Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"

using namespace clang;
using namespace ento;

namespace {
class SimpleSValBuilder : public SValBuilder {
protected:
  SVal dispatchCast(SVal val, QualType castTy) override;
  SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
  SVal evalCastFromLoc(Loc val, QualType castTy) override;

public:
  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
                    ProgramStateManager &stateMgr)
                    : SValBuilder(alloc, context, stateMgr) {}
  ~SimpleSValBuilder() override {}

  SVal evalMinus(NonLoc val) override;
  SVal evalComplement(NonLoc val) override;
  SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
                   NonLoc lhs, NonLoc rhs, QualType resultTy) override;
  SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
                   Loc lhs, Loc rhs, QualType resultTy) override;
  SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
                   Loc lhs, NonLoc rhs, QualType resultTy) override;

  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
  ///  (integer) value, that value is returned. Otherwise, returns NULL.
  const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;

  /// Recursively descends into symbolic expressions and replaces symbols
  /// with their known values (in the sense of the getKnownValue() method).
  SVal simplifySVal(ProgramStateRef State, SVal V) override;

  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
                     const llvm::APSInt &RHS, QualType resultTy);
};
} // end anonymous namespace

SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
                                           ASTContext &context,
                                           ProgramStateManager &stateMgr) {
  return new SimpleSValBuilder(alloc, context, stateMgr);
}

//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
  assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
  return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
                           : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
}

SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
  bool isLocType = Loc::isLocType(castTy);
  if (val.getAs<nonloc::PointerToMember>())
    return val;

  if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
    if (isLocType)
      return LI->getLoc();
    // FIXME: Correctly support promotions/truncations.
    unsigned castSize = Context.getIntWidth(castTy);
    if (castSize == LI->getNumBits())
      return val;
    return makeLocAsInteger(LI->getLoc(), castSize);
  }

  if (const SymExpr *se = val.getAsSymbolicExpression()) {
    QualType T = Context.getCanonicalType(se->getType());
    // If types are the same or both are integers, ignore the cast.
    // FIXME: Remove this hack when we support symbolic truncation/extension.
    // HACK: If both castTy and T are integers, ignore the cast.  This is
    // not a permanent solution.  Eventually we want to precisely handle
    // extension/truncation of symbolic integers.  This prevents us from losing
    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
    // different integer types.
   if (haveSameType(T, castTy))
      return val;

    if (!isLocType)
      return makeNonLoc(se, T, castTy);
    return UnknownVal();
  }

  // If value is a non-integer constant, produce unknown.
  if (!val.getAs<nonloc::ConcreteInt>())
    return UnknownVal();

  // Handle casts to a boolean type.
  if (castTy->isBooleanType()) {
    bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
    return makeTruthVal(b, castTy);
  }

  // Only handle casts from integers to integers - if val is an integer constant
  // being cast to a non-integer type, produce unknown.
  if (!isLocType && !castTy->isIntegralOrEnumerationType())
    return UnknownVal();

  llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
  BasicVals.getAPSIntType(castTy).apply(i);

  if (isLocType)
    return makeIntLocVal(i);
  else
    return makeIntVal(i);
}

SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {

  // Casts from pointers -> pointers, just return the lval.
  //
  // Casts from pointers -> references, just return the lval.  These
  //   can be introduced by the frontend for corner cases, e.g
  //   casting from va_list* to __builtin_va_list&.
  //
  if (Loc::isLocType(castTy) || castTy->isReferenceType())
    return val;

  // FIXME: Handle transparent unions where a value can be "transparently"
  //  lifted into a union type.
  if (castTy->isUnionType())
    return UnknownVal();

  // Casting a Loc to a bool will almost always be true,
  // unless this is a weak function or a symbolic region.
  if (castTy->isBooleanType()) {
    switch (val.getSubKind()) {
      case loc::MemRegionValKind: {
        const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
        if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
            if (FD->isWeak())
              // FIXME: Currently we are using an extent symbol here,
              // because there are no generic region address metadata
              // symbols to use, only content metadata.
              return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));

        if (const SymbolicRegion *SymR = R->getSymbolicBase())
          return makeNonLoc(SymR->getSymbol(), BO_NE,
                            BasicVals.getZeroWithPtrWidth(), castTy);

        // FALL-THROUGH
        LLVM_FALLTHROUGH;
      }

      case loc::GotoLabelKind:
        // Labels and non-symbolic memory regions are always true.
        return makeTruthVal(true, castTy);
    }
  }

  if (castTy->isIntegralOrEnumerationType()) {
    unsigned BitWidth = Context.getIntWidth(castTy);

    if (!val.getAs<loc::ConcreteInt>())
      return makeLocAsInteger(val, BitWidth);

    llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
    BasicVals.getAPSIntType(castTy).apply(i);
    return makeIntVal(i);
  }

  // All other cases: return 'UnknownVal'.  This includes casting pointers
  // to floats, which is probably badness it itself, but this is a good
  // intermediate solution until we do something better.
  return UnknownVal();
}

//===----------------------------------------------------------------------===//
// Transfer function for unary operators.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::evalMinus(NonLoc val) {
  switch (val.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
  default:
    return UnknownVal();
  }
}

SVal SimpleSValBuilder::evalComplement(NonLoc X) {
  switch (X.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
  default:
    return UnknownVal();
  }
}

//===----------------------------------------------------------------------===//
// Transfer function for binary operators.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
                                    BinaryOperator::Opcode op,
                                    const llvm::APSInt &RHS,
                                    QualType resultTy) {
  bool isIdempotent = false;

  // Check for a few special cases with known reductions first.
  switch (op) {
  default:
    // We can't reduce this case; just treat it normally.
    break;
  case BO_Mul:
    // a*0 and a*1
    if (RHS == 0)
      return makeIntVal(0, resultTy);
    else if (RHS == 1)
      isIdempotent = true;
    break;
  case BO_Div:
    // a/0 and a/1
    if (RHS == 0)
      // This is also handled elsewhere.
      return UndefinedVal();
    else if (RHS == 1)
      isIdempotent = true;
    break;
  case BO_Rem:
    // a%0 and a%1
    if (RHS == 0)
      // This is also handled elsewhere.
      return UndefinedVal();
    else if (RHS == 1)
      return makeIntVal(0, resultTy);
    break;
  case BO_Add:
  case BO_Sub:
  case BO_Shl:
  case BO_Shr:
  case BO_Xor:
    // a+0, a-0, a<<0, a>>0, a^0
    if (RHS == 0)
      isIdempotent = true;
    break;
  case BO_And:
    // a&0 and a&(~0)
    if (RHS == 0)
      return makeIntVal(0, resultTy);
    else if (RHS.isAllOnesValue())
      isIdempotent = true;
    break;
  case BO_Or:
    // a|0 and a|(~0)
    if (RHS == 0)
      isIdempotent = true;
    else if (RHS.isAllOnesValue()) {
      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
      return nonloc::ConcreteInt(Result);
    }
    break;
  }

  // Idempotent ops (like a*1) can still change the type of an expression.
  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
  // dirty work.
  if (isIdempotent)
      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);

  // If we reach this point, the expression cannot be simplified.
  // Make a SymbolVal for the entire expression, after converting the RHS.
  const llvm::APSInt *ConvertedRHS = &RHS;
  if (BinaryOperator::isComparisonOp(op)) {
    // We're looking for a type big enough to compare the symbolic value
    // with the given constant.
    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
    ASTContext &Ctx = getContext();
    QualType SymbolType = LHS->getType();
    uint64_t ValWidth = RHS.getBitWidth();
    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);

    if (ValWidth < TypeWidth) {
      // If the value is too small, extend it.
      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    } else if (ValWidth == TypeWidth) {
      // If the value is signed but the symbol is unsigned, do the comparison
      // in unsigned space. [C99 6.3.1.8]
      // (For the opposite case, the value is already unsigned.)
      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    }
  } else
    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);

  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
}

// See if Sym is known to be a relation Rel with Bound.
static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
                         llvm::APSInt Bound, ProgramStateRef State) {
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  SVal Result =
      SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
                      nonloc::ConcreteInt(Bound), SVB.getConditionType());
  if (auto DV = Result.getAs<DefinedSVal>()) {
    return !State->assume(*DV, false);
  }
  return false;
}

// See if Sym is known to be within [min/4, max/4], where min and max
// are the bounds of the symbol's integral type. With such symbols,
// some manipulations can be performed without the risk of overflow.
// assume() doesn't cause infinite recursion because we should be dealing
// with simpler symbols on every recursive call.
static bool isWithinConstantOverflowBounds(SymbolRef Sym,
                                           ProgramStateRef State) {
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  BasicValueFactory &BV = SVB.getBasicValueFactory();

  QualType T = Sym->getType();
  assert(T->isSignedIntegerOrEnumerationType() &&
         "This only works with signed integers!");
  APSIntType AT = BV.getAPSIntType(T);

  llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
  return isInRelation(BO_LE, Sym, Max, State) &&
         isInRelation(BO_GE, Sym, Min, State);
}

// Same for the concrete integers: see if I is within [min/4, max/4].
static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
  APSIntType AT(I);
  assert(!AT.isUnsigned() &&
         "This only works with signed integers!");

  llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
  return (I <= Max) && (I >= -Max);
}

static std::pair<SymbolRef, llvm::APSInt>
decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
  if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
    if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
      return std::make_pair(SymInt->getLHS(),
                            (SymInt->getOpcode() == BO_Add) ?
                            (SymInt->getRHS()) :
                            (-SymInt->getRHS()));

  // Fail to decompose: "reduce" the problem to the "$x + 0" case.
  return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
}

// Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
// same signed integral type and no overflows occur (which should be checked
// by the caller).
static NonLoc doRearrangeUnchecked(ProgramStateRef State,
                                   BinaryOperator::Opcode Op,
                                   SymbolRef LSym, llvm::APSInt LInt,
                                   SymbolRef RSym, llvm::APSInt RInt) {
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  BasicValueFactory &BV = SVB.getBasicValueFactory();
  SymbolManager &SymMgr = SVB.getSymbolManager();

  QualType SymTy = LSym->getType();
  assert(SymTy == RSym->getType() &&
         "Symbols are not of the same type!");
  assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
         "Integers are not of the same type as symbols!");
  assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
         "Integers are not of the same type as symbols!");

  QualType ResultTy;
  if (BinaryOperator::isComparisonOp(Op))
    ResultTy = SVB.getConditionType();
  else if (BinaryOperator::isAdditiveOp(Op))
    ResultTy = SymTy;
  else
    llvm_unreachable("Operation not suitable for unchecked rearrangement!");

  // FIXME: Can we use assume() without getting into an infinite recursion?
  if (LSym == RSym)
    return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
                           nonloc::ConcreteInt(RInt), ResultTy)
        .castAs<NonLoc>();

  SymbolRef ResultSym = nullptr;
  BinaryOperator::Opcode ResultOp;
  llvm::APSInt ResultInt;
  if (BinaryOperator::isComparisonOp(Op)) {
    // Prefer comparing to a non-negative number.
    // FIXME: Maybe it'd be better to have consistency in
    // "$x - $y" vs. "$y - $x" because those are solver's keys.
    if (LInt > RInt) {
      ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
      ResultOp = BinaryOperator::reverseComparisonOp(Op);
      ResultInt = LInt - RInt; // Opposite order!
    } else {
      ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
      ResultOp = Op;
      ResultInt = RInt - LInt; // Opposite order!
    }
  } else {
    ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
    ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
    ResultOp = BO_Add;
    // Bring back the cosmetic difference.
    if (ResultInt < 0) {
      ResultInt = -ResultInt;
      ResultOp = BO_Sub;
    } else if (ResultInt == 0) {
      // Shortcut: Simplify "$x + 0" to "$x".
      return nonloc::SymbolVal(ResultSym);
    }
  }
  const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
  return nonloc::SymbolVal(
      SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
}

// Rearrange if symbol type matches the result type and if the operator is a
// comparison operator, both symbol and constant must be within constant
// overflow bounds.
static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
                            SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
  return Sym->getType() == Ty &&
    (!BinaryOperator::isComparisonOp(Op) ||
     (isWithinConstantOverflowBounds(Sym, State) &&
      isWithinConstantOverflowBounds(Int)));
}

static Optional<NonLoc> tryRearrange(ProgramStateRef State,
                                     BinaryOperator::Opcode Op, NonLoc Lhs,
                                     NonLoc Rhs, QualType ResultTy) {
  ProgramStateManager &StateMgr = State->getStateManager();
  SValBuilder &SVB = StateMgr.getSValBuilder();

  // We expect everything to be of the same type - this type.
  QualType SingleTy;

  auto &Opts =
    StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions();

  // FIXME: After putting complexity threshold to the symbols we can always
  //        rearrange additive operations but rearrange comparisons only if
  //        option is set.
  if(!Opts.ShouldAggressivelySimplifyBinaryOperation)
    return None;

  SymbolRef LSym = Lhs.getAsSymbol();
  if (!LSym)
    return None;

  if (BinaryOperator::isComparisonOp(Op)) {
    SingleTy = LSym->getType();
    if (ResultTy != SVB.getConditionType())
      return None;
    // Initialize SingleTy later with a symbol's type.
  } else if (BinaryOperator::isAdditiveOp(Op)) {
    SingleTy = ResultTy;
    if (LSym->getType() != SingleTy)
      return None;
  } else {
    // Don't rearrange other operations.
    return None;
  }

  assert(!SingleTy.isNull() && "We should have figured out the type by now!");

  // Rearrange signed symbolic expressions only
  if (!SingleTy->isSignedIntegerOrEnumerationType())
    return None;

  SymbolRef RSym = Rhs.getAsSymbol();
  if (!RSym || RSym->getType() != SingleTy)
    return None;

  BasicValueFactory &BV = State->getBasicVals();
  llvm::APSInt LInt, RInt;
  std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
  std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
  if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
      !shouldRearrange(State, Op, RSym, RInt, SingleTy))
    return None;

  // We know that no overflows can occur anymore.
  return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
}

SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  NonLoc lhs, NonLoc rhs,
                                  QualType resultTy)  {
  NonLoc InputLHS = lhs;
  NonLoc InputRHS = rhs;

  // Handle trivial case where left-side and right-side are the same.
  if (lhs == rhs)
    switch (op) {
      default:
        break;
      case BO_EQ:
      case BO_LE:
      case BO_GE:
        return makeTruthVal(true, resultTy);
      case BO_LT:
      case BO_GT:
      case BO_NE:
        return makeTruthVal(false, resultTy);
      case BO_Xor:
      case BO_Sub:
        if (resultTy->isIntegralOrEnumerationType())
          return makeIntVal(0, resultTy);
        return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy);
      case BO_Or:
      case BO_And:
        return evalCastFromNonLoc(lhs, resultTy);
    }

  while (1) {
    switch (lhs.getSubKind()) {
    default:
      return makeSymExprValNN(op, lhs, rhs, resultTy);
    case nonloc::PointerToMemberKind: {
      assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
             "Both SVals should have pointer-to-member-type");
      auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
           RPTM = rhs.castAs<nonloc::PointerToMember>();
      auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
      switch (op) {
        case BO_EQ:
          return makeTruthVal(LPTMD == RPTMD, resultTy);
        case BO_NE:
          return makeTruthVal(LPTMD != RPTMD, resultTy);
        default:
          return UnknownVal();
      }
    }
    case nonloc::LocAsIntegerKind: {
      Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
      switch (rhs.getSubKind()) {
        case nonloc::LocAsIntegerKind:
          // FIXME: at the moment the implementation
          // of modeling "pointers as integers" is not complete.
          if (!BinaryOperator::isComparisonOp(op))
            return UnknownVal();
          return evalBinOpLL(state, op, lhsL,
                             rhs.castAs<nonloc::LocAsInteger>().getLoc(),
                             resultTy);
        case nonloc::ConcreteIntKind: {
          // FIXME: at the moment the implementation
          // of modeling "pointers as integers" is not complete.
          if (!BinaryOperator::isComparisonOp(op))
            return UnknownVal();
          // Transform the integer into a location and compare.
          // FIXME: This only makes sense for comparisons. If we want to, say,
          // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
          // then pack it back into a LocAsInteger.
          llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
          // If the region has a symbolic base, pay attention to the type; it
          // might be coming from a non-default address space. For non-symbolic
          // regions it doesn't matter that much because such comparisons would
          // most likely evaluate to concrete false anyway. FIXME: We might
          // still need to handle the non-comparison case.
          if (SymbolRef lSym = lhs.getAsLocSymbol(true))
            BasicVals.getAPSIntType(lSym->getType()).apply(i);
          else
            BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
        }
        default:
          switch (op) {
            case BO_EQ:
              return makeTruthVal(false, resultTy);
            case BO_NE:
              return makeTruthVal(true, resultTy);
            default:
              // This case also handles pointer arithmetic.
              return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
          }
      }
    }
    case nonloc::ConcreteIntKind: {
      llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();

      // If we're dealing with two known constants, just perform the operation.
      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
        llvm::APSInt RHSValue = *KnownRHSValue;
        if (BinaryOperator::isComparisonOp(op)) {
          // We're looking for a type big enough to compare the two values.
          // FIXME: This is not correct. char + short will result in a promotion
          // to int. Unfortunately we have lost types by this point.
          APSIntType CompareType = std::max(APSIntType(LHSValue),
                                            APSIntType(RHSValue));
          CompareType.apply(LHSValue);
          CompareType.apply(RHSValue);
        } else if (!BinaryOperator::isShiftOp(op)) {
          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
          IntType.apply(LHSValue);
          IntType.apply(RHSValue);
        }

        const llvm::APSInt *Result =
          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
        if (!Result)
          return UndefinedVal();

        return nonloc::ConcreteInt(*Result);
      }

      // Swap the left and right sides and flip the operator if doing so
      // allows us to better reason about the expression (this is a form
      // of expression canonicalization).
      // While we're at it, catch some special cases for non-commutative ops.
      switch (op) {
      case BO_LT:
      case BO_GT:
      case BO_LE:
      case BO_GE:
        op = BinaryOperator::reverseComparisonOp(op);
        LLVM_FALLTHROUGH;
      case BO_EQ:
      case BO_NE:
      case BO_Add:
      case BO_Mul:
      case BO_And:
      case BO_Xor:
      case BO_Or:
        std::swap(lhs, rhs);
        continue;
      case BO_Shr:
        // (~0)>>a
        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
          return evalCastFromNonLoc(lhs, resultTy);
        LLVM_FALLTHROUGH;
      case BO_Shl:
        // 0<<a and 0>>a
        if (LHSValue == 0)
          return evalCastFromNonLoc(lhs, resultTy);
        return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
      case BO_Rem:
        // 0 % x == 0
        if (LHSValue == 0)
          return makeZeroVal(resultTy);
        LLVM_FALLTHROUGH;
      default:
        return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
      }
    }
    case nonloc::SymbolValKind: {
      // We only handle LHS as simple symbols or SymIntExprs.
      SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();

      // LHS is a symbolic expression.
      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {

        // Is this a logical not? (!x is represented as x == 0.)
        if (op == BO_EQ && rhs.isZeroConstant()) {
          // We know how to negate certain expressions. Simplify them here.

          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
          switch (opc) {
          default:
            // We don't know how to negate this operation.
            // Just handle it as if it were a normal comparison to 0.
            break;
          case BO_LAnd:
          case BO_LOr:
            llvm_unreachable("Logical operators handled by branching logic.");
          case BO_Assign:
          case BO_MulAssign:
          case BO_DivAssign:
          case BO_RemAssign:
          case BO_AddAssign:
          case BO_SubAssign:
          case BO_ShlAssign:
          case BO_ShrAssign:
          case BO_AndAssign:
          case BO_XorAssign:
          case BO_OrAssign:
          case BO_Comma:
            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
          case BO_PtrMemD:
          case BO_PtrMemI:
            llvm_unreachable("Pointer arithmetic not handled here.");
          case BO_LT:
          case BO_GT:
          case BO_LE:
          case BO_GE:
          case BO_EQ:
          case BO_NE:
            assert(resultTy->isBooleanType() ||
                   resultTy == getConditionType());
            assert(symIntExpr->getType()->isBooleanType() ||
                   getContext().hasSameUnqualifiedType(symIntExpr->getType(),
                                                       getConditionType()));
            // Negate the comparison and make a value.
            opc = BinaryOperator::negateComparisonOp(opc);
            return makeNonLoc(symIntExpr->getLHS(), opc,
                symIntExpr->getRHS(), resultTy);
          }
        }

        // For now, only handle expressions whose RHS is a constant.
        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
          // If both the LHS and the current expression are additive,
          // fold their constants and try again.
          if (BinaryOperator::isAdditiveOp(op)) {
            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
            if (BinaryOperator::isAdditiveOp(lop)) {
              // Convert the two constants to a common type, then combine them.

              // resultTy may not be the best type to convert to, but it's
              // probably the best choice in expressions with mixed type
              // (such as x+1U+2LL). The rules for implicit conversions should
              // choose a reasonable type to preserve the expression, and will
              // at least match how the value is going to be used.
              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
              const llvm::APSInt &second = IntType.convert(*RHSValue);

              const llvm::APSInt *newRHS;
              if (lop == op)
                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
              else
                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);

              assert(newRHS && "Invalid operation despite common type!");
              rhs = nonloc::ConcreteInt(*newRHS);
              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
              op = lop;
              continue;
            }
          }

          // Otherwise, make a SymIntExpr out of the expression.
          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
        }
      }

      // Does the symbolic expression simplify to a constant?
      // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
      // and try again.
      SVal simplifiedLhs = simplifySVal(state, lhs);
      if (simplifiedLhs != lhs)
        if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
          lhs = *simplifiedLhsAsNonLoc;
          continue;
        }

      // Is the RHS a constant?
      if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
        return MakeSymIntVal(Sym, op, *RHSValue, resultTy);

      if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
        return *V;

      // Give up -- this is not a symbolic expression we can handle.
      return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
    }
    }
  }
}

static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
                                            const FieldRegion *RightFR,
                                            BinaryOperator::Opcode op,
                                            QualType resultTy,
                                            SimpleSValBuilder &SVB) {
  // Only comparisons are meaningful here!
  if (!BinaryOperator::isComparisonOp(op))
    return UnknownVal();

  // Next, see if the two FRs have the same super-region.
  // FIXME: This doesn't handle casts yet, and simply stripping the casts
  // doesn't help.
  if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
    return UnknownVal();

  const FieldDecl *LeftFD = LeftFR->getDecl();
  const FieldDecl *RightFD = RightFR->getDecl();
  const RecordDecl *RD = LeftFD->getParent();

  // Make sure the two FRs are from the same kind of record. Just in case!
  // FIXME: This is probably where inheritance would be a problem.
  if (RD != RightFD->getParent())
    return UnknownVal();

  // We know for sure that the two fields are not the same, since that
  // would have given us the same SVal.
  if (op == BO_EQ)
    return SVB.makeTruthVal(false, resultTy);
  if (op == BO_NE)
    return SVB.makeTruthVal(true, resultTy);

  // Iterate through the fields and see which one comes first.
  // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
  // members and the units in which bit-fields reside have addresses that
  // increase in the order in which they are declared."
  bool leftFirst = (op == BO_LT || op == BO_LE);
  for (const auto *I : RD->fields()) {
    if (I == LeftFD)
      return SVB.makeTruthVal(leftFirst, resultTy);
    if (I == RightFD)
      return SVB.makeTruthVal(!leftFirst, resultTy);
  }

  llvm_unreachable("Fields not found in parent record's definition");
}

// FIXME: all this logic will change if/when we have MemRegion::getLocation().
SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  Loc lhs, Loc rhs,
                                  QualType resultTy) {
  // Only comparisons and subtractions are valid operations on two pointers.
  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
  // However, if a pointer is casted to an integer, evalBinOpNN may end up
  // calling this function with another operation (PR7527). We don't attempt to
  // model this for now, but it could be useful, particularly when the
  // "location" is actually an integer value that's been passed through a void*.
  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
    return UnknownVal();

  // Special cases for when both sides are identical.
  if (lhs == rhs) {
    switch (op) {
    default:
      llvm_unreachable("Unimplemented operation for two identical values");
    case BO_Sub:
      return makeZeroVal(resultTy);
    case BO_EQ:
    case BO_LE:
    case BO_GE:
      return makeTruthVal(true, resultTy);
    case BO_NE:
    case BO_LT:
    case BO_GT:
      return makeTruthVal(false, resultTy);
    }
  }

  switch (lhs.getSubKind()) {
  default:
    llvm_unreachable("Ordering not implemented for this Loc.");

  case loc::GotoLabelKind:
    // The only thing we know about labels is that they're non-null.
    if (rhs.isZeroConstant()) {
      switch (op) {
      default:
        break;
      case BO_Sub:
        return evalCastFromLoc(lhs, resultTy);
      case BO_EQ:
      case BO_LE:
      case BO_LT:
        return makeTruthVal(false, resultTy);
      case BO_NE:
      case BO_GT:
      case BO_GE:
        return makeTruthVal(true, resultTy);
      }
    }
    // There may be two labels for the same location, and a function region may
    // have the same address as a label at the start of the function (depending
    // on the ABI).
    // FIXME: we can probably do a comparison against other MemRegions, though.
    // FIXME: is there a way to tell if two labels refer to the same location?
    return UnknownVal();

  case loc::ConcreteIntKind: {
    // If one of the operands is a symbol and the other is a constant,
    // build an expression for use by the constraint manager.
    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
      // We can only build expressions with symbols on the left,
      // so we need a reversible operator.
      if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
        return UnknownVal();

      const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
      op = BinaryOperator::reverseComparisonOp(op);
      return makeNonLoc(rSym, op, lVal, resultTy);
    }

    // If both operands are constants, just perform the operation.
    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
      SVal ResultVal =
          lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
      if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
        return evalCastFromNonLoc(*Result, resultTy);

      assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
      return UnknownVal();
    }

    // Special case comparisons against NULL.
    // This must come after the test if the RHS is a symbol, which is used to
    // build constraints. The address of any non-symbolic region is guaranteed
    // to be non-NULL, as is any label.
    assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
    if (lhs.isZeroConstant()) {
      switch (op) {
      default:
        break;
      case BO_EQ:
      case BO_GT:
      case BO_GE:
        return makeTruthVal(false, resultTy);
      case BO_NE:
      case BO_LT:
      case BO_LE:
        return makeTruthVal(true, resultTy);
      }
    }

    // Comparing an arbitrary integer to a region or label address is
    // completely unknowable.
    return UnknownVal();
  }
  case loc::MemRegionValKind: {
    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
      // If one of the operands is a symbol and the other is a constant,
      // build an expression for use by the constraint manager.
      if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
        if (BinaryOperator::isComparisonOp(op))
          return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
        return UnknownVal();
      }
      // Special case comparisons to NULL.
      // This must come after the test if the LHS is a symbol, which is used to
      // build constraints. The address of any non-symbolic region is guaranteed
      // to be non-NULL.
      if (rInt->isZeroConstant()) {
        if (op == BO_Sub)
          return evalCastFromLoc(lhs, resultTy);

        if (BinaryOperator::isComparisonOp(op)) {
          QualType boolType = getContext().BoolTy;
          NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
          NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
          return evalBinOpNN(state, op, l, r, resultTy);
        }
      }

      // Comparing a region to an arbitrary integer is completely unknowable.
      return UnknownVal();
    }

    // Get both values as regions, if possible.
    const MemRegion *LeftMR = lhs.getAsRegion();
    assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");

    const MemRegion *RightMR = rhs.getAsRegion();
    if (!RightMR)
      // The RHS is probably a label, which in theory could address a region.
      // FIXME: we can probably make a more useful statement about non-code
      // regions, though.
      return UnknownVal();

    const MemRegion *LeftBase = LeftMR->getBaseRegion();
    const MemRegion *RightBase = RightMR->getBaseRegion();
    const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
    const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
    const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();

    // If the two regions are from different known memory spaces they cannot be
    // equal. Also, assume that no symbolic region (whose memory space is
    // unknown) is on the stack.
    if (LeftMS != RightMS &&
        ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
         (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
      switch (op) {
      default:
        return UnknownVal();
      case BO_EQ:
        return makeTruthVal(false, resultTy);
      case BO_NE:
        return makeTruthVal(true, resultTy);
      }
    }

    // If both values wrap regions, see if they're from different base regions.
    // Note, heap base symbolic regions are assumed to not alias with
    // each other; for example, we assume that malloc returns different address
    // on each invocation.
    // FIXME: ObjC object pointers always reside on the heap, but currently
    // we treat their memory space as unknown, because symbolic pointers
    // to ObjC objects may alias. There should be a way to construct
    // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
    // guesses memory space for ObjC object pointers manually instead of
    // relying on us.
    if (LeftBase != RightBase &&
        ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
         (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
      switch (op) {
      default:
        return UnknownVal();
      case BO_EQ:
        return makeTruthVal(false, resultTy);
      case BO_NE:
        return makeTruthVal(true, resultTy);
      }
    }

    // Handle special cases for when both regions are element regions.
    const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
    const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
    if (RightER && LeftER) {
      // Next, see if the two ERs have the same super-region and matching types.
      // FIXME: This should do something useful even if the types don't match,
      // though if both indexes are constant the RegionRawOffset path will
      // give the correct answer.
      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
          LeftER->getElementType() == RightER->getElementType()) {
        // Get the left index and cast it to the correct type.
        // If the index is unknown or undefined, bail out here.
        SVal LeftIndexVal = LeftER->getIndex();
        Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
        if (!LeftIndex)
          return UnknownVal();
        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
        LeftIndex = LeftIndexVal.getAs<NonLoc>();
        if (!LeftIndex)
          return UnknownVal();

        // Do the same for the right index.
        SVal RightIndexVal = RightER->getIndex();
        Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
        if (!RightIndex)
          return UnknownVal();
        RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
        RightIndex = RightIndexVal.getAs<NonLoc>();
        if (!RightIndex)
          return UnknownVal();

        // Actually perform the operation.
        // evalBinOpNN expects the two indexes to already be the right type.
        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
      }
    }

    // Special handling of the FieldRegions, even with symbolic offsets.
    const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
    const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
    if (RightFR && LeftFR) {
      SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
                                               *this);
      if (!R.isUnknown())
        return R;
    }

    // Compare the regions using the raw offsets.
    RegionOffset LeftOffset = LeftMR->getAsOffset();
    RegionOffset RightOffset = RightMR->getAsOffset();

    if (LeftOffset.getRegion() != nullptr &&
        LeftOffset.getRegion() == RightOffset.getRegion() &&
        !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
      int64_t left = LeftOffset.getOffset();
      int64_t right = RightOffset.getOffset();

      switch (op) {
        default:
          return UnknownVal();
        case BO_LT:
          return makeTruthVal(left < right, resultTy);
        case BO_GT:
          return makeTruthVal(left > right, resultTy);
        case BO_LE:
          return makeTruthVal(left <= right, resultTy);
        case BO_GE:
          return makeTruthVal(left >= right, resultTy);
        case BO_EQ:
          return makeTruthVal(left == right, resultTy);
        case BO_NE:
          return makeTruthVal(left != right, resultTy);
      }
    }

    // At this point we're not going to get a good answer, but we can try
    // conjuring an expression instead.
    SymbolRef LHSSym = lhs.getAsLocSymbol();
    SymbolRef RHSSym = rhs.getAsLocSymbol();
    if (LHSSym && RHSSym)
      return makeNonLoc(LHSSym, op, RHSSym, resultTy);

    // If we get here, we have no way of comparing the regions.
    return UnknownVal();
  }
  }
}

SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  Loc lhs, NonLoc rhs, QualType resultTy) {
  if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
    if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
      if (PTMSV->isNullMemberPointer())
        return UndefinedVal();
      if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) {
        SVal Result = lhs;

        for (const auto &I : *PTMSV)
          Result = StateMgr.getStoreManager().evalDerivedToBase(
              Result, I->getType(),I->isVirtual());
        return state->getLValue(FD, Result);
      }
    }

    return rhs;
  }

  assert(!BinaryOperator::isComparisonOp(op) &&
         "arguments to comparison ops must be of the same type");

  // Special case: rhs is a zero constant.
  if (rhs.isZeroConstant())
    return lhs;

  // Perserve the null pointer so that it can be found by the DerefChecker.
  if (lhs.isZeroConstant())
    return lhs;

  // We are dealing with pointer arithmetic.

  // Handle pointer arithmetic on constant values.
  if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
    if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
      const llvm::APSInt &leftI = lhsInt->getValue();
      assert(leftI.isUnsigned());
      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);

      // Convert the bitwidth of rightI.  This should deal with overflow
      // since we are dealing with concrete values.
      rightI = rightI.extOrTrunc(leftI.getBitWidth());

      // Offset the increment by the pointer size.
      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
      QualType pointeeType = resultTy->getPointeeType();
      Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
      rightI *= Multiplicand;

      // Compute the adjusted pointer.
      switch (op) {
        case BO_Add:
          rightI = leftI + rightI;
          break;
        case BO_Sub:
          rightI = leftI - rightI;
          break;
        default:
          llvm_unreachable("Invalid pointer arithmetic operation");
      }
      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
    }
  }

  // Handle cases where 'lhs' is a region.
  if (const MemRegion *region = lhs.getAsRegion()) {
    rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
    SVal index = UnknownVal();
    const SubRegion *superR = nullptr;
    // We need to know the type of the pointer in order to add an integer to it.
    // Depending on the type, different amount of bytes is added.
    QualType elementType;

    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
      assert(op == BO_Add || op == BO_Sub);
      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
                          getArrayIndexType());
      superR = cast<SubRegion>(elemReg->getSuperRegion());
      elementType = elemReg->getElementType();
    }
    else if (isa<SubRegion>(region)) {
      assert(op == BO_Add || op == BO_Sub);
      index = (op == BO_Add) ? rhs : evalMinus(rhs);
      superR = cast<SubRegion>(region);
      // TODO: Is this actually reliable? Maybe improving our MemRegion
      // hierarchy to provide typed regions for all non-void pointers would be
      // better. For instance, we cannot extend this towards LocAsInteger
      // operations, where result type of the expression is integer.
      if (resultTy->isAnyPointerType())
        elementType = resultTy->getPointeeType();
    }

    // Represent arithmetic on void pointers as arithmetic on char pointers.
    // It is fine when a TypedValueRegion of char value type represents
    // a void pointer. Note that arithmetic on void pointers is a GCC extension.
    if (elementType->isVoidType())
      elementType = getContext().CharTy;

    if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
                                                       superR, getContext()));
    }
  }
  return UnknownVal();
}

const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
                                                   SVal V) {
  V = simplifySVal(state, V);
  if (V.isUnknownOrUndef())
    return nullptr;

  if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
    return &X->getValue();

  if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
    return &X->getValue();

  if (SymbolRef Sym = V.getAsSymbol())
    return state->getConstraintManager().getSymVal(state, Sym);

  // FIXME: Add support for SymExprs.
  return nullptr;
}

SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
  // For now, this function tries to constant-fold symbols inside a
  // nonloc::SymbolVal, and does nothing else. More simplifications should
  // be possible, such as constant-folding an index in an ElementRegion.

  class Simplifier : public FullSValVisitor<Simplifier, SVal> {
    ProgramStateRef State;
    SValBuilder &SVB;

    // Cache results for the lifetime of the Simplifier. Results change every
    // time new constraints are added to the program state, which is the whole
    // point of simplifying, and for that very reason it's pointless to maintain
    // the same cache for the duration of the whole analysis.
    llvm::DenseMap<SymbolRef, SVal> Cached;

    static bool isUnchanged(SymbolRef Sym, SVal Val) {
      return Sym == Val.getAsSymbol();
    }

    SVal cache(SymbolRef Sym, SVal V) {
      Cached[Sym] = V;
      return V;
    }

    SVal skip(SymbolRef Sym) {
      return cache(Sym, SVB.makeSymbolVal(Sym));
    }

  public:
    Simplifier(ProgramStateRef State)
        : State(State), SVB(State->getStateManager().getSValBuilder()) {}

    SVal VisitSymbolData(const SymbolData *S) {
      // No cache here.
      if (const llvm::APSInt *I =
              SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
        return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
                                            : (SVal)SVB.makeIntVal(*I);
      return SVB.makeSymbolVal(S);
    }

    // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
    // start producing them.

    SVal VisitSymIntExpr(const SymIntExpr *S) {
      auto I = Cached.find(S);
      if (I != Cached.end())
        return I->second;

      SVal LHS = Visit(S->getLHS());
      if (isUnchanged(S->getLHS(), LHS))
        return skip(S);

      SVal RHS;
      // By looking at the APSInt in the right-hand side of S, we cannot
      // figure out if it should be treated as a Loc or as a NonLoc.
      // So make our guess by recalling that we cannot multiply pointers
      // or compare a pointer to an integer.
      if (Loc::isLocType(S->getLHS()->getType()) &&
          BinaryOperator::isComparisonOp(S->getOpcode())) {
        // The usual conversion of $sym to &SymRegion{$sym}, as they have
        // the same meaning for Loc-type symbols, but the latter form
        // is preferred in SVal computations for being Loc itself.
        if (SymbolRef Sym = LHS.getAsSymbol()) {
          assert(Loc::isLocType(Sym->getType()));
          LHS = SVB.makeLoc(Sym);
        }
        RHS = SVB.makeIntLocVal(S->getRHS());
      } else {
        RHS = SVB.makeIntVal(S->getRHS());
      }

      return cache(
          S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
    }

    SVal VisitSymSymExpr(const SymSymExpr *S) {
      auto I = Cached.find(S);
      if (I != Cached.end())
        return I->second;

      // For now don't try to simplify mixed Loc/NonLoc expressions
      // because they often appear from LocAsInteger operations
      // and we don't know how to combine a LocAsInteger
      // with a concrete value.
      if (Loc::isLocType(S->getLHS()->getType()) !=
          Loc::isLocType(S->getRHS()->getType()))
        return skip(S);

      SVal LHS = Visit(S->getLHS());
      SVal RHS = Visit(S->getRHS());
      if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
        return skip(S);

      return cache(
          S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
    }

    SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }

    SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }

    SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
      // Simplification is much more costly than computing complexity.
      // For high complexity, it may be not worth it.
      return Visit(V.getSymbol());
    }

    SVal VisitSVal(SVal V) { return V; }
  };

  // A crude way of preventing this function from calling itself from evalBinOp.
  static bool isReentering = false;
  if (isReentering)
    return V;

  isReentering = true;
  SVal SimplifiedV = Simplifier(State).Visit(V);
  isReentering = false;

  return SimplifiedV;
}