Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
//===- README_P9.txt - Notes for improving Power9 code gen ----------------===//

TODO: Instructions Need Implement Instrinstics or Map to LLVM IR

Altivec:
- Vector Compare Not Equal (Zero):
  vcmpneb(.) vcmpneh(.) vcmpnew(.)
  vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
  . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)

- Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
  . Don't use llvm extractelement because they have different semantics
  . Use instrinstics:
    (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
    (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
    (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
    (set v2i64:$vD, (int_ppc_altivec_vextractd  v2i64:$vA, imm:$UIMM))

- Vector Extract Unsigned Byte Left/Right-Indexed:
  vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
  . Use instrinstics:
    // Left-Indexed
    (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
    (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
    (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))

    // Right-Indexed
    (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
    (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
    (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))

- Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
    (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
    (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
    (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
    (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))

- Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
  vclzlsbb vctzlsbb
  . Use intrinsic:
    (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
    (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))

- Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
  . Map to llvm cttz
    (set v16i8:$vD, (cttz v16i8:$vB))     // vctzb
    (set v8i16:$vD, (cttz v8i16:$vB))     // vctzh
    (set v4i32:$vD, (cttz v4i32:$vB))     // vctzw
    (set v2i64:$vD, (cttz v2i64:$vB))     // vctzd

- Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
  . vextsb2w:
    (set v4i32:$vD, (sext v4i8:$vB))

    // PowerISA_V3.0:
    do i = 0 to 3
       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3])
    end

  . vextsh2w:
    (set v4i32:$vD, (sext v4i16:$vB))

    // PowerISA_V3.0:
    do i = 0 to 3
       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1])
    end

  . vextsb2d
    (set v2i64:$vD, (sext v2i8:$vB))

    // PowerISA_V3.0:
    do i = 0 to 1
       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7])
    end

  . vextsh2d
    (set v2i64:$vD, (sext v2i16:$vB))

    // PowerISA_V3.0:
    do i = 0 to 1
       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3])
    end

  . vextsw2d
    (set v2i64:$vD, (sext v2i32:$vB))

    // PowerISA_V3.0:
    do i = 0 to 1
       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1])
    end

- Vector Integer Negate: vnegw vnegd
  . Map to llvm ineg
    (set v4i32:$rT, (ineg v4i32:$rA))       // vnegw
    (set v2i64:$rT, (ineg v2i64:$rA))       // vnegd

- Vector Parity Byte: vprtybw vprtybd vprtybq
  . Use intrinsic:
    (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
    (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
    (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))

- Vector (Bit) Permute (Right-indexed):
  . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
    VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;

  . vpermr: use VA1a_Int_Ty3
    VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;

- Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
  . Use intrinsic:
    VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
    VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
    VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
    VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;

- Vector Shift Left/Right: vslv vsrv
  . Use intrinsic, don't map to llvm shl and lshr, because they have different
    semantics, e.g. vslv:

      do i = 0 to 15
         sh ← VR[VRB].byte[i].bit[5:7]
         VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]
      end

    VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]

  . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
    VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;

- Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
  vmul10uq vmul10cuq
  . Use intrinsic:
    VX1_Int_Ty<513, "vmul10uq",   int_ppc_altivec_vmul10uq,  v1i128>;
    VX1_Int_Ty<  1, "vmul10cuq",  int_ppc_altivec_vmul10cuq, v1i128>;

- Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
  vmul10euq vmul10ecuq
  . Use intrinsic:
    VX1_Int_Ty<577, "vmul10euq",  int_ppc_altivec_vmul10euq, v1i128>;
    VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;

- Decimal Convert From/to National/Zoned/Signed-QWord:
  bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
  . Use instrinstics:
    (set v1i128:$vD, (int_ppc_altivec_bcdcfno  v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcdcfzo  v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcdctno  v1i128:$vB))
    (set v1i128:$vD, (int_ppc_altivec_bcdctzo  v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))

- Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
  . Use instrinstics:
    (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
    (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))

- Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
  . Use instrinstics:
    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
    (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))

  . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]

- Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
  . Use instrinstics:
    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))

  . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])

VSX:
- QP Copy Sign: xscpsgnqp
  . Similar to xscpsgndp
  . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)

- QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
  . Similar to xsabsdp/xsnabsdp/xsnegdp
  . (set f128:$vT, (fabs f128:$vB))             // xsabsqp
    (set f128:$vT, (fneg (fabs f128:$vB)))      // xsnabsqp
    (set f128:$vT, (fneg f128:$vB))             // xsnegqp

- QP Add/Divide/Multiply/Subtract/Square-Root:
  xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
  . Similar to xsadddp
  . isCommutable = 1
    (set f128:$vT, (fadd f128:$vA, f128:$vB))   // xsaddqp
    (set f128:$vT, (fmul f128:$vA, f128:$vB))   // xsmulqp

  . isCommutable = 0
    (set f128:$vT, (fdiv f128:$vA, f128:$vB))   // xsdivqp
    (set f128:$vT, (fsub f128:$vA, f128:$vB))   // xssubqp
    (set f128:$vT, (fsqrt f128:$vB)))           // xssqrtqp

- Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
  xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
  . Similar to xsrsqrtedp??
      def XSRSQRTEDP : XX2Form<60, 74,
                               (outs vsfrc:$XT), (ins vsfrc:$XB),
                               "xsrsqrtedp $XT, $XB", IIC_VecFP,
                               [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;

  . Define DAG Node in PPCInstrInfo.td:
    def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
    def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
    def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
    def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
    def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;

    DAG patterns of each instruction (PPCInstrVSX.td):
    . isCommutable = 1
      (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB))   // xsaddqpo
      (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB))   // xsmulqpo

    . isCommutable = 0
      (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB))   // xsdivqpo
      (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB))   // xssubqpo
      (set f128:$vT, (PPCfsqrtrto f128:$vB))            // xssqrtqpo

- QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
  . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp

  . isCommutable = 1
    // xsmaddqp
    [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    AltVSXFMARel;

    // xsmsubqp
    [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    AltVSXFMARel;

    // xsnmaddqp
    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    AltVSXFMARel;

    // xsnmsubqp
    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    AltVSXFMARel;

- Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
  xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
  . Similar to xsrsqrtedp??

  . Define DAG Node in PPCInstrInfo.td:
    def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;

    It looks like we only need to define "PPCfmarto" for these instructions,
    because according to PowerISA_V3.0, these instructions perform RTO on
    fma's result:
        xsmaddqp(o)
        v      ← bfp_MULTIPLY_ADD(src1, src3, src2)
        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
        result ← bfp_CONVERT_TO_BFP128(rnd)

        xsmsubqp(o)
        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
        result ← bfp_CONVERT_TO_BFP128(rnd)

        xsnmaddqp(o)
        v      ← bfp_MULTIPLY_ADD(src1,src3,src2)
        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
        result ← bfp_CONVERT_TO_BFP128(rnd)

        xsnmsubqp(o)
        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
        result ← bfp_CONVERT_TO_BFP128(rnd)

    DAG patterns of each instruction (PPCInstrVSX.td):
    . isCommutable = 1
      // xsmaddqpo
      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
      AltVSXFMARel;

      // xsmsubqpo
      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
      AltVSXFMARel;

      // xsnmaddqpo
      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
      AltVSXFMARel;

      // xsnmsubqpo
      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
      AltVSXFMARel;

- QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
  . ref: XSCMPUDP
      def XSCMPUDP : XX3Form_1<60, 35,
                               (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
                               "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;

  . No SDAG, intrinsic, builtin are required??
    Or llvm fcmp order/unorder compare??

- DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
  . No SDAG, intrinsic, builtin are required?

- DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
  . I checked existing instruction "XSCMPUDP". They are different in target
    register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register

  . Use instrinsic:
    (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
    (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
    (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
    (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))

- Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
  . Similar to xvcmpeqdp:
      defm XVCMPEQDP : XX3Form_Rcr<60, 99,
                                 "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
                                 int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;

  . So we should use "XX3Form_Rcr" to implement instrinsic

- Convert DP -> QP: xscvdpqp
  . Similar to XSCVDPSP:
      def XSCVDPSP : XX2Form<60, 265,
                          (outs vsfrc:$XT), (ins vsfrc:$XB),
                          "xscvdpsp $XT, $XB", IIC_VecFP, []>;
  . So, No SDAG, intrinsic, builtin are required??

- Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
  . Similar to XSCVDPSP
  . No SDAG, intrinsic, builtin are required??

- Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
  xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
  . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
    "XSCVDPUXDS", "XSCVDPUXWS"

  . DAG patterns:
    (set f128:$XT, (PPCfctidz f128:$XB))    // xscvqpsdz
    (set f128:$XT, (PPCfctiwz f128:$XB))    // xscvqpswz
    (set f128:$XT, (PPCfctiduz f128:$XB))   // xscvqpudz
    (set f128:$XT, (PPCfctiwuz f128:$XB))   // xscvqpuwz

- Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
  . Similar to XSCVSXDSP
  . (set f128:$XT, (PPCfcfids f64:$XB))     // xscvsdqp
    (set f128:$XT, (PPCfcfidus f64:$XB))    // xscvudqp

- (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
  . Similar to XSCVDPSP
  . No SDAG, intrinsic, builtin are required??

- Vector HP -> SP: xvcvhpsp xvcvsphp
  . Similar to XVCVDPSP:
      def XVCVDPSP : XX2Form<60, 393,
                          (outs vsrc:$XT), (ins vsrc:$XB),
                          "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
  . No SDAG, intrinsic, builtin are required??

- Round to Quad-Precision Integer: xsrqpi xsrqpix
  . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
    need to assign rounding mode in instruction
  . Provide builtin?
    (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
    (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))

- Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
  . Provide builtin?
    (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))

Fixed Point Facility:

- Exploit cmprb and cmpeqb (perhaps for something like
  isalpha/isdigit/isupper/islower and isspace respectivelly). This can
  perhaps be done through a builtin.

- Provide testing for cnttz[dw]
- Insert Exponent DP/QP: xsiexpdp xsiexpqp
  . Use intrinsic?
  . xsiexpdp:
    // Note: rA and rB are the unsigned integer value.
    (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))

  . xsiexpqp:
    (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))

- Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
  . Use intrinsic?
  . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB))    // xsxexpdp
    (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB))    // xsxsigdp
    (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB))  // xsxexpqp
    (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB))  // xsxsigqp

- Vector Insert Word: xxinsertw
  - Useful for inserting f32/i32 elements into vectors (the element to be
    inserted needs to be prepared)
  . Note: llvm has insertelem in "Vector Operations"
    ; yields <n x <ty>>
    <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>

    But how to map to it??
    [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
    RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,

  . Or use intrinsic?
    (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))

- Vector Extract Unsigned Word: xxextractuw
  - Not useful for extraction of f32 from v4f32 (the current pattern is better -
    shift->convert)
  - It is useful for (uint_to_fp (vector_extract v4i32, N))
  - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
  . Note: llvm has extractelement in "Vector Operations"
    ; yields <ty>
    <result> = extractelement <n x <ty>> <val>, <ty2> <idx>

    How to map to it??
    [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]

  . Or use intrinsic?
    (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))

- Vector Insert Exponent DP/SP: xviexpdp xviexpsp
  . Use intrinsic
    (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
    (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))

- Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
  . Use intrinsic
    (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
    (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
    (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
    (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))

- Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
  . No SDAG, intrinsic, builtin are required?
    Because it seems that we have no way to map BF field?

    Instruction Form: [PO T XO B XO BX TX]
    Asm: xststd* BF,XB,DCMX

    BF is an index to CR register field.

- Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
  . Use intrinsic
    (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
    (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))

- Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
  . PowerISA_V3.0:
    "xsmaxcdp can be used to implement the C/C++/Java conditional operation
     (x>y)?x:y for single-precision and double-precision arguments."

    Note! c type and j type have different behavior when:
    1. Either input is NaN
    2. Both input are +-Infinity, +-Zero

  . dtype map to llvm fmaxnum/fminnum
    jtype use intrinsic

  . xsmaxcdp xsmincdp
    (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
    (set f64:$XT, (fminnum f64:$XA, f64:$XB))

  . xsmaxjdp xsminjdp
    (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
    (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))

- Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
  . Use intrinsic
    (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
    (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
    (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
    (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))

- Vector Permute: xxperm xxpermr
  . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
  . Use intrinsic
    (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
    (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))

- Vector Splat Immediate Byte: xxspltib
  . Similar to XXSPLTW:
      def XXSPLTW : XX2Form_2<60, 164,
                           (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
                           "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;

  . No SDAG, intrinsic, builtin are required?

- Load/Store Vector: lxv stxv
  . Has likely SDAG match:
    (set v?:$XT, (load ix16addr:$src))
    (set v?:$XT, (store ix16addr:$dst))

  . Need define ix16addr in PPCInstrInfo.td
    ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td

- Load/Store Vector Indexed: lxvx stxvx
  . Has likely SDAG match:
    (set v?:$XT, (load xoaddr:$src))
    (set v?:$XT, (store xoaddr:$dst))

- Load/Store DWord: lxsd stxsd
  . Similar to lxsdx/stxsdx:
    def LXSDX : XX1Form<31, 588,
                        (outs vsfrc:$XT), (ins memrr:$src),
                        "lxsdx $XT, $src", IIC_LdStLFD,
                        [(set f64:$XT, (load xoaddr:$src))]>;

  . (set f64:$XT, (load iaddrX4:$src))
    (set f64:$XT, (store iaddrX4:$dst))

- Load/Store SP, with conversion from/to DP: lxssp stxssp
  . Similar to lxsspx/stxsspx:
    def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
                         "lxsspx $XT, $src", IIC_LdStLFD,
                         [(set f32:$XT, (load xoaddr:$src))]>;

  . (set f32:$XT, (load iaddrX4:$src))
    (set f32:$XT, (store iaddrX4:$dst))

- Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
  . Similar to lxsiwzx:
    def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
                          "lxsiwzx $XT, $src", IIC_LdStLFD,
                          [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;

  . (set f64:$XT, (PPClfiwzx xoaddr:$src))

- Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
  . Similar to stxsiwx:
    def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
                          "stxsiwx $XT, $dst", IIC_LdStSTFD,
                          [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;

  . (PPCstfiwx f64:$XT, xoaddr:$dst)

- Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
  . Similar to lxvd2x/lxvw4x:
    def LXVD2X : XX1Form<31, 844,
                         (outs vsrc:$XT), (ins memrr:$src),
                         "lxvd2x $XT, $src", IIC_LdStLFD,
                         [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;

  . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
    (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))

- Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
  . Similar to stxvd2x/stxvw4x:
    def STXVD2X : XX1Form<31, 972,
                         (outs), (ins vsrc:$XT, memrr:$dst),
                         "stxvd2x $XT, $dst", IIC_LdStSTFD,
                         [(store v2f64:$XT, xoaddr:$dst)]>;

  . (store v8i16:$XT, xoaddr:$dst)
    (store v16i8:$XT, xoaddr:$dst)

- Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
  . Likely needs an intrinsic
  . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
    (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))

  . (int_ppc_vsx_stxvl xoaddr:$dst))
    (int_ppc_vsx_stxvll xoaddr:$dst))

- Load Vector Word & Splat Indexed: lxvwsx
  . Likely needs an intrinsic
  . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))

Atomic operations (l[dw]at, st[dw]at):
- Provide custom lowering for common atomic operations to use these
  instructions with the correct Function Code
- Ensure the operands are in the correct register (i.e. RT+1, RT+2)
- Provide builtins since not all FC's necessarily have an existing LLVM
  atomic operation

Load Doubleword Monitored (ldmx):
- Investigate whether there are any uses for this. It seems to be related to
  Garbage Collection so it isn't likely to be all that useful for most
  languages we deal with.

Move to CR from XER Extended (mcrxrx):
- Is there a use for this in LLVM?

Fixed Point Facility:

- Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
  . Use instrinstics:
    (int_ppc_copy_first i32:$rA, i32:$rB)
    (int_ppc_copy i32:$rA, i32:$rB)

    (int_ppc_paste i32:$rA, i32:$rB)
    (int_ppc_paste_last i32:$rA, i32:$rB)

    (int_cp_abort)

- Message Synchronize: msgsync
- SLB*: slbieg slbsync
- stop
  . No instrinstics