//===- RISCVInstrInfoC.td - Compressed RISCV instructions -*- tblgen-*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
include "RISCVInstrFormatsC.td"
//===----------------------------------------------------------------------===//
// Operand definitions.
//===----------------------------------------------------------------------===//
def UImmLog2XLenNonZeroAsmOperand : AsmOperandClass {
let Name = "UImmLog2XLenNonZero";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidUImmLog2XLenNonZero";
}
def uimmlog2xlennonzero : Operand<XLenVT>, ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return isUInt<6>(Imm) && (Imm != 0);
return isUInt<5>(Imm) && (Imm != 0);
}]> {
let ParserMatchClass = UImmLog2XLenNonZeroAsmOperand;
// TODO: should ensure invalid shamt is rejected when decoding.
let DecoderMethod = "decodeUImmOperand<6>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
if (STI.getTargetTriple().isArch64Bit())
return isUInt<6>(Imm) && (Imm != 0);
return isUInt<5>(Imm) && (Imm != 0);
}];
}
def simm6 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<6>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<6>;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmOperand<6>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isInt<6>(Imm);
return MCOp.isBareSymbolRef();
}];
}
def simm6nonzero : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return (Imm != 0) && isInt<6>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<6, "NonZero">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmOperand<6>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return (Imm != 0) && isInt<6>(Imm);
return MCOp.isBareSymbolRef();
}];
}
def immzero : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return (Imm == 0);}]> {
let ParserMatchClass = ImmZeroAsmOperand;
}
def CLUIImmAsmOperand : AsmOperandClass {
let Name = "CLUIImm";
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
// c_lui_imm checks the immediate range is in [1, 31] or [0xfffe0, 0xfffff].
// The RISC-V ISA describes the constraint as [1, 63], with that value being
// loaded in to bits 17-12 of the destination register and sign extended from
// bit 17. Therefore, this 6-bit immediate can represent values in the ranges
// [1, 31] and [0xfffe0, 0xfffff].
def c_lui_imm : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return (Imm != 0) &&
(isUInt<5>(Imm) ||
(Imm >= 0xfffe0 && Imm <= 0xfffff));}]> {
let ParserMatchClass = CLUIImmAsmOperand;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeCLUIImmOperand";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return (Imm != 0) && (isUInt<5>(Imm) ||
(Imm >= 0xfffe0 && Imm <= 0xfffff));
return MCOp.isBareSymbolRef();
}];
}
// A 7-bit unsigned immediate where the least significant two bits are zero.
def uimm7_lsb00 : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return isShiftedUInt<5, 2>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<7, "Lsb00">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<7>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedUInt<5, 2>(Imm);
}];
}
// A 8-bit unsigned immediate where the least significant two bits are zero.
def uimm8_lsb00 : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return isShiftedUInt<6, 2>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<8, "Lsb00">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<8>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedUInt<6, 2>(Imm);
}];
}
// A 8-bit unsigned immediate where the least significant three bits are zero.
def uimm8_lsb000 : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return isShiftedUInt<5, 3>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<8, "Lsb000">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<8>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedUInt<5, 3>(Imm);
}];
}
// A 9-bit signed immediate where the least significant bit is zero.
def simm9_lsb0 : Operand<OtherVT>,
ImmLeaf<XLenVT, [{return isShiftedInt<8, 1>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<9, "Lsb0">;
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<9>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<8, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
}
// A 9-bit unsigned immediate where the least significant three bits are zero.
def uimm9_lsb000 : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return isShiftedUInt<6, 3>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<9, "Lsb000">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<9>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedUInt<6, 3>(Imm);
}];
}
// A 10-bit unsigned immediate where the least significant two bits are zero
// and the immediate can't be zero.
def uimm10_lsb00nonzero : Operand<XLenVT>,
ImmLeaf<XLenVT,
[{return isShiftedUInt<8, 2>(Imm) && (Imm != 0);}]> {
let ParserMatchClass = UImmAsmOperand<10, "Lsb00NonZero">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmNonZeroOperand<10>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedUInt<8, 2>(Imm) && (Imm != 0);
}];
}
// A 10-bit signed immediate where the least significant four bits are zero.
def simm10_lsb0000nonzero : Operand<XLenVT>,
ImmLeaf<XLenVT,
[{return (Imm != 0) && isShiftedInt<6, 4>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<10, "Lsb0000NonZero">;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmNonZeroOperand<10>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isShiftedInt<6, 4>(Imm) && (Imm != 0);
}];
}
// A 12-bit signed immediate where the least significant bit is zero.
def simm12_lsb0 : Operand<XLenVT>,
ImmLeaf<XLenVT, [{return isShiftedInt<11, 1>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<12, "Lsb0">;
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<12>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<11, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
}
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class CStackLoad<bits<3> funct3, string OpcodeStr,
RegisterClass cls, DAGOperand opnd>
: RVInst16CI<funct3, 0b10, (outs cls:$rd), (ins SP:$rs1, opnd:$imm),
OpcodeStr, "$rd, ${imm}(${rs1})">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class CStackStore<bits<3> funct3, string OpcodeStr,
RegisterClass cls, DAGOperand opnd>
: RVInst16CSS<funct3, 0b10, (outs), (ins cls:$rs2, SP:$rs1, opnd:$imm),
OpcodeStr, "$rs2, ${imm}(${rs1})">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class CLoad_ri<bits<3> funct3, string OpcodeStr,
RegisterClass cls, DAGOperand opnd>
: RVInst16CL<funct3, 0b00, (outs cls:$rd), (ins GPRC:$rs1, opnd:$imm),
OpcodeStr, "$rd, ${imm}(${rs1})">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class CStore_rri<bits<3> funct3, string OpcodeStr,
RegisterClass cls, DAGOperand opnd>
: RVInst16CS<funct3, 0b00, (outs), (ins cls:$rs2, GPRC:$rs1, opnd:$imm),
OpcodeStr, "$rs2, ${imm}(${rs1})">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Bcz<bits<3> funct3, string OpcodeStr, PatFrag CondOp,
RegisterClass cls>
: RVInst16CB<funct3, 0b01, (outs), (ins cls:$rs1, simm9_lsb0:$imm),
OpcodeStr, "$rs1, $imm"> {
let isBranch = 1;
let isTerminator = 1;
let Inst{12} = imm{7};
let Inst{11-10} = imm{3-2};
let Inst{6-5} = imm{6-5};
let Inst{4-3} = imm{1-0};
let Inst{2} = imm{4};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_right<bits<2> funct2, string OpcodeStr, RegisterClass cls,
Operand ImmOpnd>
: RVInst16CB<0b100, 0b01, (outs cls:$rs1_wb), (ins cls:$rs1, ImmOpnd:$imm),
OpcodeStr, "$rs1, $imm"> {
let Constraints = "$rs1 = $rs1_wb";
let Inst{12} = imm{5};
let Inst{11-10} = funct2;
let Inst{6-2} = imm{4-0};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class CS_ALU<bits<6> funct6, bits<2> funct2, string OpcodeStr,
RegisterClass cls>
: RVInst16CA<funct6, funct2, 0b01, (outs cls:$rd_wb), (ins cls:$rd, cls:$rs2),
OpcodeStr, "$rd, $rs2"> {
bits<3> rd;
let Constraints = "$rd = $rd_wb";
let Inst{9-7} = rd;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtC] in {
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [X2] in
def C_ADDI4SPN : RVInst16CIW<0b000, 0b00, (outs GPRC:$rd),
(ins SP:$rs1, uimm10_lsb00nonzero:$imm),
"c.addi4spn", "$rd, $rs1, $imm">,
Sched<[WriteIALU, ReadIALU]> {
bits<5> rs1;
let Inst{12-11} = imm{5-4};
let Inst{10-7} = imm{9-6};
let Inst{6} = imm{2};
let Inst{5} = imm{3};
}
let Predicates = [HasStdExtC, HasStdExtD] in
def C_FLD : CLoad_ri<0b001, "c.fld", FPR64C, uimm8_lsb000>,
Sched<[WriteFLD64, ReadMemBase]> {
bits<8> imm;
let Inst{12-10} = imm{5-3};
let Inst{6-5} = imm{7-6};
}
def C_LW : CLoad_ri<0b010, "c.lw", GPRC, uimm7_lsb00>,
Sched<[WriteLDW, ReadMemBase]> {
bits<7> imm;
let Inst{12-10} = imm{5-3};
let Inst{6} = imm{2};
let Inst{5} = imm{6};
}
let DecoderNamespace = "RISCV32Only_",
Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def C_FLW : CLoad_ri<0b011, "c.flw", FPR32C, uimm7_lsb00>,
Sched<[WriteFLD32, ReadMemBase]> {
bits<7> imm;
let Inst{12-10} = imm{5-3};
let Inst{6} = imm{2};
let Inst{5} = imm{6};
}
let Predicates = [HasStdExtC, IsRV64] in
def C_LD : CLoad_ri<0b011, "c.ld", GPRC, uimm8_lsb000>,
Sched<[WriteLDD, ReadMemBase]> {
bits<8> imm;
let Inst{12-10} = imm{5-3};
let Inst{6-5} = imm{7-6};
}
let Predicates = [HasStdExtC, HasStdExtD] in
def C_FSD : CStore_rri<0b101, "c.fsd", FPR64C, uimm8_lsb000>,
Sched<[WriteFST64, ReadStoreData, ReadMemBase]> {
bits<8> imm;
let Inst{12-10} = imm{5-3};
let Inst{6-5} = imm{7-6};
}
def C_SW : CStore_rri<0b110, "c.sw", GPRC, uimm7_lsb00>,
Sched<[WriteSTW, ReadStoreData, ReadMemBase]> {
bits<7> imm;
let Inst{12-10} = imm{5-3};
let Inst{6} = imm{2};
let Inst{5} = imm{6};
}
let DecoderNamespace = "RISCV32Only_",
Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def C_FSW : CStore_rri<0b111, "c.fsw", FPR32C, uimm7_lsb00>,
Sched<[WriteFST32, ReadStoreData, ReadMemBase]> {
bits<7> imm;
let Inst{12-10} = imm{5-3};
let Inst{6} = imm{2};
let Inst{5} = imm{6};
}
let Predicates = [HasStdExtC, IsRV64] in
def C_SD : CStore_rri<0b111, "c.sd", GPRC, uimm8_lsb000>,
Sched<[WriteSTD, ReadStoreData, ReadMemBase]> {
bits<8> imm;
let Inst{12-10} = imm{5-3};
let Inst{6-5} = imm{7-6};
}
let rd = 0, imm = 0, hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_NOP : RVInst16CI<0b000, 0b01, (outs), (ins), "c.nop", "">,
Sched<[WriteNop]>
{
let Inst{6-2} = 0;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_ADDI : RVInst16CI<0b000, 0b01, (outs GPRNoX0:$rd_wb),
(ins GPRNoX0:$rd, simm6nonzero:$imm),
"c.addi", "$rd, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = imm{4-0};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_ADDI_NOP : RVInst16CI<0b000, 0b01, (outs GPRX0:$rd_wb),
(ins GPRX0:$rd, immzero:$imm),
"c.addi", "$rd, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = 0;
let isAsmParserOnly = 1;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCall = 1,
DecoderNamespace = "RISCV32Only_", Defs = [X1],
Predicates = [HasStdExtC, IsRV32] in
def C_JAL : RVInst16CJ<0b001, 0b01, (outs), (ins simm12_lsb0:$offset),
"c.jal", "$offset">, Sched<[WriteJal]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
Predicates = [HasStdExtC, IsRV64] in
def C_ADDIW : RVInst16CI<0b001, 0b01, (outs GPRNoX0:$rd_wb),
(ins GPRNoX0:$rd, simm6:$imm),
"c.addiw", "$rd, $imm">,
Sched<[WriteIALU32, ReadIALU32]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = imm{4-0};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_LI : RVInst16CI<0b010, 0b01, (outs GPRNoX0:$rd), (ins simm6:$imm),
"c.li", "$rd, $imm">,
Sched<[WriteIALU]> {
let Inst{6-2} = imm{4-0};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_ADDI16SP : RVInst16CI<0b011, 0b01, (outs SP:$rd_wb),
(ins SP:$rd, simm10_lsb0000nonzero:$imm),
"c.addi16sp", "$rd, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rd = $rd_wb";
let Inst{12} = imm{9};
let Inst{11-7} = 2;
let Inst{6} = imm{4};
let Inst{5} = imm{6};
let Inst{4-3} = imm{8-7};
let Inst{2} = imm{5};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_LUI : RVInst16CI<0b011, 0b01, (outs GPRNoX0X2:$rd),
(ins c_lui_imm:$imm),
"c.lui", "$rd, $imm">,
Sched<[WriteIALU]> {
let Inst{6-2} = imm{4-0};
}
def C_SRLI : Shift_right<0b00, "c.srli", GPRC, uimmlog2xlennonzero>,
Sched<[WriteShift, ReadShift]>;
def C_SRAI : Shift_right<0b01, "c.srai", GPRC, uimmlog2xlennonzero>,
Sched<[WriteShift, ReadShift]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_ANDI : RVInst16CB<0b100, 0b01, (outs GPRC:$rs1_wb), (ins GPRC:$rs1, simm6:$imm),
"c.andi", "$rs1, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rs1 = $rs1_wb";
let Inst{12} = imm{5};
let Inst{11-10} = 0b10;
let Inst{6-2} = imm{4-0};
}
def C_SUB : CS_ALU<0b100011, 0b00, "c.sub", GPRC>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def C_XOR : CS_ALU<0b100011, 0b01, "c.xor", GPRC>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def C_OR : CS_ALU<0b100011, 0b10, "c.or" , GPRC>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def C_AND : CS_ALU<0b100011, 0b11, "c.and", GPRC>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
let Predicates = [HasStdExtC, IsRV64] in {
def C_SUBW : CS_ALU<0b100111, 0b00, "c.subw", GPRC>,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def C_ADDW : CS_ALU<0b100111, 0b01, "c.addw", GPRC>,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_J : RVInst16CJ<0b101, 0b01, (outs), (ins simm12_lsb0:$offset),
"c.j", "$offset">, Sched<[WriteJmp]> {
let isBranch = 1;
let isTerminator=1;
let isBarrier=1;
}
def C_BEQZ : Bcz<0b110, "c.beqz", seteq, GPRC>, Sched<[WriteJmp]>;
def C_BNEZ : Bcz<0b111, "c.bnez", setne, GPRC>, Sched<[WriteJmp]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_SLLI : RVInst16CI<0b000, 0b10, (outs GPRNoX0:$rd_wb),
(ins GPRNoX0:$rd, uimmlog2xlennonzero:$imm),
"c.slli" ,"$rd, $imm">,
Sched<[WriteShift, ReadShift]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = imm{4-0};
}
let Predicates = [HasStdExtC, HasStdExtD] in
def C_FLDSP : CStackLoad<0b001, "c.fldsp", FPR64, uimm9_lsb000>,
Sched<[WriteFLD64, ReadMemBase]> {
let Inst{6-5} = imm{4-3};
let Inst{4-2} = imm{8-6};
}
def C_LWSP : CStackLoad<0b010, "c.lwsp", GPRNoX0, uimm8_lsb00>,
Sched<[WriteLDW, ReadMemBase]> {
let Inst{6-4} = imm{4-2};
let Inst{3-2} = imm{7-6};
}
let DecoderNamespace = "RISCV32Only_",
Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def C_FLWSP : CStackLoad<0b011, "c.flwsp", FPR32, uimm8_lsb00>,
Sched<[WriteFLD32, ReadMemBase]> {
let Inst{6-4} = imm{4-2};
let Inst{3-2} = imm{7-6};
}
let Predicates = [HasStdExtC, IsRV64] in
def C_LDSP : CStackLoad<0b011, "c.ldsp", GPRNoX0, uimm9_lsb000>,
Sched<[WriteLDD, ReadMemBase]> {
let Inst{6-5} = imm{4-3};
let Inst{4-2} = imm{8-6};
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_JR : RVInst16CR<0b1000, 0b10, (outs), (ins GPRNoX0:$rs1),
"c.jr", "$rs1">, Sched<[WriteJmpReg]> {
let isBranch = 1;
let isBarrier = 1;
let isTerminator = 1;
let isIndirectBranch = 1;
let rs2 = 0;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_MV : RVInst16CR<0b1000, 0b10, (outs GPRNoX0:$rs1), (ins GPRNoX0:$rs2),
"c.mv", "$rs1, $rs2">,
Sched<[WriteIALU, ReadIALU]>;
let rs1 = 0, rs2 = 0, hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
def C_EBREAK : RVInst16CR<0b1001, 0b10, (outs), (ins), "c.ebreak", "">, Sched<[]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
isCall=1, Defs=[X1], rs2 = 0 in
def C_JALR : RVInst16CR<0b1001, 0b10, (outs), (ins GPRNoX0:$rs1),
"c.jalr", "$rs1">, Sched<[WriteJalr, ReadJalr]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def C_ADD : RVInst16CR<0b1001, 0b10, (outs GPRNoX0:$rs1_wb),
(ins GPRNoX0:$rs1, GPRNoX0:$rs2),
"c.add", "$rs1, $rs2">,
Sched<[WriteIALU, ReadIALU, ReadIALU]> {
let Constraints = "$rs1 = $rs1_wb";
}
let Predicates = [HasStdExtC, HasStdExtD] in
def C_FSDSP : CStackStore<0b101, "c.fsdsp", FPR64, uimm9_lsb000>,
Sched<[WriteFST64, ReadStoreData, ReadMemBase]> {
let Inst{12-10} = imm{5-3};
let Inst{9-7} = imm{8-6};
}
def C_SWSP : CStackStore<0b110, "c.swsp", GPR, uimm8_lsb00>,
Sched<[WriteSTW, ReadStoreData, ReadMemBase]> {
let Inst{12-9} = imm{5-2};
let Inst{8-7} = imm{7-6};
}
let DecoderNamespace = "RISCV32Only_",
Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def C_FSWSP : CStackStore<0b111, "c.fswsp", FPR32, uimm8_lsb00>,
Sched<[WriteFST32, ReadStoreData, ReadMemBase]> {
let Inst{12-9} = imm{5-2};
let Inst{8-7} = imm{7-6};
}
let Predicates = [HasStdExtC, IsRV64] in
def C_SDSP : CStackStore<0b111, "c.sdsp", GPR, uimm9_lsb000>,
Sched<[WriteSTD, ReadStoreData, ReadMemBase]> {
let Inst{12-10} = imm{5-3};
let Inst{9-7} = imm{8-6};
}
// The all zeros pattern isn't a valid RISC-V instruction. It's used by GNU
// binutils as 16-bit instruction known to be unimplemented (i.e., trapping).
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
def C_UNIMP : RVInst16<(outs), (ins), "c.unimp", "", [], InstFormatOther>,
Sched<[]> {
let Inst{15-0} = 0;
}
} // Predicates = [HasStdExtC]
//===----------------------------------------------------------------------===//
// HINT Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtC, HasRVCHints], hasSideEffects = 0, mayLoad = 0,
mayStore = 0 in
{
let rd = 0 in
def C_NOP_HINT : RVInst16CI<0b000, 0b01, (outs), (ins simm6nonzero:$imm),
"c.nop", "$imm">, Sched<[WriteNop]> {
let Inst{6-2} = imm{4-0};
let DecoderMethod = "decodeRVCInstrSImm";
}
// Just a different syntax for the c.nop hint: c.addi x0, simm6 vs c.nop simm6.
def C_ADDI_HINT_X0 : RVInst16CI<0b000, 0b01, (outs GPRX0:$rd_wb),
(ins GPRX0:$rd, simm6nonzero:$imm),
"c.addi", "$rd, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = imm{4-0};
let isAsmParserOnly = 1;
}
def C_ADDI_HINT_IMM_ZERO : RVInst16CI<0b000, 0b01, (outs GPRNoX0:$rd_wb),
(ins GPRNoX0:$rd, immzero:$imm),
"c.addi", "$rd, $imm">,
Sched<[WriteIALU, ReadIALU]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = 0;
let isAsmParserOnly = 1;
}
def C_LI_HINT : RVInst16CI<0b010, 0b01, (outs GPRX0:$rd), (ins simm6:$imm),
"c.li", "$rd, $imm">,
Sched<[WriteIALU]> {
let Inst{6-2} = imm{4-0};
let Inst{11-7} = 0;
let DecoderMethod = "decodeRVCInstrRdSImm";
}
def C_LUI_HINT : RVInst16CI<0b011, 0b01, (outs GPRX0:$rd),
(ins c_lui_imm:$imm),
"c.lui", "$rd, $imm">,
Sched<[WriteIALU]> {
let Inst{6-2} = imm{4-0};
let Inst{11-7} = 0;
let DecoderMethod = "decodeRVCInstrRdSImm";
}
def C_MV_HINT : RVInst16CR<0b1000, 0b10, (outs GPRX0:$rs1), (ins GPRNoX0:$rs2),
"c.mv", "$rs1, $rs2">, Sched<[WriteIALU, ReadIALU]>
{
let Inst{11-7} = 0;
let DecoderMethod = "decodeRVCInstrRdRs2";
}
def C_ADD_HINT : RVInst16CR<0b1001, 0b10, (outs GPRX0:$rs1_wb),
(ins GPRX0:$rs1, GPRNoX0:$rs2),
"c.add", "$rs1, $rs2">,
Sched<[WriteIALU, ReadIALU, ReadIALU]> {
let Constraints = "$rs1 = $rs1_wb";
let Inst{11-7} = 0;
let DecoderMethod = "decodeRVCInstrRdRs1Rs2";
}
def C_SLLI_HINT : RVInst16CI<0b000, 0b10, (outs GPRX0:$rd_wb),
(ins GPRX0:$rd, uimmlog2xlennonzero:$imm),
"c.slli" ,"$rd, $imm">,
Sched<[WriteShift, ReadShift]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = imm{4-0};
let Inst{11-7} = 0;
let DecoderMethod = "decodeRVCInstrRdRs1UImm";
}
def C_SLLI64_HINT : RVInst16CI<0b000, 0b10, (outs GPR:$rd_wb), (ins GPR:$rd),
"c.slli64" ,"$rd">,
Sched<[WriteShift, ReadShift]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = 0;
let Inst{12} = 0;
}
def C_SRLI64_HINT : RVInst16CI<0b100, 0b01, (outs GPRC:$rd_wb),
(ins GPRC:$rd),
"c.srli64", "$rd">,
Sched<[WriteShift, ReadShift]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = 0;
let Inst{11-10} = 0;
let Inst{12} = 0;
}
def C_SRAI64_HINT : RVInst16CI<0b100, 0b01, (outs GPRC:$rd_wb),
(ins GPRC:$rd),
"c.srai64", "$rd">,
Sched<[WriteShift, ReadShift]> {
let Constraints = "$rd = $rd_wb";
let Inst{6-2} = 0;
let Inst{11-10} = 1;
let Inst{12} = 0;
}
} // Predicates = [HasStdExtC, HasRVCHints], hasSideEffects = 0, mayLoad = 0,
// mayStore = 0
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
let EmitPriority = 0 in {
let Predicates = [HasStdExtC, HasStdExtD] in
def : InstAlias<"c.fld $rd, (${rs1})", (C_FLD FPR64C:$rd, GPRC:$rs1, 0)>;
def : InstAlias<"c.lw $rd, (${rs1})", (C_LW GPRC:$rd, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def : InstAlias<"c.flw $rd, (${rs1})", (C_FLW FPR32C:$rd, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, IsRV64] in
def : InstAlias<"c.ld $rd, (${rs1})", (C_LD GPRC:$rd, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtD] in
def : InstAlias<"c.fsd $rs2, (${rs1})", (C_FSD FPR64C:$rs2, GPRC:$rs1, 0)>;
def : InstAlias<"c.sw $rs2, (${rs1})", (C_SW GPRC:$rs2, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def : InstAlias<"c.fsw $rs2, (${rs1})", (C_FSW FPR32C:$rs2, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, IsRV64] in
def : InstAlias<"c.sd $rs2, (${rs1})", (C_SD GPRC:$rs2, GPRC:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtD] in
def : InstAlias<"c.fldsp $rd, (${rs1})", (C_FLDSP FPR64C:$rd, SP:$rs1, 0)>;
def : InstAlias<"c.lwsp $rd, (${rs1})", (C_LWSP GPRC:$rd, SP:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def : InstAlias<"c.flwsp $rd, (${rs1})", (C_FLWSP FPR32C:$rd, SP:$rs1, 0)>;
let Predicates = [HasStdExtC, IsRV64] in
def : InstAlias<"c.ldsp $rd, (${rs1})", (C_LDSP GPRC:$rd, SP:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtD] in
def : InstAlias<"c.fsdsp $rs2, (${rs1})", (C_FSDSP FPR64C:$rs2, SP:$rs1, 0)>;
def : InstAlias<"c.swsp $rs2, (${rs1})", (C_SWSP GPRC:$rs2, SP:$rs1, 0)>;
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in
def : InstAlias<"c.fswsp $rs2, (${rs1})", (C_FSWSP FPR32C:$rs2, SP:$rs1, 0)>;
let Predicates = [HasStdExtC, IsRV64] in
def : InstAlias<"c.sdsp $rs2, (${rs1})", (C_SDSP GPRC:$rs2, SP:$rs1, 0)>;
}
//===----------------------------------------------------------------------===//
// Compress Instruction tablegen backend.
//===----------------------------------------------------------------------===//
class CompressPat<dag input, dag output> {
dag Input = input;
dag Output = output;
list<Predicate> Predicates = [];
}
// Patterns are defined in the same order the compressed instructions appear
// on page 82 of the ISA manual.
// Quadrant 0
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADDI GPRC:$rd, SP:$rs1, uimm10_lsb00nonzero:$imm),
(C_ADDI4SPN GPRC:$rd, SP:$rs1, uimm10_lsb00nonzero:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtD] in {
def : CompressPat<(FLD FPR64C:$rd, GPRC:$rs1, uimm8_lsb000:$imm),
(C_FLD FPR64C:$rd, GPRC:$rs1, uimm8_lsb000:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtD]
let Predicates = [HasStdExtC] in {
def : CompressPat<(LW GPRC:$rd, GPRC:$rs1, uimm7_lsb00:$imm),
(C_LW GPRC:$rd, GPRC:$rs1, uimm7_lsb00:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in {
def : CompressPat<(FLW FPR32C:$rd, GPRC:$rs1, uimm7_lsb00:$imm),
(C_FLW FPR32C:$rd, GPRC:$rs1, uimm7_lsb00:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtF, IsRV32]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(LD GPRC:$rd, GPRC:$rs1, uimm8_lsb000:$imm),
(C_LD GPRC:$rd, GPRC:$rs1, uimm8_lsb000:$imm)>;
} // Predicates = [HasStdExtC, IsRV64]
let Predicates = [HasStdExtC, HasStdExtD] in {
def : CompressPat<(FSD FPR64C:$rs2, GPRC:$rs1, uimm8_lsb000:$imm),
(C_FSD FPR64C:$rs2, GPRC:$rs1, uimm8_lsb000:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtD]
let Predicates = [HasStdExtC] in {
def : CompressPat<(SW GPRC:$rs2, GPRC:$rs1, uimm7_lsb00:$imm),
(C_SW GPRC:$rs2, GPRC:$rs1, uimm7_lsb00:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in {
def : CompressPat<(FSW FPR32C:$rs2, GPRC:$rs1,uimm7_lsb00:$imm),
(C_FSW FPR32C:$rs2, GPRC:$rs1, uimm7_lsb00:$imm)>;
} // Predicate = [HasStdExtC, HasStdExtF, IsRV32]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(SD GPRC:$rs2, GPRC:$rs1, uimm8_lsb000:$imm),
(C_SD GPRC:$rs2, GPRC:$rs1, uimm8_lsb000:$imm)>;
} // Predicates = [HasStdExtC, IsRV64]
// Quadrant 1
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADDI X0, X0, 0), (C_NOP)>;
def : CompressPat<(ADDI GPRNoX0:$rs1, GPRNoX0:$rs1, simm6nonzero:$imm),
(C_ADDI GPRNoX0:$rs1, simm6nonzero:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, IsRV32] in {
def : CompressPat<(JAL X1, simm12_lsb0:$offset),
(C_JAL simm12_lsb0:$offset)>;
} // Predicates = [HasStdExtC, IsRV32]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(ADDIW GPRNoX0:$rs1, GPRNoX0:$rs1, simm6:$imm),
(C_ADDIW GPRNoX0:$rs1, simm6:$imm)>;
} // Predicates = [HasStdExtC, IsRV64]
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADDI GPRNoX0:$rd, X0, simm6:$imm),
(C_LI GPRNoX0:$rd, simm6:$imm)>;
def : CompressPat<(ADDI X2, X2, simm10_lsb0000nonzero:$imm),
(C_ADDI16SP X2, simm10_lsb0000nonzero:$imm)>;
def : CompressPat<(LUI GPRNoX0X2:$rd, c_lui_imm:$imm),
(C_LUI GPRNoX0X2:$rd, c_lui_imm:$imm)>;
def : CompressPat<(SRLI GPRC:$rs1, GPRC:$rs1, uimmlog2xlennonzero:$imm),
(C_SRLI GPRC:$rs1, uimmlog2xlennonzero:$imm)>;
def : CompressPat<(SRAI GPRC:$rs1, GPRC:$rs1, uimmlog2xlennonzero:$imm),
(C_SRAI GPRC:$rs1, uimmlog2xlennonzero:$imm)>;
def : CompressPat<(ANDI GPRC:$rs1, GPRC:$rs1, simm6:$imm),
(C_ANDI GPRC:$rs1, simm6:$imm)>;
def : CompressPat<(SUB GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_SUB GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(XOR GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_XOR GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(XOR GPRC:$rs1, GPRC:$rs2, GPRC:$rs1),
(C_XOR GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(OR GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_OR GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(OR GPRC:$rs1, GPRC:$rs2, GPRC:$rs1),
(C_OR GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(AND GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_AND GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(AND GPRC:$rs1, GPRC:$rs2, GPRC:$rs1),
(C_AND GPRC:$rs1, GPRC:$rs2)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(ADDIW GPRNoX0:$rd, X0, simm6:$imm),
(C_LI GPRNoX0:$rd, simm6:$imm)>;
def : CompressPat<(SUBW GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_SUBW GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(ADDW GPRC:$rs1, GPRC:$rs1, GPRC:$rs2),
(C_ADDW GPRC:$rs1, GPRC:$rs2)>;
def : CompressPat<(ADDW GPRC:$rs1, GPRC:$rs2, GPRC:$rs1),
(C_ADDW GPRC:$rs1, GPRC:$rs2)>;
} // Predicates = [HasStdExtC, IsRV64]
let Predicates = [HasStdExtC] in {
def : CompressPat<(JAL X0, simm12_lsb0:$offset),
(C_J simm12_lsb0:$offset)>;
def : CompressPat<(BEQ GPRC:$rs1, X0, simm9_lsb0:$imm),
(C_BEQZ GPRC:$rs1, simm9_lsb0:$imm)>;
def : CompressPat<(BNE GPRC:$rs1, X0, simm9_lsb0:$imm),
(C_BNEZ GPRC:$rs1, simm9_lsb0:$imm)>;
} // Predicates = [HasStdExtC]
// Quadrant 2
let Predicates = [HasStdExtC] in {
def : CompressPat<(SLLI GPRNoX0:$rs1, GPRNoX0:$rs1, uimmlog2xlennonzero:$imm),
(C_SLLI GPRNoX0:$rs1, uimmlog2xlennonzero:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtD] in {
def : CompressPat<(FLD FPR64:$rd, SP:$rs1, uimm9_lsb000:$imm),
(C_FLDSP FPR64:$rd, SP:$rs1, uimm9_lsb000:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtD]
let Predicates = [HasStdExtC] in {
def : CompressPat<(LW GPRNoX0:$rd, SP:$rs1, uimm8_lsb00:$imm),
(C_LWSP GPRNoX0:$rd, SP:$rs1, uimm8_lsb00:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in {
def : CompressPat<(FLW FPR32:$rd, SP:$rs1, uimm8_lsb00:$imm),
(C_FLWSP FPR32:$rd, SP:$rs1, uimm8_lsb00:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtF, IsRV32]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(LD GPRNoX0:$rd, SP:$rs1, uimm9_lsb000:$imm),
(C_LDSP GPRNoX0:$rd, SP:$rs1, uimm9_lsb000:$imm)>;
} // Predicates = [HasStdExtC, IsRV64]
let Predicates = [HasStdExtC] in {
def : CompressPat<(JALR X0, GPRNoX0:$rs1, 0),
(C_JR GPRNoX0:$rs1)>;
def : CompressPat<(ADD GPRNoX0:$rs1, X0, GPRNoX0:$rs2),
(C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>;
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs2, X0),
(C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>;
def : CompressPat<(ADDI GPRNoX0:$rs1, GPRNoX0:$rs2, 0),
(C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>;
def : CompressPat<(EBREAK), (C_EBREAK)>;
def : CompressPat<(UNIMP), (C_UNIMP)>;
def : CompressPat<(JALR X1, GPRNoX0:$rs1, 0),
(C_JALR GPRNoX0:$rs1)>;
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2),
(C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>;
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs2, GPRNoX0:$rs1),
(C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtD] in {
def : CompressPat<(FSD FPR64:$rs2, SP:$rs1, uimm9_lsb000:$imm),
(C_FSDSP FPR64:$rs2, SP:$rs1, uimm9_lsb000:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtD]
let Predicates = [HasStdExtC] in {
def : CompressPat<(SW GPR:$rs2, SP:$rs1, uimm8_lsb00:$imm),
(C_SWSP GPR:$rs2, SP:$rs1, uimm8_lsb00:$imm)>;
} // Predicates = [HasStdExtC]
let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in {
def : CompressPat<(FSW FPR32:$rs2, SP:$rs1, uimm8_lsb00:$imm),
(C_FSWSP FPR32:$rs2, SP:$rs1, uimm8_lsb00:$imm)>;
} // Predicates = [HasStdExtC, HasStdExtF, IsRV32]
let Predicates = [HasStdExtC, IsRV64] in {
def : CompressPat<(SD GPR:$rs2, SP:$rs1, uimm9_lsb000:$imm),
(C_SDSP GPR:$rs2, SP:$rs1, uimm9_lsb000:$imm)>;
} // Predicates = [HasStdExtC, IsRV64]