zh, 0, &zh);
		k = _addcarry_u64(0, zl, t1, &t0);
		(void)_addcarry_u64(k, zh, 0, &t1);

		zl = _umul128(b[2], x, &zh);
		k = _addcarry_u64(0, zl, t1, &zl);
		(void)_addcarry_u64(k, zh, 0, &zh);
		k = _addcarry_u64(0, zl, t2, &t1);
		(void)_addcarry_u64(k, zh, 0, &t2);

		zl = _umul128(b[3], x, &zh);
		k = _addcarry_u64(0, zl, t2, &zl);
		(void)_addcarry_u64(k, zh, 0, &zh);
		k = _addcarry_u64(0, zl, t3, &t2);
		(void)_addcarry_u64(k, zh, 0, &t3);

		t4 = _addcarry_u64(0, t3, t4, &t3);

		/* t <- t + f*2^32, carry in k */
		k = _addcarry_u64(0, t0, f << 32, &t0);
		k = _addcarry_u64(k, t1, f >> 32, &t1);

		/* t <- t + f*2^192 - f*2^160 + f*2^128 */
		m = _subborrow_u64(0, f, f << 32, &ffl);
		(void)_subborrow_u64(m, f, f >> 32, &ffh);
		k = _addcarry_u64(k, t2, ffl, &t2);
		k = _addcarry_u64(k, t3, ffh, &t3);
		(void)_addcarry_u64(k, t4, 0, &t4);
	}

	/*
	 * At that point, we have computed t = (a*b + F*p) / 2^256, where
	 * F is a 256-bit integer whose limbs are the "f" coefficients
	 * in the steps above. We have:
	 *   a <= 2^256-1
	 *   b <= 2^256-1
	 *   F <= 2^256-1
	 * Hence:
	 *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
	 *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
	 * Therefore:
	 *   t < 2^256 + p - 2
	 * Since p < 2^256, it follows that:
	 *   t4 can be only 0 or 1
	 *   t - p < 2^256
	 * We can therefore subtract p from t, conditionally on t4, to
	 * get a nonnegative result that fits on 256 bits.
	 */
	k = _addcarry_u64(0, t0, t4, &t0);
	k = _addcarry_u64(k, t1, -(t4 << 32), &t1);
	k = _addcarry_u64(k, t2, -t4, &t2);
	(void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3);

	d[0] = t0;
	d[1] = t1;
	d[2] = t2;
	d[3] = t3;

#endif
}

/*
 * Montgomery squaring in the field; currently a basic wrapper around
 * multiplication (inline, should be optimized away).
 * TODO: see if some extra speed can be gained here.
 */
static inline void
f256_montysquare(uint64_t *d, const uint64_t *a)
{
	f256_montymul(d, a, a);
}

/*
 * Convert to Montgomery representation.
 */
static void
f256_tomonty(uint64_t *d, const uint64_t *a)
{
	/*
	 * R2 = 2^512 mod p.
	 * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery
	 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
	 * conversion to Montgomery representation.
	 */
	static const uint64_t R2[] = {
		0x0000000000000003,
		0xFFFFFFFBFFFFFFFF,
		0xFFFFFFFFFFFFFFFE,
		0x00000004FFFFFFFD
	};

	f256_montymul(d, a, R2);
}

/*
 * Convert from Montgomery representation.
 */
static void
f256_frommonty(uint64_t *d, const uint64_t *a)
{
	/*
	 * Montgomery multiplication by 1 is division by 2^256 modulo p.
	 */
	static const uint64_t one[] = { 1, 0, 0, 0 };

	f256_montymul(d, a, one);
}

/*
 * Inversion in the field. If the source value is 0 modulo p, then this
 * returns 0 or p. This function uses Montgomery representation.
 */
static void
f256_invert(uint64_t *d, const uint64_t *a)
{
	/*
	 * We compute a^(p-2) mod p. The exponent pattern (from high to
	 * low) is:
	 *  - 32 bits of value 1
	 *  - 31 bits of value 0
	 *  - 1 bit of value 1
	 *  - 96 bits of value 0
	 *  - 94 bits of value 1
	 *  - 1 bit of value 0
	 *  - 1 bit of value 1
	 * To speed up the square-and-multiply algorithm, we precompute
	 * a^(2^31-1).
	 */

	uint64_t r[4], t[4];
	int i;

	memcpy(t, a, sizeof t);
	for (i = 0; i < 30; i ++) {
		f256_montysquare(t, t);
		f256_montymul(t, t, a);
	}

	memcpy(r, t, sizeof t);
	for (i = 224; i >= 0; i --) {
		f256_montysquare(r, r);
		switch (i) {
		case 0:
		case 2:
		case 192:
		case 224:
			f256_montymul(r, r, a);
			break;
		case 3:
		case 34:
		case 65:
			f256_montymul(r, r, t);
			break;
		}
	}
	memcpy(d, r, sizeof r);
}

/*
 * Finalize reduction.
 * Input value fits on 256 bits. This function subtracts p if and only
 * if the input is greater than or equal to p.
 */
static inline void
f256_final_reduce(uint64_t *a)
{
#if BR_INT128

	uint64_t t0, t1, t2, t3, cc;
	unsigned __int128 z;

	/*
	 * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry,
	 * then a < p; otherwise, the addition result we computed is
	 * the value we must return.
	 */
	z = (unsigned __int128)a[0] + 1;
	t0 = (uint64_t)z;
	z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32);
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[2] - (z >> 127);
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF;
	t3 = (uint64_t)z;
	cc = -(uint64_t)(z >> 64);

	a[0] ^= cc & (a[0] ^ t0);
	a[1] ^= cc & (a[1] ^ t1);
	a[2] ^= cc & (a[2] ^ t2);
	a[3] ^= cc & (a[3] ^ t3);

#elif BR_UMUL128

	uint64_t t0, t1, t2, t3, m;
	unsigned char k;

	k = _addcarry_u64(0, a[0], (uint64_t)1, &t0);
	k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1);
	k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2);
	k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3);
	m = -(uint64_t)k;

	a[0] ^= m & (a[0] ^ t0);
	a[1] ^= m & (a[1] ^ t1);
	a[2] ^= m & (a[2] ^ t2);
	a[3] ^= m & (a[3] ^ t3);

#endif
}

/*
 * Points in affine and Jacobian coordinates.
 *
 *  - In affine coordinates, the point-at-infinity cannot be encoded.
 *  - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
 *    if Z = 0 then this is the point-at-infinity.
 */
typedef struct {
	uint64_t x[4];
	uint64_t y[4];
} p256_affine;

typedef struct {
	uint64_t x[4];
	uint64_t y[4];
	uint64_t z[4];
} p256_jacobian;

/*
 * Decode a point. The returned point is in Jacobian coordinates, but
 * with z = 1. If the encoding is invalid, or encodes a point which is
 * not on the curve, or encodes the point at infinity, then this function
 * returns 0. Otherwise, 1 is returned.
 *
 * The buffer is assumed to have length exactly 65 bytes.
 */
static uint32_t
point_decode(p256_jacobian *P, const unsigned char *buf)
{
	uint64_t x[4], y[4], t[4], x3[4], tt;
	uint32_t r;

	/*
	 * Header byte shall be 0x04.
	 */
	r = EQ(buf[0], 0x04);

	/*
	 * Decode X and Y coordinates, and convert them into
	 * Montgomery representation.
	 */
	x[3] = br_dec64be(buf +  1);
	x[2] = br_dec64be(buf +  9);
	x[1] = br_dec64be(buf + 17);
	x[0] = br_dec64be(buf + 25);
	y[3] = br_dec64be(buf + 33);
	y[2] = br_dec64be(buf + 41);
	y[1] = br_dec64be(buf + 49);
	y[0] = br_dec64be(buf + 57);
	f256_tomonty(x, x);
	f256_tomonty(y, y);

	/*
	 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
	 * Note that the Montgomery representation of 0 is 0. We must
	 * take care to apply the final reduction to make sure we have
	 * 0 and not p.
	 */
	f256_montysquare(t, y);
	f256_montysquare(x3, x);
	f256_montymul(x3, x3, x);
	f256_sub(t, t, x3);
	f256_add(t, t, x);
	f256_add(t, t, x);
	f256_add(t, t, x);
	f256_sub(t, t, P256_B_MONTY);
	f256_final_reduce(t);
	tt = t[0] | t[1] | t[2] | t[3];
	r &= EQ((uint32_t)(tt | (tt >> 32)), 0);

	/*
	 * Return the point in Jacobian coordinates (and Montgomery
	 * representation).
	 */
	memcpy(P->x, x, sizeof x);
	memcpy(P->y, y, sizeof y);
	memcpy(P->z, F256_R, sizeof F256_R);
	return r;
}

/*
 * Final conversion for a point:
 *  - The point is converted back to affine coordinates.
 *  - Final reduction is performed.
 *  - The point is encoded into the provided buffer.
 *
 * If the point is the point-at-infinity, all operations are performed,
 * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
 * the encoded point is written in the buffer, and 1 is returned.
 */
static uint32_t
point_encode(unsigned char *buf, const p256_jacobian *P)
{
	uint64_t t1[4], t2[4], z;

	/* Set t1 = 1/z^2 and t2 = 1/z^3. */
	f256_invert(t2, P->z);
	f256_montysquare(t1, t2);
	f256_montymul(t2, t2, t1);

	/* Compute affine coordinates x (in t1) and y (in t2). */
	f256_montymul(t1, P->x, t1);
	f256_montymul(t2, P->y, t2);

	/* Convert back from Montgomery representation, and finalize
	   reductions. */
	f256_frommonty(t1, t1);
	f256_frommonty(t2, t2);
	f256_final_reduce(t1);
	f256_final_reduce(t2);

	/* Encode. */
	buf[0] = 0x04;
	br_enc64be(buf +  1, t1[3]);
	br_enc64be(buf +  9, t1[2]);
	br_enc64be(buf + 17, t1[1]);
	br_enc64be(buf + 25, t1[0]);
	br_enc64be(buf + 33, t2[3]);
	br_enc64be(buf + 41, t2[2]);
	br_enc64be(buf + 49, t2[1]);
	br_enc64be(buf + 57, t2[0]);

	/* Return success if and only if P->z != 0. */
	z = P->z[0] | P->z[1] | P->z[2] | P->z[3];
	return NEQ((uint32_t)(z | z >> 32), 0);
}

/*
 * Point doubling in Jacobian coordinates: point P is doubled.
 * Note: if the source point is the point-at-infinity, then the result is
 * still the point-at-infinity, which is correct. Moreover, if the three
 * coordinates were zero, then they still are zero in the returned value.
 *
 * (Note: this is true even without the final reduction: if the three
 * coordinates are encoded as four words of value zero each, then the
 * result will also have all-zero coordinate encodings, not the alternate
 * encoding as the integer p.)
 */
static void
p256_double(p256_jacobian *P)
{
	/*
	 * Doubling formulas are:
	 *
	 *   s = 4*x*y^2
	 *   m = 3*(x + z^2)*(x - z^2)
	 *   x' = m^2 - 2*s
	 *   y' = m*(s - x') - 8*y^4
	 *   z' = 2*y*z
	 *
	 * These formulas work for all points, including points of order 2
	 * and points at infinity:
	 *   - If y = 0 then z' = 0. But there is no such point in P-256
	 *     anyway.
	 *   - If z = 0 then z' = 0.
	 */
	uint64_t t1[4], t2[4], t3[4], t4[4];

	/*
	 * Compute z^2 in t1.
	 */
	f256_montysquare(t1, P->z);

	/*
	 * Compute x-z^2 in t2 and x+z^2 in t1.
	 */
	f256_add(t2, P->x, t1);
	f256_sub(t1, P->x, t1);

	/*
	 * Compute 3*(x+z^2)*(x-z^2) in t1.
	 */
	f256_montymul(t3, t1, t2);
	f256_add(t1, t3, t3);
	f256_add(t1, t3, t1);

	/*
	 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
	 */
	f256_montysquare(t3, P->y);
	f256_add(t3, t3, t3);
	f256_montymul(t2, P->x, t3);
	f256_add(t2, t2, t2);

	/*
	 * Compute x' = m^2 - 2*s.
	 */
	f256_montysquare(P->x, t1);
	f256_sub(P->x, P->x, t2);
	f256_sub(P->x, P->x, t2);

	/*
	 * Compute z' = 2*y*z.
	 */
	f256_montymul(t4, P->y, P->z);
	f256_add(P->z, t4, t4);

	/*
	 * Compute y' = m*(s - x') - 8*y^4. Note that we already have
	 * 2*y^2 in t3.
	 */
	f256_sub(t2, t2, P->x);
	f256_montymul(P->y, t1, t2);
	f256_montysquare(t4, t3);
	f256_add(t4, t4, t4);
	f256_sub(P->y, P->y, t4);
}

/*
 * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
 * This function computes the wrong result in the following cases:
 *
 *   - If P1 == 0 but P2 != 0
 *   - If P1 != 0 but P2 == 0
 *   - If P1 == P2
 *
 * In all three cases, P1 is set to the point at infinity.
 *
 * Returned value is 0 if one of the following occurs:
 *
 *   - P1 and P2 have the same Y coordinate.
 *   - P1 == 0 and P2 == 0.
 *   - The Y coordinate of one of the points is 0 and the other point is
 *     the point at infinity.
 *
 * The third case cannot actually happen with valid points, since a point
 * with Y == 0 is a point of order 2, and there is no point of order 2 on
 * curve P-256.
 *
 * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
 * can apply the following:
 *
 *   - If the result is not the point at infinity, then it is correct.
 *   - Otherwise, if the returned value is 1, then this is a case of
 *     P1+P2 == 0, so the result is indeed the point at infinity.
 *   - Otherwise, P1 == P2, so a "double" operation should have been
 *     performed.
 *
 * Note that you can get a returned value of 0 with a correct result,
 * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
 */
static uint32_t
p256_add(p256_jacobian *P1, const p256_jacobian *P2)
{
	/*
	 * Addtions formulas are:
	 *
	 *   u1 = x1 * z2^2
	 *   u2 = x2 * z1^2
	 *   s1 = y1 * z2^3
	 *   s2 = y2 * z1^3
	 *   h = u2 - u1
	 *   r = s2 - s1
	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
	 *   z3 = h * z1 * z2
	 */
	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
	uint32_t ret;

	/*
	 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
	 */
	f256_montysquare(t3, P2->z);
	f256_montymul(t1, P1->x, t3);
	f256_montymul(t4, P2->z, t3);
	f256_montymul(t3, P1->y, t4);

	/*
	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
	 */
	f256_montysquare(t4, P1->z);
	f256_montymul(t2, P2->x, t4);
	f256_montymul(t5, P1->z, t4);
	f256_montymul(t4, P2->y, t5);

	/*
	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
	 * We need to test whether r is zero, so we will do some extra
	 * reduce.
	 */
	f256_sub(t2, t2, t1);
	f256_sub(t4, t4, t3);
	f256_final_reduce(t4);
	tt = t4[0] | t4[1] | t4[2] | t4[3];
	ret = (uint32_t)(tt | (tt >> 32));
	ret = (ret | -ret) >> 31;

	/*
	 * Compute u1*h^2 (in t6) and h^3 (in t5);
	 */
	f256_montysquare(t7, t2);
	f256_montymul(t6, t1, t7);
	f256_montymul(t5, t7, t2);

	/*
	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
	 */
	f256_montysquare(P1->x, t4);
	f256_sub(P1->x, P1->x, t5);
	f256_sub(P1->x, P1->x, t6);
	f256_sub(P1->x, P1->x, t6);

	/*
	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
	 */
	f256_sub(t6, t6, P1->x);
	f256_montymul(P1->y, t4, t6);
	f256_montymul(t1, t5, t3);
	f256_sub(P1->y, P1->y, t1);

	/*
	 * Compute z3 = h*z1*z2.
	 */
	f256_montymul(t1, P1->z, P2->z);
	f256_montymul(P1->z, t1, t2);

	return ret;
}

/*
 * Point addition (mixed coordinates): P1 is replaced with P1+P2.
 * This is a specialised function for the case when P2 is a non-zero point
 * in affine coordinates.
 *
 * This function computes the wrong result in the following cases:
 *
 *   - If P1 == 0
 *   - If P1 == P2
 *
 * In both cases, P1 is set to the point at infinity.
 *
 * Returned value is 0 if one of the following occurs:
 *
 *   - P1 and P2 have the same Y (affine) coordinate.
 *   - The Y coordinate of P2 is 0 and P1 is the point at infinity.
 *
 * The second case cannot actually happen with valid points, since a point
 * with Y == 0 is a point of order 2, and there is no point of order 2 on
 * curve P-256.
 *
 * Therefore, assuming that P1 != 0 on input, then the caller
 * can apply the following:
 *
 *   - If the result is not the point at infinity, then it is correct.
 *   - Otherwise, if the returned value is 1, then this is a case of
 *     P1+P2 == 0, so the result is indeed the point at infinity.
 *   - Otherwise, P1 == P2, so a "double" operation should have been
 *     performed.
 *
 * Again, a value of 0 may be returned in some cases where the addition
 * result is correct.
 */
static uint32_t
p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
{
	/*
	 * Addtions formulas are:
	 *
	 *   u1 = x1
	 *   u2 = x2 * z1^2
	 *   s1 = y1
	 *   s2 = y2 * z1^3
	 *   h = u2 - u1
	 *   r = s2 - s1
	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
	 *   z3 = h * z1
	 */
	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
	uint32_t ret;

	/*
	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
	 */
	memcpy(t1, P1->x, sizeof t1);
	memcpy(t3, P1->y, sizeof t3);

	/*
	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
	 */
	f256_montysquare(t4, P1->z);
	f256_montymul(t2, P2->x, t4);
	f256_montymul(t5, P1->z, t4);
	f256_montymul(t4, P2->y, t5);

	/*
	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
	 * We need to test whether r is zero, so we will do some extra
	 * reduce.
	 */
	f256_sub(t2, t2, t1);
	f256_sub(t4, t4, t3);
	f256_final_reduce(t4);
	tt = t4[0] | t4[1] | t4[2] | t4[3];
	ret = (uint32_t)(tt | (tt >> 32));
	ret = (ret | -ret) >> 31;

	/*
	 * Compute u1*h^2 (in t6) and h^3 (in t5);
	 */
	f256_montysquare(t7, t2);
	f256_montymul(t6, t1, t7);
	f256_montymul(t5, t7, t2);

	/*
	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
	 */
	f256_montysquare(P1->x, t4);
	f256_sub(P1->x, P1->x, t5);
	f256_sub(P1->x, P1->x, t6);
	f256_sub(P1->x, P1->x, t6);

	/*
	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
	 */
	f256_sub(t6, t6, P1->x);
	f256_montymul(P1->y, t4, t6);
	f256_montymul(t1, t5, t3);
	f256_sub(P1->y, P1->y, t1);

	/*
	 * Compute z3 = h*z1*z2.
	 */
	f256_montymul(P1->z, P1->z, t2);

	return ret;
}

#if 0
/* unused */
/*
 * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
 * This is a specialised function for the case when P2 is a non-zero point
 * in affine coordinates.
 *
 * This function returns the correct result in all cases.
 */
static uint32_t
p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
{
	/*
	 * Addtions formulas, in the general case, are:
	 *
	 *   u1 = x1
	 *   u2 = x2 * z1^2
	 *   s1 = y1
	 *   s2 = y2 * z1^3
	 *   h = u2 - u1
	 *   r = s2 - s1
	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
	 *   z3 = h * z1
	 *
	 * These formulas mishandle the two following cases:
	 *
	 *  - If P1 is the point-at-infinity (z1 = 0), then z3 is
	 *    incorrectly set to 0.
	 *
	 *  - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
	 *    are all set to 0.
	 *
	 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
	 * we correctly get z3 = 0 (the point-at-infinity).
	 *
	 * To fix the case P1 = 0, we perform at the end a copy of P2
	 * over P1, conditional to z1 = 0.
	 *
	 * For P1 = P2: in that case, both h and r are set to 0, and
	 * we get x3, y3 and z3 equal to 0. We can test for that
	 * occurrence to make a mask which will be all-one if P1 = P2,
	 * or all-zero otherwise; then we can compute the double of P2
	 * and add it, combined with the mask, to (x3,y3,z3).
	 *
	 * Using the doubling formulas in p256_double() on (x2,y2),
	 * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
	 * we get:
	 *   s = 4*x2*y2^2
	 *   m = 3*(x2 + 1)*(x2 - 1)
	 *   x' = m^2 - 2*s
	 *   y' = m*(s - x') - 8*y2^4
	 *   z' = 2*y2
	 * which requires only 6 multiplications. Added to the 11
	 * multiplications of the normal mixed addition in Jacobian
	 * coordinates, we get a cost of 17 multiplications in total.
	 */
	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz;
	int i;

	/*
	 * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
	 */
	zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3];
	zz = ((zz | -zz) >> 63) - (uint64_t)1;

	/*
	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
	 */
	memcpy(t1, P1->x, sizeof t1);
	memcpy(t3, P1->y, sizeof t3);

	/*
	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
	 */
	f256_montysquare(t4, P1->z);
	f256_montymul(t2, P2->x, t4);
	f256_montymul(t5, P1->z, t4);
	f256_montymul(t4, P2->y, t5);

	/*
	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
	 * reduce.
	 */
	f256_sub(t2, t2, t1);
	f256_sub(t4, t4, t3);

	/*
	 * If both h = 0 and r = 0, then P1 = P2, and we want to set
	 * the mask tt to -1; otherwise, the mask will be 0.
	 */
	f256_final_reduce(t2);
	f256_final_reduce(t4);
	tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3];
	tt = ((tt | -tt) >> 63) - (uint64_t)1;

	/*
	 * Compute u1*h^2 (in t6) and h^3 (in t5);
	 */
	f256_montysquare(t7, t2);
	f256_montymul(t6, t1, t7);
	f256_montymul(t5, t7, t2);

	/*
	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
	 */
	f256_montysquare(P1->x, t4);
	f256_sub(P1->x, P1->x, t5);
	f256_sub(P1->x, P1->x, t6);
	f256_sub(P1->x, P1->x, t6);

	/*
	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
	 */
	f256_sub(t6, t6, P1->x);
	f256_montymul(P1->y, t4, t6);
	f256_montymul(t1, t5, t3);
	f256_sub(P1->y, P1->y, t1);

	/*
	 * Compute z3 = h*z1.
	 */
	f256_montymul(P1->z, P1->z, t2);

	/*
	 * The "double" result, in case P1 = P2.
	 */

	/*
	 * Compute z' = 2*y2 (in t1).
	 */
	f256_add(t1, P2->y, P2->y);

	/*
	 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
	 */
	f256_montysquare(t2, P2->y);
	f256_add(t2, t2, t2);
	f256_add(t3, t2, t2);
	f256_montymul(t3, P2->x, t3);

	/*
	 * Compute m = 3*(x2^2 - 1) (in t4).
	 */
	f256_montysquare(t4, P2->x);
	f256_sub(t4, t4, F256_R);
	f256_add(t5, t4, t4);
	f256_add(t4, t4, t5);

	/*
	 * Compute x' = m^2 - 2*s (in t5).
	 */
	f256_montysquare(t5, t4);
	f256_sub(t5, t3);
	f256_sub(t5, t3);

	/*
	 * Compute y' = m*(s - x') - 8*y2^4 (in t6).
	 */
	f256_sub(t6, t3, t5);
	f256_montymul(t6, t6, t4);
	f256_montysquare(t7, t2);
	f256_sub(t6, t6, t7);
	f256_sub(t6, t6, t7);

	/*
	 * We now have the alternate (doubling) coordinates in (t5,t6,t1).
	 * We combine them with (x3,y3,z3).
	 */
	for (i = 0; i < 4; i ++) {
		P1->x[i] |= tt & t5[i];
		P1->y[i] |= tt & t6[i];
		P1->z[i] |= tt & t1[i];
	}

	/*
	 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
	 * then we want to replace the result with a copy of P2. The
	 * test on z1 was done at the start, in the zz mask.
	 */
	for (i = 0; i < 4; i ++) {
		P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
		P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
		P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
	}
}
#endif

/*
 * Inner function for computing a point multiplication. A window is
 * provided, with points 1*P to 15*P in affine coordinates.
 *
 * Assumptions:
 *  - All provided points are valid points on the curve.
 *  - Multiplier is non-zero, and smaller than the curve order.
 *  - Everything is in Montgomery representation.
 */
static void
point_mul_inner(p256_jacobian *R, const p256_affine *W,
	const unsigned char *k, size_t klen)
{
	p256_jacobian Q;
	uint32_t qz;

	memset(&Q, 0, sizeof Q);
	qz = 1;
	while (klen -- > 0) {
		int i;
		unsigned bk;

		bk = *k ++;
		for (i = 0; i < 2; i ++) {
			uint32_t bits;
			uint32_t bnz;
			p256_affine T;
			p256_jacobian U;
			uint32_t n;
			int j;
			uint64_t m;

			p256_double(&Q);
			p256_double(&Q);
			p256_double(&Q);
			p256_double(&Q);
			bits = (bk >> 4) & 0x0F;
			bnz = NEQ(bits, 0);

			/*
			 * Lookup point in window. If the bits are 0,
			 * we get something invalid, which is not a
			 * problem because we will use it only if the
			 * bits are non-zero.
			 */
			memset(&T, 0, sizeof T);
			for (n = 0; n < 15; n ++) {
				m = -(uint64_t)EQ(bits, n + 1);
				T.x[0] |= m & W[n].x[0];
				T.x[1] |= m & W[n].x[1];
				T.x[2] |= m & W[n].x[2];
				T.x[3] |= m & W[n].x[3];
				T.y[0] |= m & W[n].y[0];
				T.y[1] |= m & W[n].y[1];
				T.y[2] |= m & W[n].y[2];
				T.y[3] |= m & W[n].y[3];
			}

			U = Q;
			p256_add_mixed(&U, &T);

			/*
			 * If qz is still 1, then Q was all-zeros, and this
			 * is conserved through p256_double().
			 */
			m = -(uint64_t)(bnz & qz);
			for (j = 0; j < 4; j ++) {
				Q.x[j] |= m & T.x[j];
				Q.y[j] |= m & T.y[j];
				Q.z[j] |= m & F256_R[j];
			}
			CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
			qz &= ~bnz;
			bk <<= 4;
		}
	}
	*R = Q;
}

/*
 * Convert a window from Jacobian to affine coordinates. A single
 * field inversion is used. This function works for windows up to
 * 32 elements.
 *
 * The destination array (aff[]) and the source array (jac[]) may
 * overlap, provided that the start of aff[] is not after the start of
 * jac[]. Even if the arrays do _not_ overlap, the source array is
 * modified.
 */
static void
window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
{
	/*
	 * Convert the window points to affine coordinates. We use the
	 * following trick to mutualize the inversion computation: if
	 * we have z1, z2, z3, and z4, and want to inverse all of them,
	 * we compute u = 1/(z1*z2*z3*z4), and then we have:
	 *   1/z1 = u*z2*z3*z4
	 *   1/z2 = u*z1*z3*z4
	 *   1/z3 = u*z1*z2*z4
	 *   1/z4 = u*z1*z2*z3
	 *
	 * The partial products are computed recursively:
	 *
	 *  - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
	 *  - on input (z_1,z_2,... z_n):
	 *       recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
	 *       recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
	 *       multiply elements of r1 by m2 -> s1
	 *       multiply elements of r2 by m1 -> s2
	 *       return r1||r2 and m1*m2
	 *
	 * In the example below, we suppose that we have 14 elements.
	 * Let z1, z2,... zE be the 14 values to invert (index noted in
	 * hexadecimal, starting at 1).
	 *
	 *  - Depth 1:
	 *      swap(z1, z2); z12 = z1*z2
	 *      swap(z3, z4); z34 = z3*z4
	 *      swap(z5, z6); z56 = z5*z6
	 *      swap(z7, z8); z78 = z7*z8
	 *      swap(z9, zA); z9A = z9*zA
	 *      swap(zB, zC); zBC = zB*zC
	 *      swap(zD, zE); zDE = zD*zE
	 *
	 *  - Depth 2:
	 *      z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
	 *      z1234 = z12*z34
	 *      z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
	 *      z5678 = z56*z78
	 *      z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
	 *      z9ABC = z9A*zBC
	 *
	 *  - Depth 3:
	 *      z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
	 *      z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
	 *      z12345678 = z1234*z5678
	 *      z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
	 *      zD <- zD*z9ABC, zE*z9ABC
	 *      z9ABCDE = z9ABC*zDE
	 *
	 *  - Depth 4:
	 *      multiply z1..z8 by z9ABCDE
	 *      multiply z9..zE by z12345678
	 *      final z = z12345678*z9ABCDE
	 */

	uint64_t z[16][4];
	int i, k, s;
#define zt   (z[15])
#define zu   (z[14])
#define zv   (z[13])

	/*
	 * First recursion step (pairwise swapping and multiplication).
	 * If there is an odd number of elements, then we "invent" an
	 * extra one with coordinate Z = 1 (in Montgomery representation).
	 */
	for (i = 0; (i + 1) < num; i += 2) {
		memcpy(zt, jac[i].z, sizeof zt);
		memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
		memcpy(jac[i + 1].z, zt, sizeof zt);
		f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
	}
	if ((num & 1) != 0) {
		memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
		memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
	}

	/*
	 * Perform further recursion steps. At the entry of each step,
	 * the process has been done for groups of 's' points. The
	 * integer k is the log2 of s.
	 */
	for (k = 1, s = 2; s < num; k ++, s <<= 1) {
		int n;

		for (i = 0; i < num; i ++) {
			f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
		}
		n = (num + s - 1) >> k;
		for (i = 0; i < (n >> 1); i ++) {
			f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
		}
		if ((n & 1) != 0) {
			memmove(z[n >> 1], z[n], sizeof zt);
		}
	}

	/*
	 * Invert the final result, and convert all points.
	 */
	f256_invert(zt, z[0]);
	for (i = 0; i < num; i ++) {
		f256_montymul(zv, jac[i].z, zt);
		f256_montysquare(zu, zv);
		f256_montymul(zv, zv, zu);
		f256_montymul(aff[i].x, jac[i].x, zu);
		f256_montymul(aff[i].y, jac[i].y, zv);
	}
}

/*
 * Multiply the provided point by an integer.
 * Assumptions:
 *  - Source point is a valid curve point.
 *  - Source point is not the point-at-infinity.
 *  - Integer is not 0, and is lower than the curve order.
 * If these conditions are not met, then the result is indeterminate
 * (but the process is still constant-time).
 */
static void
p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
{
	union {
		p256_affine aff[15];
		p256_jacobian jac[15];
	} window;
	int i;

	/*
	 * Compute window, in Jacobian coordinates.
	 */
	window.jac[0] = *P;
	for (i = 2; i < 16; i ++) {
		window.jac[i - 1] = window.jac[(i >> 1) - 1];
		if ((i & 1) == 0) {
			p256_double(&window.jac[i - 1]);
		} else {
			p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
		}
	}

	/*
	 * Convert the window points to affine coordinates. Point
	 * window[0] is the source point, already in affine coordinates.
	 */
	window_to_affine(window.aff, window.jac, 15);

	/*
	 * Perform point multiplication.
	 */
	point_mul_inner(P, window.aff, k, klen);
}

/*
 * Precomputed window for the conventional generator: P256_Gwin[n]
 * contains (n+1)*G (affine coordinates, in Montgomery representation).
 */
static const p256_affine P256_Gwin[] = {
	{
		{ 0x79E730D418A9143C, 0x75BA95FC5FEDB601,
		  0x79FB732B77622510, 0x18905F76A53755C6 },
		{ 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C,
		  0xD2E88688DD21F325, 0x8571FF1825885D85 }
	},
	{
		{ 0x850046D410DDD64D, 0xAA6AE3C1A433827D,
		  0x732205038D1490D9, 0xF6BB32E43DCF3A3B },
		{ 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8,
		  0x19A8FB0E92042DBE, 0x78C577510A5B8A3B }
	},
	{
		{ 0xFFAC3F904EEBC127, 0xB027F84A087D81FB,
		  0x66AD77DD87CBBC98, 0x26936A3FB6FF747E },
		{ 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A,
		  0x788208311A2EE98E, 0xD5F06A29E587CC07 }
	},
	{
		{ 0x74B0B50D46918DCC, 0x4650A6EDC623C173,
		  0x0CDAACACE8100AF2, 0x577362F541B0176B },
		{ 0x2D96F24CE4CBABA6, 0x17628471FAD6F447,
		  0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 }
	},
	{
		{ 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D,
		  0x941CB5AAD076C20C, 0xC9079605890523C8 },
		{ 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B,
		  0x3540A9877E7A1F68, 0x73A076BB2DD1E916 }
	},
	{
		{ 0x403947373E77664A, 0x55AE744F346CEE3E,
		  0xD50A961A5B17A3AD, 0x13074B5954213673 },
		{ 0x93D36220D377E44B, 0x299C2B53ADFF14B5,
		  0xF424D44CEF639F11, 0xA4C9916D4A07F75F }
	},
	{
		{ 0x0746354EA0173B4F, 0x2BD20213D23C00F7,
		  0xF43EAAB50C23BB08, 0x13BA5119C3123E03 },
		{ 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD,
		  0xEF933BDC77C94195, 0xEAEDD9156E240867 }
	},
	{
		{ 0x27F14CD19499A78F, 0x462AB5C56F9B3455,
		  0x8F90F02AF02CFC6B, 0xB763891EB265230D },
		{ 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15,
		  0x123C7B84BE60BBF0, 0x56EC12F27706DF76 }
	},
	{
		{ 0x75C96E8F264E20E8, 0xABE6BFED59A7A841,
		  0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B },
		{ 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3,
		  0x2B6E019A88B12F1A, 0x086659CDFD835F9B }
	},
	{
		{ 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139,
		  0x737D2CD648250B49, 0xCC61C94724B3428F },
		{ 0x0C2B407880DD9E76, 0xC43A8991383FBE08,
		  0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 }
	},
	{
		{ 0xEA7D260A6245E404, 0x9DE407956E7FDFE0,
		  0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 },
		{ 0x1A7685612B944E88, 0x250F939EE57F61C8,
		  0x0C0DAA891EAD643D, 0x68930023E125B88E }
	},
	{
		{ 0x04B71AA7D2697768, 0xABDEDEF5CA345A33,
		  0x2409D29DEE37385E, 0x4EE1DF77CB83E156 },
		{ 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637,
		  0x28228CFA8ADE6D66, 0x7FF57C9553238ACA }
	},
	{
		{ 0xCCC425634B2ED709, 0x0E356769856FD30D,
		  0xBCBCD43F559E9811, 0x738477AC5395B759 },
		{ 0x35752B90C00EE17F, 0x68748390742ED2E3,
		  0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 }
	},
	{
		{ 0xA242A35BB0CF664A, 0x126E48F77F9707E3,
		  0x1717BF54C6832660, 0xFAAE7332FD12C72E },
		{ 0x27B52DB7995D586B, 0xBE29569E832237C2,
		  0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB }
	},
	{
		{ 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B,
		  0xEE337424E4819370, 0xE2AA0E430AD3DA09 },
		{ 0x40B8524F6383C45D, 0xD766355442A41B25,
		  0x64EFA6DE778A4797, 0x2042170A7079ADF4 }
	}
};

/*
 * Multiply the conventional generator of the curve by the provided
 * integer. Return is written in *P.
 *
 * Assumptions:
 *  - Integer is not 0, and is lower than the curve order.
 * If this conditions is not met, then the result is indeterminate
 * (but the process is still constant-time).
 */
static void
p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
{
	point_mul_inner(P, P256_Gwin, k, klen);
}

/*
 * Return 1 if all of the following hold:
 *  - klen <= 32
 *  - k != 0
 *  - k is lower than the curve order
 * Otherwise, return 0.
 *
 * Constant-time behaviour: only klen may be observable.
 */
static uint32_t
check_scalar(const unsigned char *k, size_t klen)
{
	uint32_t z;
	int32_t c;
	size_t u;

	if (klen > 32) {
		return 0;
	}
	z = 0;
	for (u = 0; u < klen; u ++) {
		z |= k[u];
	}
	if (klen == 32) {
		c = 0;
		for (u = 0; u < klen; u ++) {
			c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
		}
	} else {
		c = -1;
	}
	return NEQ(z, 0) & LT0(c);
}

static uint32_t
api_mul(unsigned char *G, size_t Glen,
	const unsigned char *k, size_t klen, int curve)
{
	uint32_t r;
	p256_jacobian P;

	(void)curve;
	if (Glen != 65) {
		return 0;
	}
	r = check_scalar(k, klen);
	r &= point_decode(&P, G);
	p256_mul(&P, k, klen);
	r &= point_encode(G, &P);
	return r;
}

static size_t
api_mulgen(unsigned char *R,
	const unsigned char *k, size_t klen, int curve)
{
	p256_jacobian P;

	(void)curve;
	p256_mulgen(&P, k, klen);
	point_encode(R, &P);
	return 65;
}

static uint32_t
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
	const unsigned char *x, size_t xlen,
	const unsigned char *y, size_t ylen, int curve)
{
	/*
	 * We might want to use Shamir's trick here: make a composite
	 * window of u*P+v*Q points, to merge the two doubling-ladders
	 * into one. This, however, has some complications:
	 *
	 *  - During the computation, we may hit the point-at-infinity.
	 *    Thus, we would need p256_add_complete_mixed() (complete
	 *    formulas for point addition), with a higher cost (17 muls
	 *    instead of 11).
	 *
	 *  - A 4-bit window would be too large, since it would involve
	 *    16*16-1 = 255 points. For the same window size as in the
	 *    p256_mul() case, we would need to reduce the window size
	 *    to 2 bits, and thus perform twice as many non-doubling
	 *    point additions.
	 *
	 *  - The window may itself contain the point-at-infinity, and
	 *    thus cannot be in all generality be made of affine points.
	 *    Instead, we would need to make it a window of points in
	 *    Jacobian coordinates. Even p256_add_complete_mixed() would
	 *    be inappropriate.
	 *
	 * For these reasons, the code below performs two separate
	 * point multiplications, then computes the final point addition
	 * (which is both a "normal" addition, and a doubling, to handle
	 * all cases).
	 */

	p256_jacobian P, Q;
	uint32_t r, t, s;
	uint64_t z;

	(void)curve;
	if (len != 65) {
		return 0;
	}
	r = point_decode(&P, A);
	p256_mul(&P, x, xlen);
	if (B == NULL) {
		p256_mulgen(&Q, y, ylen);
	} else {
		r &= point_decode(&Q, B);
		p256_mul(&Q, y, ylen);
	}

	/*
	 * The final addition may fail in case both points are equal.
	 */
	t = p256_add(&P, &Q);
	f256_final_reduce(P.z);
	z = P.z[0] | P.z[1] | P.z[2] | P.z[3];
	s = EQ((uint32_t)(z | (z >> 32)), 0);
	p256_double(&Q);

	/*
	 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
	 * have the following:
	 *
	 *   s = 0, t = 0   return P (normal addition)
	 *   s = 0, t = 1   return P (normal addition)
	 *   s = 1, t = 0   return Q (a 'double' case)
	 *   s = 1, t = 1   report an error (P+Q = 0)
	 */
	CCOPY(s & ~t, &P, &Q, sizeof Q);
	point_encode(A, &P);
	r &= ~(s & t);
	return r;
}

/* see bearssl_ec.h */
const br_ec_impl br_ec_p256_m64 = {
	(uint32_t)0x00800000,
	&api_generator,
	&api_order,
	&api_xoff,
	&api_mul,
	&api_mulgen,
	&api_muladd
};

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_p256_m64_get(void)
{
	return &br_ec_p256_m64;
}

#else

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_p256_m64_get(void)
{
	return 0;
}

#endif