Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Register move.
  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;

  // Load GR from VR element.
  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;

  // Load VR element from GR.
  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
                          v128b, v128b, GR32, 0>;
  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
                          v128h, v128h, GR32, 1>;
  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
                          v128f, v128f, GR32, 2>;
  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
                          v128g, v128g, GR64, 3>;

  // Load VR from GRs disjoint.
  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
  def VLVGP32 : BinaryAliasVRRf<GR32>;
}

// Extractions always assign to the full GR64, even if the element would
// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
// subreg of the result.
class VectorExtractSubreg<ValueType type, Instruction insn>
  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;

def : VectorExtractSubreg<v16i8, VLGVB>;
def : VectorExtractSubreg<v8i16, VLGVH>;
def : VectorExtractSubreg<v4i32, VLGVF>;

//===----------------------------------------------------------------------===//
// Immediate instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {

    // Generate byte mask.
    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16_timm>;

    // Generate mask.
    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;

    // Replicate immediate.
    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16_timm, 0>;
    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16_timm, 1>;
    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16_timm, 2>;
    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16_timm, 3>;
  }

  // Load element immediate.
  //
  // We want these instructions to be used ahead of VLVG* where possible.
  // However, VLVG* takes a variable BD-format index whereas VLEI takes
  // a plain immediate index.  This means that VLVG* has an extra "base"
  // register operand and is 3 units more complex.  Bumping the complexity
  // of the VLEI* instructions by 4 means that they are strictly better
  // than VLVG* in cases where both forms match.
  let AddedComplexity = 4 in {
    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
                            v128b, v128b, imm32sx16trunc, imm32zx4>;
    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
                            v128h, v128h, imm32sx16trunc, imm32zx3>;
    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
                            v128f, v128f, imm32sx16, imm32zx2>;
    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
                            v128g, v128g, imm64sx16, imm32zx1>;
  }
}

//===----------------------------------------------------------------------===//
// Loads
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Load.
  defm VL : UnaryVRXAlign<"vl", 0xE706>;

  // Load to block boundary.  The number of loaded bytes is only known
  // at run time.  The instruction is really polymorphic, but v128b matches
  // the return type of the associated intrinsic.
  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;

  // Load count to block boundary.
  let Defs = [CC] in
    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
                       "lcbb\t$R1, $XBD2, $M3",
                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
                                                      imm32zx4_timm:$M3))]>;

  // Load with length.  The number of loaded bytes is only known at run time.
  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;

  // Load multiple.
  defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;

  // Load and replicate
  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
            (VLREPF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
            (VLREPG bdxaddr12only:$addr)>;

  // Use VLREP to load subvectors.  These patterns use "12pair" because
  // LEY and LDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayLoad = 1 in {
    def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
    def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
  }

  // Load logical element and zero.
  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
  def : Pat<(z_vllezf32 bdxaddr12only:$addr),
            (VLLEZF bdxaddr12only:$addr)>;
  def : Pat<(z_vllezf64 bdxaddr12only:$addr),
            (VLLEZG bdxaddr12only:$addr)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
    def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
              (VLLEZLF bdxaddr12only:$addr)>;
  }

  // Load element.
  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Gather element.
  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Load rightmost with length.  The number of loaded bytes is only known
  // at run time.  Note that while the instruction will accept immediate
  // lengths larger that 15 at runtime, those will always result in a trap,
  // so we never emit them here.
  def VLRL : BinaryVSI<"vlrl", 0xE635, null_frag, 0>;
  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
  def : Pat<(int_s390_vlrl imm32zx4:$len, bdaddr12only:$addr),
            (VLRL bdaddr12only:$addr, imm32zx4:$len)>;
}

// Use replicating loads if we're inserting a single element into an
// undefined vector.  This avoids a false dependency on the previous
// register contents.
multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
                             SDPatternOperator load, ValueType scalartype> {
  def : Pat<(vectype (z_vector_insert
                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
            (vlrep bdxaddr12only:$addr)>;
  def : Pat<(vectype (scalar_to_vector
                      (scalartype (load bdxaddr12only:$addr)))),
            (vlrep bdxaddr12only:$addr)>;
}
defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;

//===----------------------------------------------------------------------===//
// Stores
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Store.
  defm VST : StoreVRXAlign<"vst", 0xE70E>;

  // Store with length.  The number of stored bytes is only known at run time.
  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;

  // Store multiple.
  defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;

  // Store element.
  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
                       imm32zx2:$index),
            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
                       imm32zx1:$index),
            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Use VSTE to store subvectors.  These patterns use "12pair" because
  // STEY and STDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayStore = 1 in {
    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
  }

  // Scatter element.
  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Store rightmost with length.  The number of stored bytes is only known
  // at run time.  Note that while the instruction will accept immediate
  // lengths larger that 15 at runtime, those will always result in a trap,
  // so we never emit them here.
  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, null_frag, 0>;
  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
  def : Pat<(int_s390_vstrl VR128:$val, imm32zx4:$len, bdaddr12only:$addr),
            (VSTRL VR128:$val, bdaddr12only:$addr, imm32zx4:$len)>;
}

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements2] in {
  // Load byte-reversed elements.
  def VLBR  : UnaryVRXGeneric<"vlbr", 0xE606>;
  def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
  def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
  def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
  def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>;

  // Load elements reversed.
  def VLER  : UnaryVRXGeneric<"vler", 0xE607>;
  def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
  def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
  def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
  def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
            (VLERF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
            (VLERG bdxaddr12only:$addr)>;
  def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
            (VLBRQ bdxaddr12only:$addr)>;

  // Load byte-reversed element.
  def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
  def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
  def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;

  // Load byte-reversed element and zero.
  def VLLEBRZ  : UnaryVRXGeneric<"vllebrz", 0xE604>;
  def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
  def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
  def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
  def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
  def : InstAlias<"lerv\t$V1, $XBD2",
                  (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
  def : InstAlias<"ldrv\t$V1, $XBD2",
                  (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;

  // Load byte-reversed element and replicate.
  def VLBRREP  : UnaryVRXGeneric<"vlbrrep", 0xE605>;
  def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
  def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
  def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;

  // Store byte-reversed elements.
  def VSTBR  : StoreVRXGeneric<"vstbr", 0xE60E>;
  def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
  def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
  def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
  def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>;

  // Store elements reversed.
  def VSTER  : StoreVRXGeneric<"vster", 0xE60F>;
  def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
  def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
  def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
  def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
            (VSTERF VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
            (VSTERG VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
            (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;

  // Store byte-reversed element.
  def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
  def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
  def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
  def : InstAlias<"sterv\t$V1, $XBD2",
                  (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
  def : InstAlias<"stdrv\t$V1, $XBD2",
                  (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
}

//===----------------------------------------------------------------------===//
// Selects and permutes
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Merge high.
  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;

  // Merge low.
  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;

  // Permute.
  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;

  // Permute doubleword immediate.
  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;

  // Bit Permute.
  let Predicates = [FeatureVectorEnhancements1] in
    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;

  // Replicate.
  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16_timm:$index)),
            (VREPF VR128:$vec, imm32zx16:$index)>;
  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16_timm:$index)),
            (VREPG VR128:$vec, imm32zx16:$index)>;

  // Select.
  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
}

//===----------------------------------------------------------------------===//
// Widening and narrowing
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Pack
  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;

  // Pack saturate.
  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
                               v128b, v128h, 1>;
  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
                               v128h, v128f, 2>;
  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
                               v128f, v128g, 3>;

  // Pack saturate logical.
  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
                                v128b, v128h, 1>;
  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
                                v128h, v128f, 2>;
  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
                                v128f, v128g, 3>;

  // Sign-extend to doubleword.
  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;

  // Unpack high.
  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;

  // Unpack logical high.
  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;

  // Unpack low.
  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;

  // Unpack logical low.
  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
}

//===----------------------------------------------------------------------===//
// Instantiating generic operations for specific types.
//===----------------------------------------------------------------------===//

multiclass GenericVectorOps<ValueType type, ValueType inttype> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (load bdxaddr12only:$addr)),
              (VL bdxaddr12only:$addr)>;
    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
              (VST VR128:$src, bdxaddr12only:$addr)>;
    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
  }
}

defm : GenericVectorOps<v16i8, v16i8>;
defm : GenericVectorOps<v8i16, v8i16>;
defm : GenericVectorOps<v4i32, v4i32>;
defm : GenericVectorOps<v2i64, v2i64>;
defm : GenericVectorOps<v4f32, v4i32>;
defm : GenericVectorOps<v2f64, v2i64>;

//===----------------------------------------------------------------------===//
// Integer arithmetic
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  let isCommutable = 1 in {
    // Add.
    def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
    def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
    def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
    def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
    def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
    def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
  }

  let isCommutable = 1 in {
    // Add compute carry.
    def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
    def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
    def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
    def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
    def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
    def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;

    // Add with carry.
    def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
    def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;

    // Add with carry compute carry.
    def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
    def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
 }

  // And.
  let isCommutable = 1 in
    def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;

  // And with complement.
  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;

  let isCommutable = 1 in {
    // Average.
    def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
    def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
    def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
    def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
    def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;

    // Average logical.
    def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
    def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
    def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
    def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
    def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
  }

  // Checksum.
  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;

  // Count leading zeros.
  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;

  // Count trailing zeros.
  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;

  let isCommutable = 1 in {
    // Not exclusive or.
    let Predicates = [FeatureVectorEnhancements1] in
      def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;

    // Exclusive or.
    def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
  }

  // Galois field multiply sum.
  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;

  // Galois field multiply sum and accumulate.
  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;

  // Load complement.
  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;

  // Load positive.
  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;

  let isCommutable = 1 in {
    // Maximum.
    def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
    def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
    def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
    def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
    def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;

    // Maximum logical.
    def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
    def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
    def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
    def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
    def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
  }

  let isCommutable = 1 in {
    // Minimum.
    def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
    def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
    def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
    def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
    def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;

    // Minimum logical.
    def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
    def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
    def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
    def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
    def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
  }

  let isCommutable = 1 in {
    // Multiply and add low.
    def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
    def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
    def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
    def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;

    // Multiply and add high.
    def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
    def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
    def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
    def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;

    // Multiply and add logical high.
    def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
    def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
    def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
    def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;

    // Multiply and add even.
    def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
    def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
    def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
    def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;

    // Multiply and add logical even.
    def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
    def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
    def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
    def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;

    // Multiply and add odd.
    def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
    def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
    def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
    def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;

    // Multiply and add logical odd.
    def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
    def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
    def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
    def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
  }

  let isCommutable = 1 in {
    // Multiply high.
    def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
    def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
    def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
    def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;

    // Multiply logical high.
    def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
    def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
    def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
    def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;

    // Multiply low.
    def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
    def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
    def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
    def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;

    // Multiply even.
    def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
    def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
    def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
    def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;

    // Multiply logical even.
    def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
    def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
    def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
    def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;

    // Multiply odd.
    def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
    def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
    def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
    def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;

    // Multiply logical odd.
    def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
    def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
    def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
    def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
  }

  // Multiply sum logical.
  let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in {
    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
                               v128q, v128g, v128g, v128q, 3>;
  }

  // Nand.
  let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in
    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;

  // Nor.
  let isCommutable = 1 in
    def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;

  // Or.
  let isCommutable = 1 in
    def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;

  // Or with complement.
  let Predicates = [FeatureVectorEnhancements1] in
    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;

  // Population count.
  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
  }

  // Element rotate left logical (with vector shift amount).
  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
                           v128b, v128b, 0>;
  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
                           v128h, v128h, 1>;
  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
                           v128f, v128f, 2>;
  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
                           v128g, v128g, 3>;

  // Element rotate left logical (with scalar shift amount).
  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;

  // Element rotate and insert under mask.
  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;

  // Element shift left (with vector shift amount).
  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;

  // Element shift left (with scalar shift amount).
  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;

  // Element shift right arithmetic (with vector shift amount).
  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;

  // Element shift right arithmetic (with scalar shift amount).
  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;

  // Element shift right logical (with vector shift amount).
  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;

  // Element shift right logical (with scalar shift amount).
  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;

  // Shift left.
  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;

  // Shift left by byte.
  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;

  // Shift left double by byte.
  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8_timm:$z),
            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;

  // Shift left double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;

  // Shift right arithmetic.
  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;

  // Shift right arithmetic by byte.
  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;

  // Shift right logical.
  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;

  // Shift right logical by byte.
  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;

  // Shift right double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;

  // Subtract.
  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;

  // Subtract compute borrow indication.
  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;

  // Subtract with borrow indication.
  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;

  // Subtract with borrow compute borrow indication.
  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
                            v128q, v128q, 4>;

  // Sum across doubleword.
  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;

  // Sum across quadword.
  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;

  // Sum across word.
  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
}

// Instantiate the bitwise ops for type TYPE.
multiclass BitwiseVectorOps<ValueType type> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
              (VNC VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
    def : Pat<(type (or (and VR128:$x, VR128:$z),
                        (and VR128:$y, (z_vnot VR128:$z)))),
              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
              (VNO VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
              (VNX VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
              (VNN VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
              (VOC VR128:$x, VR128:$y)>;
  }
}

defm : BitwiseVectorOps<v16i8>;
defm : BitwiseVectorOps<v8i16>;
defm : BitwiseVectorOps<v4i32>;
defm : BitwiseVectorOps<v2i64>;

// Instantiate additional patterns for absolute-related expressions on
// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
// instruction.
multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
                                    Instruction lp, int shift> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             (z_vneg VR128:$x)),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             VR128:$x))),
              (lp VR128:$x)>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             VR128:$x),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             (z_vneg VR128:$x)))),
              (lc (lp VR128:$x))>;
  }
}

defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;

// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
// signed or unsigned "set if greater than" comparison instruction and
// MIN and MAX are the associated minimum and maximum instructions.
multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
                                  Instruction min, Instruction max> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
              (max VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$x, VR128:$y)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$y, VR128:$x)),
              (max VR128:$x, VR128:$y)>;
  }
}

// Signed min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;

// Unsigned min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;

//===----------------------------------------------------------------------===//
// Integer comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Element compare.
  let Defs = [CC] in {
    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
  }

  // Element compare logical.
  let Defs = [CC] in {
    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
  }

  // Compare equal.
  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128b, v128b, 0>;
  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128h, v128h, 1>;
  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128f, v128f, 2>;
  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128g, v128g, 3>;

  // Compare high.
  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
                              v128b, v128b, 0>;
  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
                              v128h, v128h, 1>;
  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
                              v128f, v128f, 2>;
  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
                              v128g, v128g, 3>;

  // Compare high logical.
  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128b, v128b, 0>;
  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128h, v128h, 1>;
  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128f, v128f, 2>;
  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128g, v128g, 3>;

  // Test under mask.
  let Defs = [CC] in
    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
}

//===----------------------------------------------------------------------===//
// Floating-point arithmetic
//===----------------------------------------------------------------------===//

// See comments in SystemZInstrFP.td for the suppression flags and
// rounding modes.
multiclass VectorRounding<Instruction insn, TypedReg tr> {
  def : FPConversion<insn, any_frint,      tr, tr, 0, 0>;
  def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
  def : FPConversion<insn, any_ffloor,     tr, tr, 4, 7>;
  def : FPConversion<insn, any_fceil,      tr, tr, 4, 6>;
  def : FPConversion<insn, any_ftrunc,     tr, tr, 4, 5>;
  def : FPConversion<insn, any_fround,     tr, tr, 4, 1>;
}

let Predicates = [FeatureVector] in {
  // Add.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
    def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
    def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
    def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8, 0,
                           "adbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
      def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8, 0,
                             "aebr">;
      def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
    }
  }

  // Convert from fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
    def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
    def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDGB, any_sint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPS  : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
      def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
      def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCEFB, any_sint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert from logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
    def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
    def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDLGB, any_uint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPL  : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
      def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
      def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCELFB, any_uint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert to fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
    def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
    def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCGDB, any_fp_to_sint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCSFP  : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
      def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
      def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCFEB, any_fp_to_sint, v128f, v128sb, 0, 5>;
  }

  // Convert to logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
    def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
    def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCLGDB, any_fp_to_uint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCLFP  : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
      def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
      def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCLFEB, any_fp_to_uint, v128f, v128sb, 0, 5>;
  }

  // Divide.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
    def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
    def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8, 0,
                           "ddbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
      def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8, 0,
                             "debr">;
      def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
    }
  }

  // Load FP integer.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
    def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
    def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
  }
  defm : VectorRounding<VFIDB, v128db>;
  defm : VectorRounding<WFIDB, v64db>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
      def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
      def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
    }
    defm : VectorRounding<VFISB, v128sb>;
    defm : VectorRounding<WFISB, v32sb>;
    defm : VectorRounding<WFIXB, v128xb>;
  }

  // Load lengthened.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
    def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_any_vextend, v128db, v128sb, 2, 0>;
    def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8, 0,
                          "ldebr">;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
        def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
        def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
      }
      def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
    }
    def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
              (WFLLD (WLDEB VR32:$src))>;
  }

  // Load rounded.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
    def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
    def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
  }
  def : Pat<(v4f32 (z_any_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
  def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
        def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
        def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
      }
      def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
    }
    def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
    def : Pat<(f32 (any_fpround (f128 VR128:$src))),
              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
  }

  // Maximum.
  multiclass VectorMax<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fmaxnum, tr, 4>;
    def : FPMinMax<insn, any_fmaximum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
      def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
      def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
                                     v128db, v128db, 3, 0>;
      def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMax<VFMAXDB, v128db>;
    defm : VectorMax<WFMAXDB, v64db>;
    defm : VectorMax<VFMAXSB, v128sb>;
    defm : VectorMax<WFMAXSB, v32sb>;
    defm : VectorMax<WFMAXXB, v128xb>;
  }

  // Minimum.
  multiclass VectorMin<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fminnum, tr, 4>;
    def : FPMinMax<insn, any_fminimum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
      def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
      def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
                                     v128db, v128db, 3, 0>;
      def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMin<VFMINDB, v128db>;
    defm : VectorMin<WFMINDB, v64db>;
    defm : VectorMin<VFMINSB, v128sb>;
    defm : VectorMin<WFMINSB, v32sb>;
    defm : VectorMin<WFMINXB, v128xb>;
  }

  // Multiply.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
    def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
    def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
    def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8, 0,
                           "mdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
      def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8, 0,
                             "meebr">;
      def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
    }
  }

  // Multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
    def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
    def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
    def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3,
                             "madbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
      def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2,
                               "maebr">;
      def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
    }
  }

  // Multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
    def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
    def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
    def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3,
                             "msdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
      def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2,
                               "msebr">;
      def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
    }
  }

  // Negative multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
  }

  // Negative multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
  }

  // Perform sign operation.
  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
  }

  // Load complement.
  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
  }

  // Load negative.
  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
  }

  // Load positive.
  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
  }

  // Square root.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
    def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
    def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8, 0,
                           "sqdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
      def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8, 0,
                             "sqebr">;
      def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
    }
  }

  // Subtract.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
    def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
    def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8, 0,
                           "sdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
      def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8, 0,
                             "sebr">;
      def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
    }
  }

  // Test data class immediate.
  let Defs = [CC] in {
    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Floating-point comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Compare scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_any_fcmp, v64db, 3, "cdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_any_fcmp, v32sb, 2, "cebr">;
      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_any_fcmp, v128xb, 4>;
    }
  }

  // Compare and signal scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, z_strict_fcmps, v64db, 3, "kdbr">;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, z_strict_fcmps, v32sb, 2, "kebr">;
      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, z_strict_fcmps, v128xb, 4>;
    }
  }

  // Compare equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
    defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
                                  v128g, v128db, 3, 0>;
    defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
                                    v128f, v128sb, 2, 0>;
      defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, z_strict_vfcmpes, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, z_strict_vfcmpes, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
    defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
                                  v128g, v128db, 3, 0>;
    defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
                                    v128f, v128sb, 2, 0>;
      defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, z_strict_vfcmphs, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, z_strict_vfcmphs, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high or equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
    defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
                                   v128g, v128db, 3, 0>;
    defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
                                     v128f, v128sb, 2, 0>;
      defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
                                     v32f, v32sb, 2, 8>;
      defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
                                     v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high or equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, z_strict_vfcmphes, null_frag,
                                   v128g, v128db, 3, 4>;
    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 12>;
    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, z_strict_vfcmphes, null_frag,
                                   v128f, v128sb, 2, 4>;
    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
                                   v32f, v32sb, 2, 12>;
    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
                                   v128q, v128xb, 4, 12>;
  }
}

//===----------------------------------------------------------------------===//
// Conversions
//===----------------------------------------------------------------------===//

def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;

def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;

def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;

def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;

def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;

def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;

def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;

//===----------------------------------------------------------------------===//
// Replicating scalars
//===----------------------------------------------------------------------===//

// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
// INDEX is 8 minus the element size in bytes.
class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
  : Pat<(type (z_replicate GR32:$scalar)),
        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;

def : VectorReplicateScalar<v16i8, VREPB, 7>;
def : VectorReplicateScalar<v8i16, VREPH, 3>;
def : VectorReplicateScalar<v4i32, VREPF, 1>;

// i64 replications are just a single instruction.
def : Pat<(v2i64 (z_replicate GR64:$scalar)),
          (VLVGP GR64:$scalar, GR64:$scalar)>;

//===----------------------------------------------------------------------===//
// Floating-point insertion and extraction
//===----------------------------------------------------------------------===//

// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
// and VLGVF.
let Predicates = [FeatureVector] in {
  def LEFR : UnaryAliasVRS<VR32, GR32>;
  def LFER : UnaryAliasVRS<GR64, VR32>;
  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
}

// Floating-point values are stored in element 0 of the corresponding
// vector register.  Scalar to vector conversion is just a subreg and
// scalar replication can just replicate element 0 of the vector register.
multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
                            SubRegIndex subreg> {
  def : Pat<(vt (scalar_to_vector cls:$scalar)),
            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
  def : Pat<(vt (z_replicate cls:$scalar)),
            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
                                 subreg), 0)>;
}
defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;

// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
// TableGen for the base register operand in VLVG-based integer insertions
// and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                 subreg_h64), VR128:$vec, 1)>;
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                             subreg_h64), 0)>;
}

// We extract floating-point element X by replicating (for elements other
// than 0) and then taking a high subreg.  The AddedComplexity counters the
// 3 added by TableGen for the base register operand in VLGV-based integer
// extractions and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;

  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
}

//===----------------------------------------------------------------------===//
// Support for 128-bit floating-point values in vector registers
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements1] in {
  def : Pat<(f128 (load bdxaddr12only:$addr)),
            (VL bdxaddr12only:$addr)>;
  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
            (VST VR128:$src, bdxaddr12only:$addr)>;

  def : Pat<(f128 fpimm0), (VZERO)>;
  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
}

//===----------------------------------------------------------------------===//
// String instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
                                   z_vfae_cc, v128b, v128b, 0>;
  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
                                   z_vfae_cc, v128h, v128h, 1>;
  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
                                   z_vfae_cc, v128f, v128f, 2>;
  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
                                    z_vfaez_cc, v128b, v128b, 0, 2>;
  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
                                    z_vfaez_cc, v128h, v128h, 1, 2>;
  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
                                    z_vfaez_cc, v128f, v128f, 2, 2>;

  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
                                    z_vfee_cc, v128b, v128b, 0>;
  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
                                    z_vfee_cc, v128h, v128h, 1>;
  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
                                    z_vfee_cc, v128f, v128f, 2>;
  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
                                z_vfeez_cc, v128b, v128b, 0, 2>;
  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
                                z_vfeez_cc, v128h, v128h, 1, 2>;
  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
                                z_vfeez_cc, v128f, v128f, 2, 2>;

  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
                                     z_vfene_cc, v128b, v128b, 0>;
  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
                                     z_vfene_cc, v128h, v128h, 1>;
  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
                                     z_vfene_cc, v128f, v128f, 2>;
  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
                                 z_vfenez_cc, v128b, v128b, 0, 2>;
  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
                                 z_vfenez_cc, v128h, v128h, 1, 2>;
  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
                                 z_vfenez_cc, v128f, v128f, 2, 2>;

  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
                                    z_vistr_cc, v128b, v128b, 0>;
  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
                                    z_vistr_cc, v128h, v128h, 1>;
  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
                                    z_vistr_cc, v128f, v128f, 2>;

  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
                                       z_vstrc_cc, v128b, v128b, 0>;
  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
                                       z_vstrc_cc, v128h, v128h, 1>;
  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
                                       z_vstrc_cc, v128f, v128f, 2>;
  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
}

let Predicates = [FeatureVectorEnhancements2] in {
  defm VSTRS  : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
  defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
                                 z_vstrs_cc, v128b, v128b, 0>;
  defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
                                 z_vstrs_cc, v128b, v128h, 1>;
  defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
                                 z_vstrs_cc, v128b, v128f, 2>;
  let Defs = [CC] in {
    def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
                              z_vstrsz_cc, v128b, v128b, 0, 2>;
    def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
                              z_vstrsz_cc, v128b, v128h, 1, 2>;
    def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
                              z_vstrsz_cc, v128b, v128f, 2, 2>;
  }
}

//===----------------------------------------------------------------------===//
// Packed-decimal instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorPackedDecimal] in {
  def VLIP : BinaryVRIh<"vlip", 0xE649>;

  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;

  let Defs = [CC] in {
    let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
      def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
      def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
    }
    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;

    def VAP : QuaternaryVRIf<"vap", 0xE671>;
    def VSP : QuaternaryVRIf<"vsp", 0xE673>;

    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;

    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;

    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;

    def VTP : TestVRRg<"vtp", 0xE65F>;
    def VCP : CompareVRRh<"vcp", 0xE677>;
  }
}