Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
/* Cache and manage the values of registers for GDB, the GNU debugger.

   Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
   2001, 2002, 2004 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbarch.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "reggroups.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdbcmd.h"		/* For maintenanceprintlist.  */

/*
 * DATA STRUCTURE
 *
 * Here is the actual register cache.
 */

/* Per-architecture object describing the layout of a register cache.
   Computed once when the architecture is created */

struct gdbarch_data *regcache_descr_handle;

struct regcache_descr
{
  /* The architecture this descriptor belongs to.  */
  struct gdbarch *gdbarch;

  /* Is this a ``legacy'' register cache?  Such caches reserve space
     for raw and pseudo registers and allow access to both.  */
  int legacy_p;

  /* The raw register cache.  Each raw (or hard) register is supplied
     by the target interface.  The raw cache should not contain
     redundant information - if the PC is constructed from two
     registers then those regigisters and not the PC lives in the raw
     cache.  */
  int nr_raw_registers;
  long sizeof_raw_registers;
  long sizeof_raw_register_valid_p;

  /* The cooked register space.  Each cooked register in the range
     [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
     register.  The remaining [NR_RAW_REGISTERS
     .. NR_COOKED_REGISTERS) (a.k.a. pseudo regiters) are mapped onto
     both raw registers and memory by the architecture methods
     gdbarch_register_read and gdbarch_register_write.  */
  int nr_cooked_registers;
  long sizeof_cooked_registers;
  long sizeof_cooked_register_valid_p;

  /* Offset and size (in 8 bit bytes), of reach register in the
     register cache.  All registers (including those in the range
     [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
     Assigning all registers an offset makes it possible to keep
     legacy code, such as that found in read_register_bytes() and
     write_register_bytes() working.  */
  long *register_offset;
  long *sizeof_register;

  /* Cached table containing the type of each register.  */
  struct type **register_type;
};

static void
init_legacy_regcache_descr (struct gdbarch *gdbarch,
			    struct regcache_descr *descr)
{
  int i;
  /* FIXME: cagney/2002-05-11: gdbarch_data() should take that
     ``gdbarch'' as a parameter.  */
  gdb_assert (gdbarch != NULL);

  /* Compute the offset of each register.  Legacy architectures define
     DEPRECATED_REGISTER_BYTE() so use that.  */
  /* FIXME: cagney/2002-11-07: Instead of using
     DEPRECATED_REGISTER_BYTE() this code should, as is done in
     init_regcache_descr(), compute the offets at runtime.  This
     currently isn't possible as some ISAs define overlapping register
     regions - see the mess in read_register_bytes() and
     write_register_bytes() registers.  */
  descr->sizeof_register
    = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
  descr->register_offset
    = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
  for (i = 0; i < descr->nr_cooked_registers; i++)
    {
      /* FIXME: cagney/2001-12-04: This code shouldn't need to use
         DEPRECATED_REGISTER_BYTE().  Unfortunately, legacy code likes
         to lay the buffer out so that certain registers just happen
         to overlap.  Ulgh!  New targets use gdbarch's register
         read/write and entirely avoid this uglyness.  */
      descr->register_offset[i] = DEPRECATED_REGISTER_BYTE (i);
      descr->sizeof_register[i] = DEPRECATED_REGISTER_RAW_SIZE (i);
      gdb_assert (MAX_REGISTER_SIZE >= DEPRECATED_REGISTER_RAW_SIZE (i));
      gdb_assert (MAX_REGISTER_SIZE >= DEPRECATED_REGISTER_VIRTUAL_SIZE (i));
    }

  /* Compute the real size of the register buffer.  Start out by
     trusting DEPRECATED_REGISTER_BYTES, but then adjust it upwards
     should that be found to not be sufficient.  */
  /* FIXME: cagney/2002-11-05: Instead of using the macro
     DEPRECATED_REGISTER_BYTES, this code should, as is done in
     init_regcache_descr(), compute the total number of register bytes
     using the accumulated offsets.  */
  descr->sizeof_cooked_registers = DEPRECATED_REGISTER_BYTES; /* OK */
  for (i = 0; i < descr->nr_cooked_registers; i++)
    {
      long regend;
      /* Keep extending the buffer so that there is always enough
         space for all registers.  The comparison is necessary since
         legacy code is free to put registers in random places in the
         buffer separated by holes.  Once DEPRECATED_REGISTER_BYTE()
         is killed this can be greatly simplified.  */
      regend = descr->register_offset[i] + descr->sizeof_register[i];
      if (descr->sizeof_cooked_registers < regend)
	descr->sizeof_cooked_registers = regend;
    }
  /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers
     in the register cache.  Unfortunately some architectures still
     rely on this and the pseudo_register_write() method.  */
  descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
}

static void *
init_regcache_descr (struct gdbarch *gdbarch)
{
  int i;
  struct regcache_descr *descr;
  gdb_assert (gdbarch != NULL);

  /* Create an initial, zero filled, table.  */
  descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
  descr->gdbarch = gdbarch;

  /* Total size of the register space.  The raw registers are mapped
     directly onto the raw register cache while the pseudo's are
     either mapped onto raw-registers or memory.  */
  descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
  descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;

  /* Fill in a table of register types.  */
  descr->register_type
    = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
  for (i = 0; i < descr->nr_cooked_registers; i++)
    {
      if (gdbarch_register_type_p (gdbarch))
	{
	  gdb_assert (!DEPRECATED_REGISTER_VIRTUAL_TYPE_P ()); /* OK */
	  descr->register_type[i] = gdbarch_register_type (gdbarch, i);
	}
      else
	descr->register_type[i] = DEPRECATED_REGISTER_VIRTUAL_TYPE (i); /* OK */
    }

  /* Construct a strictly RAW register cache.  Don't allow pseudo's
     into the register cache.  */
  descr->nr_raw_registers = NUM_REGS;

  /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
     array.  This pretects GDB from erant code that accesses elements
     of the global register_valid_p[] array in the range [NUM_REGS
     .. NUM_REGS + NUM_PSEUDO_REGS).  */
  descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;

  /* If an old style architecture, fill in the remainder of the
     register cache descriptor using the register macros.  */
  /* NOTE: cagney/2003-06-29: If either of DEPRECATED_REGISTER_BYTE or
     DEPRECATED_REGISTER_RAW_SIZE are still present, things are most likely
     totally screwed.  Ex: an architecture with raw register sizes
     smaller than what DEPRECATED_REGISTER_BYTE indicates; non
     monotonic DEPRECATED_REGISTER_BYTE values.  For GDB 6 check for
     these nasty methods and fall back to legacy code when present.
     Sigh!  */
  if ((!gdbarch_pseudo_register_read_p (gdbarch)
       && !gdbarch_pseudo_register_write_p (gdbarch)
       && !gdbarch_register_type_p (gdbarch))
      || DEPRECATED_REGISTER_BYTE_P ()
      || DEPRECATED_REGISTER_RAW_SIZE_P ())
    {
      descr->legacy_p = 1;
      init_legacy_regcache_descr (gdbarch, descr);
      return descr;
    }

  /* Lay out the register cache.

     NOTE: cagney/2002-05-22: Only register_type() is used when
     constructing the register cache.  It is assumed that the
     register's raw size, virtual size and type length are all the
     same.  */

  {
    long offset = 0;
    descr->sizeof_register
      = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
    descr->register_offset
      = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
    for (i = 0; i < descr->nr_cooked_registers; i++)
      {
	descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
	descr->register_offset[i] = offset;
	offset += descr->sizeof_register[i];
	gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
      }
    /* Set the real size of the register cache buffer.  */
    descr->sizeof_cooked_registers = offset;
  }

  /* FIXME: cagney/2002-05-22: Should only need to allocate space for
     the raw registers.  Unfortunately some code still accesses the
     register array directly using the global registers[].  Until that
     code has been purged, play safe and over allocating the register
     buffer.  Ulgh!  */
  descr->sizeof_raw_registers = descr->sizeof_cooked_registers;

  /* Sanity check.  Confirm that there is agreement between the
     regcache and the target's redundant DEPRECATED_REGISTER_BYTE (new
     targets should not even be defining it).  */
  for (i = 0; i < descr->nr_cooked_registers; i++)
    {
      if (DEPRECATED_REGISTER_BYTE_P ())
	gdb_assert (descr->register_offset[i] == DEPRECATED_REGISTER_BYTE (i));
#if 0
      gdb_assert (descr->sizeof_register[i] == DEPRECATED_REGISTER_RAW_SIZE (i));
      gdb_assert (descr->sizeof_register[i] == DEPRECATED_REGISTER_VIRTUAL_SIZE (i));
#endif
    }
  /* gdb_assert (descr->sizeof_raw_registers == DEPRECATED_REGISTER_BYTES (i));  */

  return descr;
}

static struct regcache_descr *
regcache_descr (struct gdbarch *gdbarch)
{
  return gdbarch_data (gdbarch, regcache_descr_handle);
}

/* Utility functions returning useful register attributes stored in
   the regcache descr.  */

struct type *
register_type (struct gdbarch *gdbarch, int regnum)
{
  struct regcache_descr *descr = regcache_descr (gdbarch);
  gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
  return descr->register_type[regnum];
}

/* Utility functions returning useful register attributes stored in
   the regcache descr.  */

int
register_size (struct gdbarch *gdbarch, int regnum)
{
  struct regcache_descr *descr = regcache_descr (gdbarch);
  int size;
  gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
  size = descr->sizeof_register[regnum];
  /* NB: The deprecated DEPRECATED_REGISTER_RAW_SIZE, if not provided, defaults
     to the size of the register's type.  */
  gdb_assert (size == DEPRECATED_REGISTER_RAW_SIZE (regnum)); /* OK */
  /* NB: Don't check the register's virtual size.  It, in say the case
     of the MIPS, may not match the raw size!  */
  return size;
}

/* The register cache for storing raw register values.  */

struct regcache
{
  struct regcache_descr *descr;
  /* The register buffers.  A read-only register cache can hold the
     full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
     register cache can only hold [0 .. NUM_REGS).  */
  char *registers;
  char *register_valid_p;
  /* Is this a read-only cache?  A read-only cache is used for saving
     the target's register state (e.g, across an inferior function
     call or just before forcing a function return).  A read-only
     cache can only be updated via the methods regcache_dup() and
     regcache_cpy().  The actual contents are determined by the
     reggroup_save and reggroup_restore methods.  */
  int readonly_p;
};

struct regcache *
regcache_xmalloc (struct gdbarch *gdbarch)
{
  struct regcache_descr *descr;
  struct regcache *regcache;
  gdb_assert (gdbarch != NULL);
  descr = regcache_descr (gdbarch);
  regcache = XMALLOC (struct regcache);
  regcache->descr = descr;
  regcache->registers
    = XCALLOC (descr->sizeof_raw_registers, char);
  regcache->register_valid_p
    = XCALLOC (descr->sizeof_raw_register_valid_p, char);
  regcache->readonly_p = 1;
  return regcache;
}

void
regcache_xfree (struct regcache *regcache)
{
  if (regcache == NULL)
    return;
  xfree (regcache->registers);
  xfree (regcache->register_valid_p);
  xfree (regcache);
}

static void
do_regcache_xfree (void *data)
{
  regcache_xfree (data);
}

struct cleanup *
make_cleanup_regcache_xfree (struct regcache *regcache)
{
  return make_cleanup (do_regcache_xfree, regcache);
}

/* Return REGCACHE's architecture.  */

struct gdbarch *
get_regcache_arch (const struct regcache *regcache)
{
  return regcache->descr->gdbarch;
}

/* Return  a pointer to register REGNUM's buffer cache.  */

static char *
register_buffer (const struct regcache *regcache, int regnum)
{
  return regcache->registers + regcache->descr->register_offset[regnum];
}

void
regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
	       void *src)
{
  struct gdbarch *gdbarch = dst->descr->gdbarch;
  char buf[MAX_REGISTER_SIZE];
  int regnum;
  /* The DST should be `read-only', if it wasn't then the save would
     end up trying to write the register values back out to the
     target.  */
  gdb_assert (dst->readonly_p);
  /* Clear the dest.  */
  memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
  memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
  /* Copy over any registers (identified by their membership in the
     save_reggroup) and mark them as valid.  The full [0 .. NUM_REGS +
     NUM_PSEUDO_REGS) range is checked since some architectures need
     to save/restore `cooked' registers that live in memory.  */
  for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
    {
      if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
	{
	  int valid = cooked_read (src, regnum, buf);
	  if (valid)
	    {
	      memcpy (register_buffer (dst, regnum), buf,
		      register_size (gdbarch, regnum));
	      dst->register_valid_p[regnum] = 1;
	    }
	}
    }
}

void
regcache_restore (struct regcache *dst,
		  regcache_cooked_read_ftype *cooked_read,
		  void *src)
{
  struct gdbarch *gdbarch = dst->descr->gdbarch;
  char buf[MAX_REGISTER_SIZE];
  int regnum;
  /* The dst had better not be read-only.  If it is, the `restore'
     doesn't make much sense.  */
  gdb_assert (!dst->readonly_p);
  /* Copy over any registers, being careful to only restore those that
     were both saved and need to be restored.  The full [0 .. NUM_REGS
     + NUM_PSEUDO_REGS) range is checked since some architectures need
     to save/restore `cooked' registers that live in memory.  */
  for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
    {
      if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
	{
	  int valid = cooked_read (src, regnum, buf);
	  if (valid)
	    regcache_cooked_write (dst, regnum, buf);
	}
    }
}

static int
do_cooked_read (void *src, int regnum, void *buf)
{
  struct regcache *regcache = src;
  if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
    /* Don't even think about fetching a register from a read-only
       cache when the register isn't yet valid.  There isn't a target
       from which the register value can be fetched.  */
    return 0;
  regcache_cooked_read (regcache, regnum, buf);
  return 1;
}


void
regcache_cpy (struct regcache *dst, struct regcache *src)
{
  int i;
  char *buf;
  gdb_assert (src != NULL && dst != NULL);
  gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
  gdb_assert (src != dst);
  gdb_assert (src->readonly_p || dst->readonly_p);
  if (!src->readonly_p)
    regcache_save (dst, do_cooked_read, src);
  else if (!dst->readonly_p)
    regcache_restore (dst, do_cooked_read, src);
  else
    regcache_cpy_no_passthrough (dst, src);
}

void
regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
{
  int i;
  gdb_assert (src != NULL && dst != NULL);
  gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
  /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
     move of data into the current_regcache().  Doing this would be
     silly - it would mean that valid_p would be completely invalid.  */
  gdb_assert (dst != current_regcache);
  memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
  memcpy (dst->register_valid_p, src->register_valid_p,
	  dst->descr->sizeof_raw_register_valid_p);
}

struct regcache *
regcache_dup (struct regcache *src)
{
  struct regcache *newbuf;
  gdb_assert (current_regcache != NULL);
  newbuf = regcache_xmalloc (src->descr->gdbarch);
  regcache_cpy (newbuf, src);
  return newbuf;
}

struct regcache *
regcache_dup_no_passthrough (struct regcache *src)
{
  struct regcache *newbuf;
  gdb_assert (current_regcache != NULL);
  newbuf = regcache_xmalloc (src->descr->gdbarch);
  regcache_cpy_no_passthrough (newbuf, src);
  return newbuf;
}

int
regcache_valid_p (struct regcache *regcache, int regnum)
{
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  return regcache->register_valid_p[regnum];
}

char *
deprecated_grub_regcache_for_registers (struct regcache *regcache)
{
  return regcache->registers;
}

/* Global structure containing the current regcache.  */
/* FIXME: cagney/2002-05-11: The two global arrays registers[] and
   deprecated_register_valid[] currently point into this structure.  */
struct regcache *current_regcache;

/* NOTE: this is a write-through cache.  There is no "dirty" bit for
   recording if the register values have been changed (eg. by the
   user).  Therefore all registers must be written back to the
   target when appropriate.  */

/* REGISTERS contains the cached register values (in target byte order). */

char *deprecated_registers;

/* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched,
                     1 if it has been fetched, and
		    -1 if the register value was not available.  

   "Not available" indicates that the target is not not able to supply
   the register at this state.  The register may become available at a
   later time (after the next resume).  This often occures when GDB is
   manipulating a target that contains only a snapshot of the entire
   system being debugged - some of the registers in such a system may
   not have been saved.  */

signed char *deprecated_register_valid;

/* The thread/process associated with the current set of registers. */

static ptid_t registers_ptid;

/*
 * FUNCTIONS:
 */

/* REGISTER_CACHED()

   Returns 0 if the value is not in the cache (needs fetch).
          >0 if the value is in the cache.
	  <0 if the value is permanently unavailable (don't ask again).  */

int
register_cached (int regnum)
{
  return deprecated_register_valid[regnum];
}

/* Record that REGNUM's value is cached if STATE is >0, uncached but
   fetchable if STATE is 0, and uncached and unfetchable if STATE is <0.  */

void
set_register_cached (int regnum, int state)
{
  gdb_assert (regnum >= 0);
  gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
  current_regcache->register_valid_p[regnum] = state;
}

/* Return whether register REGNUM is a real register.  */

static int
real_register (int regnum)
{
  return regnum >= 0 && regnum < NUM_REGS;
}

/* Low level examining and depositing of registers.

   The caller is responsible for making sure that the inferior is
   stopped before calling the fetching routines, or it will get
   garbage.  (a change from GDB version 3, in which the caller got the
   value from the last stop).  */

/* REGISTERS_CHANGED ()

   Indicate that registers may have changed, so invalidate the cache.  */

void
registers_changed (void)
{
  int i;

  registers_ptid = pid_to_ptid (-1);

  /* Force cleanup of any alloca areas if using C alloca instead of
     a builtin alloca.  This particular call is used to clean up
     areas allocated by low level target code which may build up
     during lengthy interactions between gdb and the target before
     gdb gives control to the user (ie watchpoints).  */
  alloca (0);

  for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
    set_register_cached (i, 0);

  if (registers_changed_hook)
    registers_changed_hook ();
}

/* DEPRECATED_REGISTERS_FETCHED ()

   Indicate that all registers have been fetched, so mark them all valid.  */

/* NOTE: cagney/2001-12-04: This function does not set valid on the
   pseudo-register range since pseudo registers are always supplied
   using supply_register().  */
/* FIXME: cagney/2001-12-04: This function is DEPRECATED.  The target
   code was blatting the registers[] array and then calling this.
   Since targets should only be using supply_register() the need for
   this function/hack is eliminated.  */

void
deprecated_registers_fetched (void)
{
  int i;

  for (i = 0; i < NUM_REGS; i++)
    set_register_cached (i, 1);
  /* Do not assume that the pseudo-regs have also been fetched.
     Fetching all real regs NEVER accounts for pseudo-regs.  */
}

/* deprecated_read_register_bytes and deprecated_write_register_bytes
   are generally a *BAD* idea.  They are inefficient because they need
   to check for partial updates, which can only be done by scanning
   through all of the registers and seeing if the bytes that are being
   read/written fall inside of an invalid register.  [The main reason
   this is necessary is that register sizes can vary, so a simple
   index won't suffice.]  It is far better to call read_register_gen
   and write_register_gen if you want to get at the raw register
   contents, as it only takes a regnum as an argument, and therefore
   can't do a partial register update.

   Prior to the recent fixes to check for partial updates, both read
   and deprecated_write_register_bytes always checked to see if any
   registers were stale, and then called target_fetch_registers (-1)
   to update the whole set.  This caused really slowed things down for
   remote targets.  */

/* Copy INLEN bytes of consecutive data from registers
   starting with the INREGBYTE'th byte of register data
   into memory at MYADDR.  */

void
deprecated_read_register_bytes (int in_start, char *in_buf, int in_len)
{
  int in_end = in_start + in_len;
  int regnum;
  char reg_buf[MAX_REGISTER_SIZE];

  /* See if we are trying to read bytes from out-of-date registers.  If so,
     update just those registers.  */

  for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
    {
      int reg_start;
      int reg_end;
      int reg_len;
      int start;
      int end;
      int byte;

      reg_start = DEPRECATED_REGISTER_BYTE (regnum);
      reg_len = DEPRECATED_REGISTER_RAW_SIZE (regnum);
      reg_end = reg_start + reg_len;

      if (reg_end <= in_start || in_end <= reg_start)
	/* The range the user wants to read doesn't overlap with regnum.  */
	continue;

      if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
	/* Force the cache to fetch the entire register.  */
	deprecated_read_register_gen (regnum, reg_buf);
      else
	/* Legacy note: even though this register is ``invalid'' we
           still need to return something.  It would appear that some
           code relies on apparent gaps in the register array also
           being returned.  */
	/* FIXME: cagney/2001-08-18: This is just silly.  It defeats
           the entire register read/write flow of control.  Must
           resist temptation to return 0xdeadbeef.  */
	memcpy (reg_buf, &deprecated_registers[reg_start], reg_len);

      /* Legacy note: This function, for some reason, allows a NULL
         input buffer.  If the buffer is NULL, the registers are still
         fetched, just the final transfer is skipped. */
      if (in_buf == NULL)
	continue;

      /* start = max (reg_start, in_start) */
      if (reg_start > in_start)
	start = reg_start;
      else
	start = in_start;

      /* end = min (reg_end, in_end) */
      if (reg_end < in_end)
	end = reg_end;
      else
	end = in_end;

      /* Transfer just the bytes common to both IN_BUF and REG_BUF */
      for (byte = start; byte < end; byte++)
	{
	  in_buf[byte - in_start] = reg_buf[byte - reg_start];
	}
    }
}

/* Read register REGNUM into memory at MYADDR, which must be large
   enough for REGISTER_RAW_BYTES (REGNUM).  Target byte-order.  If the
   register is known to be the size of a CORE_ADDR or smaller,
   read_register can be used instead.  */

static void
legacy_read_register_gen (int regnum, char *myaddr)
{
  gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
  if (! ptid_equal (registers_ptid, inferior_ptid))
    {
      registers_changed ();
      registers_ptid = inferior_ptid;
    }

  if (!register_cached (regnum))
    target_fetch_registers (regnum);

  memcpy (myaddr, register_buffer (current_regcache, regnum),
	  DEPRECATED_REGISTER_RAW_SIZE (regnum));
}

void
regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
{
  gdb_assert (regcache != NULL && buf != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  if (regcache->descr->legacy_p
      && !regcache->readonly_p)
    {
      gdb_assert (regcache == current_regcache);
      /* For moment, just use underlying legacy code.  Ulgh!!! This
	 silently and very indirectly updates the regcache's regcache
	 via the global deprecated_register_valid[].  */
      legacy_read_register_gen (regnum, buf);
      return;
    }
  /* Make certain that the register cache is up-to-date with respect
     to the current thread.  This switching shouldn't be necessary
     only there is still only one target side register cache.  Sigh!
     On the bright side, at least there is a regcache object.  */
  if (!regcache->readonly_p)
    {
      gdb_assert (regcache == current_regcache);
      if (! ptid_equal (registers_ptid, inferior_ptid))
	{
	  registers_changed ();
	  registers_ptid = inferior_ptid;
	}
      if (!register_cached (regnum))
	target_fetch_registers (regnum);
    }
  /* Copy the value directly into the register cache.  */
  memcpy (buf, register_buffer (regcache, regnum),
	  regcache->descr->sizeof_register[regnum]);
}

void
regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
{
  char *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  regcache_raw_read (regcache, regnum, buf);
  (*val) = extract_signed_integer (buf,
				   regcache->descr->sizeof_register[regnum]);
}

void
regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
			    ULONGEST *val)
{
  char *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  regcache_raw_read (regcache, regnum, buf);
  (*val) = extract_unsigned_integer (buf,
				     regcache->descr->sizeof_register[regnum]);
}

void
regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
{
  void *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
  regcache_raw_write (regcache, regnum, buf);
}

void
regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
			     ULONGEST val)
{
  void *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
  regcache_raw_write (regcache, regnum, buf);
}

void
deprecated_read_register_gen (int regnum, char *buf)
{
  gdb_assert (current_regcache != NULL);
  gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
  if (current_regcache->descr->legacy_p)
    {
      legacy_read_register_gen (regnum, buf);
      return;
    }
  regcache_cooked_read (current_regcache, regnum, buf);
}

void
regcache_cooked_read (struct regcache *regcache, int regnum, void *buf)
{
  gdb_assert (regnum >= 0);
  gdb_assert (regnum < regcache->descr->nr_cooked_registers);
  if (regnum < regcache->descr->nr_raw_registers)
    regcache_raw_read (regcache, regnum, buf);
  else if (regcache->readonly_p
	   && regnum < regcache->descr->nr_cooked_registers
	   && regcache->register_valid_p[regnum])
    /* Read-only register cache, perhaphs the cooked value was cached?  */
    memcpy (buf, register_buffer (regcache, regnum),
	    regcache->descr->sizeof_register[regnum]);
  else
    gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
				  regnum, buf);
}

void
regcache_cooked_read_signed (struct regcache *regcache, int regnum,
			     LONGEST *val)
{
  char *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  regcache_cooked_read (regcache, regnum, buf);
  (*val) = extract_signed_integer (buf,
				   regcache->descr->sizeof_register[regnum]);
}

void
regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
			       ULONGEST *val)
{
  char *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  regcache_cooked_read (regcache, regnum, buf);
  (*val) = extract_unsigned_integer (buf,
				     regcache->descr->sizeof_register[regnum]);
}

void
regcache_cooked_write_signed (struct regcache *regcache, int regnum,
			      LONGEST val)
{
  void *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
  regcache_cooked_write (regcache, regnum, buf);
}

void
regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
				ULONGEST val)
{
  void *buf;
  gdb_assert (regcache != NULL);
  gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
  buf = alloca (regcache->descr->sizeof_register[regnum]);
  store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
  regcache_cooked_write (regcache, regnum, buf);
}

/* Write register REGNUM at MYADDR to the target.  MYADDR points at
   REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order.  */

static void
legacy_write_register_gen (int regnum, const void *myaddr)
{
  int size;
  gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));

  /* On the sparc, writing %g0 is a no-op, so we don't even want to
     change the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regnum))
    return;

  if (! ptid_equal (registers_ptid, inferior_ptid))
    {
      registers_changed ();
      registers_ptid = inferior_ptid;
    }

  size = DEPRECATED_REGISTER_RAW_SIZE (regnum);

  if (real_register (regnum))
    {
      /* If we have a valid copy of the register, and new value == old
	 value, then don't bother doing the actual store. */
      if (register_cached (regnum)
	  && (memcmp (register_buffer (current_regcache, regnum), myaddr, size)
	      == 0))
	return;
      else
	target_prepare_to_store ();
    }

  memcpy (register_buffer (current_regcache, regnum), myaddr, size);

  set_register_cached (regnum, 1);
  target_store_registers (regnum);
}

void
regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
{
  gdb_assert (regcache != NULL && buf != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  gdb_assert (!regcache->readonly_p);

  if (regcache->descr->legacy_p)
    {
      /* For moment, just use underlying legacy code.  Ulgh!!! This
	 silently and very indirectly updates the regcache's buffers
	 via the globals deprecated_register_valid[] and registers[].  */
      gdb_assert (regcache == current_regcache);
      legacy_write_register_gen (regnum, buf);
      return;
    }

  /* On the sparc, writing %g0 is a no-op, so we don't even want to
     change the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regnum))
    return;

  /* Make certain that the correct cache is selected.  */
  gdb_assert (regcache == current_regcache);
  if (! ptid_equal (registers_ptid, inferior_ptid))
    {
      registers_changed ();
      registers_ptid = inferior_ptid;
    }

  /* If we have a valid copy of the register, and new value == old
     value, then don't bother doing the actual store. */
  if (regcache_valid_p (regcache, regnum)
      && (memcmp (register_buffer (regcache, regnum), buf,
		  regcache->descr->sizeof_register[regnum]) == 0))
    return;

  target_prepare_to_store ();
  memcpy (register_buffer (regcache, regnum), buf,
	  regcache->descr->sizeof_register[regnum]);
  regcache->register_valid_p[regnum] = 1;
  target_store_registers (regnum);
}

void
deprecated_write_register_gen (int regnum, char *buf)
{
  gdb_assert (current_regcache != NULL);
  gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
  if (current_regcache->descr->legacy_p)
    {
      legacy_write_register_gen (regnum, buf);
      return;
    }
  regcache_cooked_write (current_regcache, regnum, buf);
}

void
regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf)
{
  gdb_assert (regnum >= 0);
  gdb_assert (regnum < regcache->descr->nr_cooked_registers);
  if (regnum < regcache->descr->nr_raw_registers)
    regcache_raw_write (regcache, regnum, buf);
  else
    gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
				   regnum, buf);
}

/* Copy INLEN bytes of consecutive data from memory at MYADDR
   into registers starting with the MYREGSTART'th byte of register data.  */

void
deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen)
{
  int myregend = myregstart + inlen;
  int regnum;

  target_prepare_to_store ();

  /* Scan through the registers updating any that are covered by the
     range myregstart<=>myregend using write_register_gen, which does
     nice things like handling threads, and avoiding updates when the
     new and old contents are the same.  */

  for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
    {
      int regstart, regend;

      regstart = DEPRECATED_REGISTER_BYTE (regnum);
      regend = regstart + DEPRECATED_REGISTER_RAW_SIZE (regnum);

      /* Is this register completely outside the range the user is writing?  */
      if (myregend <= regstart || regend <= myregstart)
	/* do nothing */ ;		

      /* Is this register completely within the range the user is writing?  */
      else if (myregstart <= regstart && regend <= myregend)
	deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));

      /* The register partially overlaps the range being written.  */
      else
	{
	  char regbuf[MAX_REGISTER_SIZE];
	  /* What's the overlap between this register's bytes and
             those the caller wants to write?  */
	  int overlapstart = max (regstart, myregstart);
	  int overlapend   = min (regend,   myregend);

	  /* We may be doing a partial update of an invalid register.
	     Update it from the target before scribbling on it.  */
	  deprecated_read_register_gen (regnum, regbuf);

	  memcpy (&deprecated_registers[overlapstart],
		  myaddr + (overlapstart - myregstart),
		  overlapend - overlapstart);

	  target_store_registers (regnum);
	}
    }
}

/* Perform a partial register transfer using a read, modify, write
   operation.  */

typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
				    void *buf);
typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
				     const void *buf);

static void
regcache_xfer_part (struct regcache *regcache, int regnum,
		    int offset, int len, void *in, const void *out,
		    regcache_read_ftype *read, regcache_write_ftype *write)
{
  struct regcache_descr *descr = regcache->descr;
  bfd_byte reg[MAX_REGISTER_SIZE];
  gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
  gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
  /* Something to do?  */
  if (offset + len == 0)
    return;
  /* Read (when needed) ... */
  if (in != NULL
      || offset > 0
      || offset + len < descr->sizeof_register[regnum])
    {
      gdb_assert (read != NULL);
      read (regcache, regnum, reg);
    }
  /* ... modify ... */
  if (in != NULL)
    memcpy (in, reg + offset, len);
  if (out != NULL)
    memcpy (reg + offset, out, len);
  /* ... write (when needed).  */
  if (out != NULL)
    {
      gdb_assert (write != NULL);
      write (regcache, regnum, reg);
    }
}

void
regcache_raw_read_part (struct regcache *regcache, int regnum,
			int offset, int len, void *buf)
{
  struct regcache_descr *descr = regcache->descr;
  gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
  regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
		      regcache_raw_read, regcache_raw_write);
}

void
regcache_raw_write_part (struct regcache *regcache, int regnum,
			 int offset, int len, const void *buf)
{
  struct regcache_descr *descr = regcache->descr;
  gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
  regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
		      regcache_raw_read, regcache_raw_write);
}

void
regcache_cooked_read_part (struct regcache *regcache, int regnum,
			   int offset, int len, void *buf)
{
  struct regcache_descr *descr = regcache->descr;
  gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
  regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
		      regcache_cooked_read, regcache_cooked_write);
}

void
regcache_cooked_write_part (struct regcache *regcache, int regnum,
			    int offset, int len, const void *buf)
{
  struct regcache_descr *descr = regcache->descr;
  gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
  regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
		      regcache_cooked_read, regcache_cooked_write);
}

/* Hack to keep code that view the register buffer as raw bytes
   working.  */

int
register_offset_hack (struct gdbarch *gdbarch, int regnum)
{
  struct regcache_descr *descr = regcache_descr (gdbarch);
  gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
  return descr->register_offset[regnum];
}

/* Return the contents of register REGNUM as an unsigned integer.  */

ULONGEST
read_register (int regnum)
{
  char *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
  deprecated_read_register_gen (regnum, buf);
  return (extract_unsigned_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
}

ULONGEST
read_register_pid (int regnum, ptid_t ptid)
{
  ptid_t save_ptid;
  int save_pid;
  CORE_ADDR retval;

  if (ptid_equal (ptid, inferior_ptid))
    return read_register (regnum);

  save_ptid = inferior_ptid;

  inferior_ptid = ptid;

  retval = read_register (regnum);

  inferior_ptid = save_ptid;

  return retval;
}

/* Store VALUE into the raw contents of register number REGNUM.  */

void
write_register (int regnum, LONGEST val)
{
  void *buf;
  int size;
  size = DEPRECATED_REGISTER_RAW_SIZE (regnum);
  buf = alloca (size);
  store_signed_integer (buf, size, (LONGEST) val);
  deprecated_write_register_gen (regnum, buf);
}

void
write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
{
  ptid_t save_ptid;

  if (ptid_equal (ptid, inferior_ptid))
    {
      write_register (regnum, val);
      return;
    }

  save_ptid = inferior_ptid;

  inferior_ptid = ptid;

  write_register (regnum, val);

  inferior_ptid = save_ptid;
}

/* FIXME: kettenis/20030828: We should get rid of supply_register and
   regcache_collect in favour of regcache_raw_supply and
   regcache_raw_collect.  */

/* SUPPLY_REGISTER()

   Record that register REGNUM contains VAL.  This is used when the
   value is obtained from the inferior or core dump, so there is no
   need to store the value there.

   If VAL is a NULL pointer, then it's probably an unsupported register.
   We just set its value to all zeros.  We might want to record this
   fact, and report it to the users of read_register and friends.  */

void
supply_register (int regnum, const void *val)
{
  regcache_raw_supply (current_regcache, regnum, val);

  /* On some architectures, e.g. HPPA, there are a few stray bits in
     some registers, that the rest of the code would like to ignore.  */

  /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
     going to be deprecated.  Instead architectures will leave the raw
     register value as is and instead clean things up as they pass
     through the method gdbarch_pseudo_register_read() clean up the
     values. */

#ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE
  DEPRECATED_CLEAN_UP_REGISTER_VALUE \
    (regnum, register_buffer (current_regcache, regnum));
#endif
}

void
regcache_collect (int regnum, void *buf)
{
  regcache_raw_collect (current_regcache, regnum, buf);
}

/* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE.  */

void
regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
{
  void *regbuf;
  size_t size;

  gdb_assert (regcache != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
  gdb_assert (!regcache->readonly_p);

  /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
     CURRENT_REGCACHE specially here.  */
  if (regcache == current_regcache
      && !ptid_equal (registers_ptid, inferior_ptid))
    {
      registers_changed ();
      registers_ptid = inferior_ptid;
    }

  regbuf = register_buffer (regcache, regnum);
  size = regcache->descr->sizeof_register[regnum];

  if (buf)
    memcpy (regbuf, buf, size);
  else
    memset (regbuf, 0, size);

  /* Mark the register as cached.  */
  regcache->register_valid_p[regnum] = 1;
}

/* Collect register REGNUM from REGCACHE and store its contents in BUF.  */

void
regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
{
  const void *regbuf;
  size_t size;

  gdb_assert (regcache != NULL && buf != NULL);
  gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);

  regbuf = register_buffer (regcache, regnum);
  size = regcache->descr->sizeof_register[regnum];
  memcpy (buf, regbuf, size);
}


/* read_pc, write_pc, read_sp, deprecated_read_fp, etc.  Special
   handling for registers PC, SP, and FP.  */

/* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc(),
   read_sp(), and deprecated_read_fp(), will eventually be replaced by
   per-frame methods.  Instead of relying on the global INFERIOR_PTID,
   they will use the contextual information provided by the FRAME.
   These functions do not belong in the register cache.  */

/* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
   write_pc_pid(), write_pc(), and deprecated_read_fp(), all need to
   be replaced by something that does not rely on global state.  But
   what?  */

CORE_ADDR
read_pc_pid (ptid_t ptid)
{
  ptid_t saved_inferior_ptid;
  CORE_ADDR pc_val;

  /* In case ptid != inferior_ptid. */
  saved_inferior_ptid = inferior_ptid;
  inferior_ptid = ptid;

  if (TARGET_READ_PC_P ())
    pc_val = TARGET_READ_PC (ptid);
  /* Else use per-frame method on get_current_frame.  */
  else if (PC_REGNUM >= 0)
    {
      CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
      pc_val = ADDR_BITS_REMOVE (raw_val);
    }
  else
    internal_error (__FILE__, __LINE__, "read_pc_pid: Unable to find PC");

  inferior_ptid = saved_inferior_ptid;
  return pc_val;
}

CORE_ADDR
read_pc (void)
{
  return read_pc_pid (inferior_ptid);
}

void
generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
{
  if (PC_REGNUM >= 0)
    write_register_pid (PC_REGNUM, pc, ptid);
  else
    internal_error (__FILE__, __LINE__,
		    "generic_target_write_pc");
}

void
write_pc_pid (CORE_ADDR pc, ptid_t ptid)
{
  ptid_t saved_inferior_ptid;

  /* In case ptid != inferior_ptid. */
  saved_inferior_ptid = inferior_ptid;
  inferior_ptid = ptid;

  TARGET_WRITE_PC (pc, ptid);

  inferior_ptid = saved_inferior_ptid;
}

void
write_pc (CORE_ADDR pc)
{
  write_pc_pid (pc, inferior_ptid);
}

/* Cope with strage ways of getting to the stack and frame pointers */

CORE_ADDR
read_sp (void)
{
  if (TARGET_READ_SP_P ())
    return TARGET_READ_SP ();
  else if (gdbarch_unwind_sp_p (current_gdbarch))
    return get_frame_sp (get_current_frame ());
  else if (SP_REGNUM >= 0)
    /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
       about the architecture so put it at the end.  */
    return read_register (SP_REGNUM);
  internal_error (__FILE__, __LINE__, "read_sp: Unable to find SP");
}

void
deprecated_write_sp (CORE_ADDR val)
{
  gdb_assert (SP_REGNUM >= 0);
  write_register (SP_REGNUM, val);
}

CORE_ADDR
deprecated_read_fp (void)
{
  if (DEPRECATED_TARGET_READ_FP_P ())
    return DEPRECATED_TARGET_READ_FP ();
  else if (DEPRECATED_FP_REGNUM >= 0)
    return read_register (DEPRECATED_FP_REGNUM);
  else
    internal_error (__FILE__, __LINE__, "deprecated_read_fp");
}

static void
reg_flush_command (char *command, int from_tty)
{
  /* Force-flush the register cache.  */
  registers_changed ();
  if (from_tty)
    printf_filtered ("Register cache flushed.\n");
}

static void
build_regcache (void)
{
  current_regcache = regcache_xmalloc (current_gdbarch);
  current_regcache->readonly_p = 0;
  deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache);
  deprecated_register_valid = current_regcache->register_valid_p;
}

static void
dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
		   const unsigned char *buf, long len)
{
  int i;
  switch (endian)
    {
    case BFD_ENDIAN_BIG:
      for (i = 0; i < len; i++)
	fprintf_unfiltered (file, "%02x", buf[i]);
      break;
    case BFD_ENDIAN_LITTLE:
      for (i = len - 1; i >= 0; i--)
	fprintf_unfiltered (file, "%02x", buf[i]);
      break;
    default:
      internal_error (__FILE__, __LINE__, "Bad switch");
    }
}

enum regcache_dump_what
{
  regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
};

static void
regcache_dump (struct regcache *regcache, struct ui_file *file,
	       enum regcache_dump_what what_to_dump)
{
  struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
  struct gdbarch *gdbarch = regcache->descr->gdbarch;
  int regnum;
  int footnote_nr = 0;
  int footnote_register_size = 0;
  int footnote_register_offset = 0;
  int footnote_register_type_name_null = 0;
  long register_offset = 0;
  unsigned char buf[MAX_REGISTER_SIZE];

#if 0
  fprintf_unfiltered (file, "legacy_p %d\n", regcache->descr->legacy_p);
  fprintf_unfiltered (file, "nr_raw_registers %d\n",
		      regcache->descr->nr_raw_registers);
  fprintf_unfiltered (file, "nr_cooked_registers %d\n",
		      regcache->descr->nr_cooked_registers);
  fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
		      regcache->descr->sizeof_raw_registers);
  fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
		      regcache->descr->sizeof_raw_register_valid_p);
  fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
  fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
#endif

  gdb_assert (regcache->descr->nr_cooked_registers
	      == (NUM_REGS + NUM_PSEUDO_REGS));

  for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
    {
      /* Name.  */
      if (regnum < 0)
	fprintf_unfiltered (file, " %-10s", "Name");
      else
	{
	  const char *p = REGISTER_NAME (regnum);
	  if (p == NULL)
	    p = "";
	  else if (p[0] == '\0')
	    p = "''";
	  fprintf_unfiltered (file, " %-10s", p);
	}

      /* Number.  */
      if (regnum < 0)
	fprintf_unfiltered (file, " %4s", "Nr");
      else
	fprintf_unfiltered (file, " %4d", regnum);

      /* Relative number.  */
      if (regnum < 0)
	fprintf_unfiltered (file, " %4s", "Rel");
      else if (regnum < NUM_REGS)
	fprintf_unfiltered (file, " %4d", regnum);
      else
	fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));

      /* Offset.  */
      if (regnum < 0)
	fprintf_unfiltered (file, " %6s  ", "Offset");
      else
	{
	  fprintf_unfiltered (file, " %6ld",
			      regcache->descr->register_offset[regnum]);
	  if (register_offset != regcache->descr->register_offset[regnum]
	      || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
	      || (regnum > 0
		  && (regcache->descr->register_offset[regnum]
		      != (regcache->descr->register_offset[regnum - 1]
			  + regcache->descr->sizeof_register[regnum - 1])))
	      )
	    {
	      if (!footnote_register_offset)
		footnote_register_offset = ++footnote_nr;
	      fprintf_unfiltered (file, "*%d", footnote_register_offset);
	    }
	  else
	    fprintf_unfiltered (file, "  ");
	  register_offset = (regcache->descr->register_offset[regnum]
			     + regcache->descr->sizeof_register[regnum]);
	}

      /* Size.  */
      if (regnum < 0)
	fprintf_unfiltered (file, " %5s ", "Size");
      else
	{
	  fprintf_unfiltered (file, " %5ld",
			      regcache->descr->sizeof_register[regnum]);
	  if ((regcache->descr->sizeof_register[regnum]
	       != DEPRECATED_REGISTER_RAW_SIZE (regnum))
	      || (regcache->descr->sizeof_register[regnum]
		  != DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum))
	      || (regcache->descr->sizeof_register[regnum]
		  != TYPE_LENGTH (register_type (regcache->descr->gdbarch,
						 regnum)))
	      )
	    {
	      if (!footnote_register_size)
		footnote_register_size = ++footnote_nr;
	      fprintf_unfiltered (file, "*%d", footnote_register_size);
	    }
	  else
	    fprintf_unfiltered (file, " ");
	}

      /* Type.  */
      {
	const char *t;
	if (regnum < 0)
	  t = "Type";
	else
	  {
	    static const char blt[] = "builtin_type";
	    t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
	    if (t == NULL)
	      {
		char *n;
		if (!footnote_register_type_name_null)
		  footnote_register_type_name_null = ++footnote_nr;
		xasprintf (&n, "*%d", footnote_register_type_name_null);
		make_cleanup (xfree, n);
		t = n;
	      }
	    /* Chop a leading builtin_type.  */
	    if (strncmp (t, blt, strlen (blt)) == 0)
	      t += strlen (blt);
	  }
	fprintf_unfiltered (file, " %-15s", t);
      }

      /* Leading space always present.  */
      fprintf_unfiltered (file, " ");

      /* Value, raw.  */
      if (what_to_dump == regcache_dump_raw)
	{
	  if (regnum < 0)
	    fprintf_unfiltered (file, "Raw value");
	  else if (regnum >= regcache->descr->nr_raw_registers)
	    fprintf_unfiltered (file, "<cooked>");
	  else if (!regcache_valid_p (regcache, regnum))
	    fprintf_unfiltered (file, "<invalid>");
	  else
	    {
	      regcache_raw_read (regcache, regnum, buf);
	      fprintf_unfiltered (file, "0x");
	      dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
				 DEPRECATED_REGISTER_RAW_SIZE (regnum));
	    }
	}

      /* Value, cooked.  */
      if (what_to_dump == regcache_dump_cooked)
	{
	  if (regnum < 0)
	    fprintf_unfiltered (file, "Cooked value");
	  else
	    {
	      regcache_cooked_read (regcache, regnum, buf);
	      fprintf_unfiltered (file, "0x");
	      dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
				 DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum));
	    }
	}

      /* Group members.  */
      if (what_to_dump == regcache_dump_groups)
	{
	  if (regnum < 0)
	    fprintf_unfiltered (file, "Groups");
	  else
	    {
	      const char *sep = "";
	      struct reggroup *group;
	      for (group = reggroup_next (gdbarch, NULL);
		   group != NULL;
		   group = reggroup_next (gdbarch, group))
		{
		  if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
		    {
		      fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
		      sep = ",";
		    }
		}
	    }
	}

      fprintf_unfiltered (file, "\n");
    }

  if (footnote_register_size)
    fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
			footnote_register_size);
  if (footnote_register_offset)
    fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
			footnote_register_offset);
  if (footnote_register_type_name_null)
    fprintf_unfiltered (file, 
			"*%d: Register type's name NULL.\n",
			footnote_register_type_name_null);
  do_cleanups (cleanups);
}

static void
regcache_print (char *args, enum regcache_dump_what what_to_dump)
{
  if (args == NULL)
    regcache_dump (current_regcache, gdb_stdout, what_to_dump);
  else
    {
      struct ui_file *file = gdb_fopen (args, "w");
      if (file == NULL)
	perror_with_name ("maintenance print architecture");
      regcache_dump (current_regcache, file, what_to_dump);    
      ui_file_delete (file);
    }
}

static void
maintenance_print_registers (char *args, int from_tty)
{
  regcache_print (args, regcache_dump_none);
}

static void
maintenance_print_raw_registers (char *args, int from_tty)
{
  regcache_print (args, regcache_dump_raw);
}

static void
maintenance_print_cooked_registers (char *args, int from_tty)
{
  regcache_print (args, regcache_dump_cooked);
}

static void
maintenance_print_register_groups (char *args, int from_tty)
{
  regcache_print (args, regcache_dump_groups);
}

extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */

void
_initialize_regcache (void)
{
  regcache_descr_handle = register_gdbarch_data (init_regcache_descr);
  DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
  DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_registers);
  DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_register_valid);
  deprecated_register_gdbarch_swap (NULL, 0, build_regcache);

  add_com ("flushregs", class_maintenance, reg_flush_command,
	   "Force gdb to flush its register cache (maintainer command)");

   /* Initialize the thread/process associated with the current set of
      registers.  For now, -1 is special, and means `no current process'.  */
  registers_ptid = pid_to_ptid (-1);

  add_cmd ("registers", class_maintenance,
	   maintenance_print_registers,
	   "Print the internal register configuration.\
Takes an optional file parameter.",
	   &maintenanceprintlist);
  add_cmd ("raw-registers", class_maintenance,
	   maintenance_print_raw_registers,
	   "Print the internal register configuration including raw values.\
Takes an optional file parameter.",
	   &maintenanceprintlist);
  add_cmd ("cooked-registers", class_maintenance,
	   maintenance_print_cooked_registers,
	   "Print the internal register configuration including cooked values.\
Takes an optional file parameter.",
	   &maintenanceprintlist);
  add_cmd ("register-groups", class_maintenance,
	   maintenance_print_register_groups,
	   "Print the internal register configuration including each register's group.\
Takes an optional file parameter.",
	   &maintenanceprintlist);

}