Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86-specific support for the FastISel class. Much
// of the target-specific code is generated by tablegen in the file
// X86GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86CallingConv.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

namespace {

class X86FastISel final : public FastISel {
  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const X86Subtarget *Subtarget;

  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
  /// floating point ops.
  /// When SSE is available, use it for f32 operations.
  /// When SSE2 is available, use it for f64 operations.
  bool X86ScalarSSEf64;
  bool X86ScalarSSEf32;

public:
  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
                       const TargetLibraryInfo *libInfo)
      : FastISel(funcInfo, libInfo) {
    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
    X86ScalarSSEf64 = Subtarget->hasSSE2();
    X86ScalarSSEf32 = Subtarget->hasSSE1();
  }

  bool fastSelectInstruction(const Instruction *I) override;

  /// The specified machine instr operand is a vreg, and that
  /// vreg is being provided by the specified load instruction.  If possible,
  /// try to fold the load as an operand to the instruction, returning true if
  /// possible.
  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                           const LoadInst *LI) override;

  bool fastLowerArguments() override;
  bool fastLowerCall(CallLoweringInfo &CLI) override;
  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;

#include "X86GenFastISel.inc"

private:
  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
                          const DebugLoc &DL);

  bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
                       unsigned &ResultReg, unsigned Alignment = 1);

  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
  bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
                        X86AddressMode &AM,
                        MachineMemOperand *MMO = nullptr, bool Aligned = false);

  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
                         unsigned &ResultReg);

  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);

  bool X86SelectLoad(const Instruction *I);

  bool X86SelectStore(const Instruction *I);

  bool X86SelectRet(const Instruction *I);

  bool X86SelectCmp(const Instruction *I);

  bool X86SelectZExt(const Instruction *I);

  bool X86SelectSExt(const Instruction *I);

  bool X86SelectBranch(const Instruction *I);

  bool X86SelectShift(const Instruction *I);

  bool X86SelectDivRem(const Instruction *I);

  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);

  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);

  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);

  bool X86SelectSelect(const Instruction *I);

  bool X86SelectTrunc(const Instruction *I);

  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
                               const TargetRegisterClass *RC);

  bool X86SelectFPExt(const Instruction *I);
  bool X86SelectFPTrunc(const Instruction *I);
  bool X86SelectSIToFP(const Instruction *I);
  bool X86SelectUIToFP(const Instruction *I);
  bool X86SelectIntToFP(const Instruction *I, bool IsSigned);

  const X86InstrInfo *getInstrInfo() const {
    return Subtarget->getInstrInfo();
  }
  const X86TargetMachine *getTargetMachine() const {
    return static_cast<const X86TargetMachine *>(&TM);
  }

  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);

  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
  unsigned fastMaterializeConstant(const Constant *C) override;

  unsigned fastMaterializeAlloca(const AllocaInst *C) override;

  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;

  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
  /// computed in an SSE register, not on the X87 floating point stack.
  bool isScalarFPTypeInSSEReg(EVT VT) const {
    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
  }

  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);

  bool IsMemcpySmall(uint64_t Len);

  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
                          X86AddressMode SrcAM, uint64_t Len);

  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
                            const Value *Cond);

  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
                                            X86AddressMode &AM);

  unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
                             const TargetRegisterClass *RC, unsigned Op0,
                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
                             unsigned Op2, bool Op2IsKill, unsigned Op3,
                             bool Op3IsKill);
};

} // end anonymous namespace.

static std::pair<unsigned, bool>
getX86SSEConditionCode(CmpInst::Predicate Predicate) {
  unsigned CC;
  bool NeedSwap = false;

  // SSE Condition code mapping:
  //  0 - EQ
  //  1 - LT
  //  2 - LE
  //  3 - UNORD
  //  4 - NEQ
  //  5 - NLT
  //  6 - NLE
  //  7 - ORD
  switch (Predicate) {
  default: llvm_unreachable("Unexpected predicate");
  case CmpInst::FCMP_OEQ: CC = 0;          break;
  case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
  case CmpInst::FCMP_OLT: CC = 1;          break;
  case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
  case CmpInst::FCMP_OLE: CC = 2;          break;
  case CmpInst::FCMP_UNO: CC = 3;          break;
  case CmpInst::FCMP_UNE: CC = 4;          break;
  case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
  case CmpInst::FCMP_UGE: CC = 5;          break;
  case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
  case CmpInst::FCMP_UGT: CC = 6;          break;
  case CmpInst::FCMP_ORD: CC = 7;          break;
  case CmpInst::FCMP_UEQ: CC = 8;          break;
  case CmpInst::FCMP_ONE: CC = 12;         break;
  }

  return std::make_pair(CC, NeedSwap);
}

/// Adds a complex addressing mode to the given machine instr builder.
/// Note, this will constrain the index register.  If its not possible to
/// constrain the given index register, then a new one will be created.  The
/// IndexReg field of the addressing mode will be updated to match in this case.
const MachineInstrBuilder &
X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
                            X86AddressMode &AM) {
  // First constrain the index register.  It needs to be a GR64_NOSP.
  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
                                         MIB->getNumOperands() +
                                         X86::AddrIndexReg);
  return ::addFullAddress(MIB, AM);
}

/// Check if it is possible to fold the condition from the XALU intrinsic
/// into the user. The condition code will only be updated on success.
bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
                                       const Value *Cond) {
  if (!isa<ExtractValueInst>(Cond))
    return false;

  const auto *EV = cast<ExtractValueInst>(Cond);
  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
    return false;

  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
  MVT RetVT;
  const Function *Callee = II->getCalledFunction();
  Type *RetTy =
    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
  if (!isTypeLegal(RetTy, RetVT))
    return false;

  if (RetVT != MVT::i32 && RetVT != MVT::i64)
    return false;

  X86::CondCode TmpCC;
  switch (II->getIntrinsicID()) {
  default: return false;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
  }

  // Check if both instructions are in the same basic block.
  if (II->getParent() != I->getParent())
    return false;

  // Make sure nothing is in the way
  BasicBlock::const_iterator Start(I);
  BasicBlock::const_iterator End(II);
  for (auto Itr = std::prev(Start); Itr != End; --Itr) {
    // We only expect extractvalue instructions between the intrinsic and the
    // instruction to be selected.
    if (!isa<ExtractValueInst>(Itr))
      return false;

    // Check that the extractvalue operand comes from the intrinsic.
    const auto *EVI = cast<ExtractValueInst>(Itr);
    if (EVI->getAggregateOperand() != II)
      return false;
  }

  CC = TmpCC;
  return true;
}

bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
  EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
  if (evt == MVT::Other || !evt.isSimple())
    // Unhandled type. Halt "fast" selection and bail.
    return false;

  VT = evt.getSimpleVT();
  // For now, require SSE/SSE2 for performing floating-point operations,
  // since x87 requires additional work.
  if (VT == MVT::f64 && !X86ScalarSSEf64)
    return false;
  if (VT == MVT::f32 && !X86ScalarSSEf32)
    return false;
  // Similarly, no f80 support yet.
  if (VT == MVT::f80)
    return false;
  // We only handle legal types. For example, on x86-32 the instruction
  // selector contains all of the 64-bit instructions from x86-64,
  // under the assumption that i64 won't be used if the target doesn't
  // support it.
  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
}

/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible.
bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
                                  MachineMemOperand *MMO, unsigned &ResultReg,
                                  unsigned Alignment) {
  bool HasSSE41 = Subtarget->hasSSE41();
  bool HasAVX = Subtarget->hasAVX();
  bool HasAVX2 = Subtarget->hasAVX2();
  bool HasAVX512 = Subtarget->hasAVX512();
  bool HasVLX = Subtarget->hasVLX();
  bool IsNonTemporal = MMO && MMO->isNonTemporal();

  // Treat i1 loads the same as i8 loads. Masking will be done when storing.
  if (VT == MVT::i1)
    VT = MVT::i8;

  // Get opcode and regclass of the output for the given load instruction.
  unsigned Opc = 0;
  switch (VT.SimpleTy) {
  default: return false;
  case MVT::i8:
    Opc = X86::MOV8rm;
    break;
  case MVT::i16:
    Opc = X86::MOV16rm;
    break;
  case MVT::i32:
    Opc = X86::MOV32rm;
    break;
  case MVT::i64:
    // Must be in x86-64 mode.
    Opc = X86::MOV64rm;
    break;
  case MVT::f32:
    if (X86ScalarSSEf32)
      Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
            HasAVX    ? X86::VMOVSSrm_alt :
                        X86::MOVSSrm_alt;
    else
      Opc = X86::LD_Fp32m;
    break;
  case MVT::f64:
    if (X86ScalarSSEf64)
      Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
            HasAVX    ? X86::VMOVSDrm_alt :
                        X86::MOVSDrm_alt;
    else
      Opc = X86::LD_Fp64m;
    break;
  case MVT::f80:
    // No f80 support yet.
    return false;
  case MVT::v4f32:
    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
    else if (Alignment >= 16)
      Opc = HasVLX ? X86::VMOVAPSZ128rm :
            HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
    else
      Opc = HasVLX ? X86::VMOVUPSZ128rm :
            HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
    break;
  case MVT::v2f64:
    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
    else if (Alignment >= 16)
      Opc = HasVLX ? X86::VMOVAPDZ128rm :
            HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
    else
      Opc = HasVLX ? X86::VMOVUPDZ128rm :
            HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
    break;
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v8i16:
  case MVT::v16i8:
    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
    else if (Alignment >= 16)
      Opc = HasVLX ? X86::VMOVDQA64Z128rm :
            HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
    else
      Opc = HasVLX ? X86::VMOVDQU64Z128rm :
            HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
    break;
  case MVT::v8f32:
    assert(HasAVX);
    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
    else if (IsNonTemporal && Alignment >= 16)
      return false; // Force split for X86::VMOVNTDQArm
    else if (Alignment >= 32)
      Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
    else
      Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
    break;
  case MVT::v4f64:
    assert(HasAVX);
    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
    else if (IsNonTemporal && Alignment >= 16)
      return false; // Force split for X86::VMOVNTDQArm
    else if (Alignment >= 32)
      Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
    else
      Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
    break;
  case MVT::v8i32:
  case MVT::v4i64:
  case MVT::v16i16:
  case MVT::v32i8:
    assert(HasAVX);
    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
    else if (IsNonTemporal && Alignment >= 16)
      return false; // Force split for X86::VMOVNTDQArm
    else if (Alignment >= 32)
      Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
    else
      Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
    break;
  case MVT::v16f32:
    assert(HasAVX512);
    if (IsNonTemporal && Alignment >= 64)
      Opc = X86::VMOVNTDQAZrm;
    else
      Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
    break;
  case MVT::v8f64:
    assert(HasAVX512);
    if (IsNonTemporal && Alignment >= 64)
      Opc = X86::VMOVNTDQAZrm;
    else
      Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
    break;
  case MVT::v8i64:
  case MVT::v16i32:
  case MVT::v32i16:
  case MVT::v64i8:
    assert(HasAVX512);
    // Note: There are a lot more choices based on type with AVX-512, but
    // there's really no advantage when the load isn't masked.
    if (IsNonTemporal && Alignment >= 64)
      Opc = X86::VMOVNTDQAZrm;
    else
      Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
    break;
  }

  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);

  ResultReg = createResultReg(RC);
  MachineInstrBuilder MIB =
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
  addFullAddress(MIB, AM);
  if (MMO)
    MIB->addMemOperand(*FuncInfo.MF, MMO);
  return true;
}

/// X86FastEmitStore - Emit a machine instruction to store a value Val of
/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
/// and a displacement offset, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
                                   X86AddressMode &AM,
                                   MachineMemOperand *MMO, bool Aligned) {
  bool HasSSE1 = Subtarget->hasSSE1();
  bool HasSSE2 = Subtarget->hasSSE2();
  bool HasSSE4A = Subtarget->hasSSE4A();
  bool HasAVX = Subtarget->hasAVX();
  bool HasAVX512 = Subtarget->hasAVX512();
  bool HasVLX = Subtarget->hasVLX();
  bool IsNonTemporal = MMO && MMO->isNonTemporal();

  // Get opcode and regclass of the output for the given store instruction.
  unsigned Opc = 0;
  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f80: // No f80 support yet.
  default: return false;
  case MVT::i1: {
    // Mask out all but lowest bit.
    Register AndResult = createResultReg(&X86::GR8RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(X86::AND8ri), AndResult)
      .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
    ValReg = AndResult;
    LLVM_FALLTHROUGH; // handle i1 as i8.
  }
  case MVT::i8:  Opc = X86::MOV8mr;  break;
  case MVT::i16: Opc = X86::MOV16mr; break;
  case MVT::i32:
    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
    break;
  case MVT::i64:
    // Must be in x86-64 mode.
    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
    break;
  case MVT::f32:
    if (X86ScalarSSEf32) {
      if (IsNonTemporal && HasSSE4A)
        Opc = X86::MOVNTSS;
      else
        Opc = HasAVX512 ? X86::VMOVSSZmr :
              HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
    } else
      Opc = X86::ST_Fp32m;
    break;
  case MVT::f64:
    if (X86ScalarSSEf32) {
      if (IsNonTemporal && HasSSE4A)
        Opc = X86::MOVNTSD;
      else
        Opc = HasAVX512 ? X86::VMOVSDZmr :
              HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
    } else
      Opc = X86::ST_Fp64m;
    break;
  case MVT::x86mmx:
    Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
    break;
  case MVT::v4f32:
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTPSZ128mr :
              HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
      else
        Opc = HasVLX ? X86::VMOVAPSZ128mr :
              HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
    } else
      Opc = HasVLX ? X86::VMOVUPSZ128mr :
            HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
    break;
  case MVT::v2f64:
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTPDZ128mr :
              HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
      else
        Opc = HasVLX ? X86::VMOVAPDZ128mr :
              HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
    } else
      Opc = HasVLX ? X86::VMOVUPDZ128mr :
            HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
    break;
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v8i16:
  case MVT::v16i8:
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTDQZ128mr :
              HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
      else
        Opc = HasVLX ? X86::VMOVDQA64Z128mr :
              HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
    } else
      Opc = HasVLX ? X86::VMOVDQU64Z128mr :
            HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
    break;
  case MVT::v8f32:
    assert(HasAVX);
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
      else
        Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
    } else
      Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
    break;
  case MVT::v4f64:
    assert(HasAVX);
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
      else
        Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
    } else
      Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
    break;
  case MVT::v8i32:
  case MVT::v4i64:
  case MVT::v16i16:
  case MVT::v32i8:
    assert(HasAVX);
    if (Aligned) {
      if (IsNonTemporal)
        Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
      else
        Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
    } else
      Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
    break;
  case MVT::v16f32:
    assert(HasAVX512);
    if (Aligned)
      Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
    else
      Opc = X86::VMOVUPSZmr;
    break;
  case MVT::v8f64:
    assert(HasAVX512);
    if (Aligned) {
      Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
    } else
      Opc = X86::VMOVUPDZmr;
    break;
  case MVT::v8i64:
  case MVT::v16i32:
  case MVT::v32i16:
  case MVT::v64i8:
    assert(HasAVX512);
    // Note: There are a lot more choices based on type with AVX-512, but
    // there's really no advantage when the store isn't masked.
    if (Aligned)
      Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
    else
      Opc = X86::VMOVDQU64Zmr;
    break;
  }

  const MCInstrDesc &Desc = TII.get(Opc);
  // Some of the instructions in the previous switch use FR128 instead
  // of FR32 for ValReg. Make sure the register we feed the instruction
  // matches its register class constraints.
  // Note: This is fine to do a copy from FR32 to FR128, this is the
  // same registers behind the scene and actually why it did not trigger
  // any bugs before.
  ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
  MachineInstrBuilder MIB =
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
  addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
  if (MMO)
    MIB->addMemOperand(*FuncInfo.MF, MMO);

  return true;
}

bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
                                   X86AddressMode &AM,
                                   MachineMemOperand *MMO, bool Aligned) {
  // Handle 'null' like i32/i64 0.
  if (isa<ConstantPointerNull>(Val))
    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));

  // If this is a store of a simple constant, fold the constant into the store.
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    unsigned Opc = 0;
    bool Signed = true;
    switch (VT.getSimpleVT().SimpleTy) {
    default: break;
    case MVT::i1:
      Signed = false;
      LLVM_FALLTHROUGH; // Handle as i8.
    case MVT::i8:  Opc = X86::MOV8mi;  break;
    case MVT::i16: Opc = X86::MOV16mi; break;
    case MVT::i32: Opc = X86::MOV32mi; break;
    case MVT::i64:
      // Must be a 32-bit sign extended value.
      if (isInt<32>(CI->getSExtValue()))
        Opc = X86::MOV64mi32;
      break;
    }

    if (Opc) {
      MachineInstrBuilder MIB =
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
                                            : CI->getZExtValue());
      if (MMO)
        MIB->addMemOperand(*FuncInfo.MF, MMO);
      return true;
    }
  }

  Register ValReg = getRegForValue(Val);
  if (ValReg == 0)
    return false;

  bool ValKill = hasTrivialKill(Val);
  return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
}

/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
/// ISD::SIGN_EXTEND).
bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
                                    unsigned Src, EVT SrcVT,
                                    unsigned &ResultReg) {
  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
                           Src, /*TODO: Kill=*/false);
  if (RR == 0)
    return false;

  ResultReg = RR;
  return true;
}

bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
  // Handle constant address.
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    // Can't handle alternate code models yet.
    if (TM.getCodeModel() != CodeModel::Small)
      return false;

    // Can't handle TLS yet.
    if (GV->isThreadLocal())
      return false;

    // Can't handle !absolute_symbol references yet.
    if (GV->isAbsoluteSymbolRef())
      return false;

    // RIP-relative addresses can't have additional register operands, so if
    // we've already folded stuff into the addressing mode, just force the
    // global value into its own register, which we can use as the basereg.
    if (!Subtarget->isPICStyleRIPRel() ||
        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
      // Okay, we've committed to selecting this global. Set up the address.
      AM.GV = GV;

      // Allow the subtarget to classify the global.
      unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);

      // If this reference is relative to the pic base, set it now.
      if (isGlobalRelativeToPICBase(GVFlags)) {
        // FIXME: How do we know Base.Reg is free??
        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
      }

      // Unless the ABI requires an extra load, return a direct reference to
      // the global.
      if (!isGlobalStubReference(GVFlags)) {
        if (Subtarget->isPICStyleRIPRel()) {
          // Use rip-relative addressing if we can.  Above we verified that the
          // base and index registers are unused.
          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
          AM.Base.Reg = X86::RIP;
        }
        AM.GVOpFlags = GVFlags;
        return true;
      }

      // Ok, we need to do a load from a stub.  If we've already loaded from
      // this stub, reuse the loaded pointer, otherwise emit the load now.
      DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
      Register LoadReg;
      if (I != LocalValueMap.end() && I->second) {
        LoadReg = I->second;
      } else {
        // Issue load from stub.
        unsigned Opc = 0;
        const TargetRegisterClass *RC = nullptr;
        X86AddressMode StubAM;
        StubAM.Base.Reg = AM.Base.Reg;
        StubAM.GV = GV;
        StubAM.GVOpFlags = GVFlags;

        // Prepare for inserting code in the local-value area.
        SavePoint SaveInsertPt = enterLocalValueArea();

        if (TLI.getPointerTy(DL) == MVT::i64) {
          Opc = X86::MOV64rm;
          RC  = &X86::GR64RegClass;

          if (Subtarget->isPICStyleRIPRel())
            StubAM.Base.Reg = X86::RIP;
        } else {
          Opc = X86::MOV32rm;
          RC  = &X86::GR32RegClass;
        }

        LoadReg = createResultReg(RC);
        MachineInstrBuilder LoadMI =
          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
        addFullAddress(LoadMI, StubAM);

        // Ok, back to normal mode.
        leaveLocalValueArea(SaveInsertPt);

        // Prevent loading GV stub multiple times in same MBB.
        LocalValueMap[V] = LoadReg;
      }

      // Now construct the final address. Note that the Disp, Scale,
      // and Index values may already be set here.
      AM.Base.Reg = LoadReg;
      AM.GV = nullptr;
      return true;
    }
  }

  // If all else fails, try to materialize the value in a register.
  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    if (AM.Base.Reg == 0) {
      AM.Base.Reg = getRegForValue(V);
      return AM.Base.Reg != 0;
    }
    if (AM.IndexReg == 0) {
      assert(AM.Scale == 1 && "Scale with no index!");
      AM.IndexReg = getRegForValue(V);
      return AM.IndexReg != 0;
    }
  }

  return false;
}

/// X86SelectAddress - Attempt to fill in an address from the given value.
///
bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
  SmallVector<const Value *, 32> GEPs;
redo_gep:
  const User *U = nullptr;
  unsigned Opcode = Instruction::UserOp1;
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
    // Don't walk into other basic blocks; it's possible we haven't
    // visited them yet, so the instructions may not yet be assigned
    // virtual registers.
    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
      Opcode = I->getOpcode();
      U = I;
    }
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    Opcode = C->getOpcode();
    U = C;
  }

  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
    if (Ty->getAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

  switch (Opcode) {
  default: break;
  case Instruction::BitCast:
    // Look past bitcasts.
    return X86SelectAddress(U->getOperand(0), AM);

  case Instruction::IntToPtr:
    // Look past no-op inttoptrs.
    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
        TLI.getPointerTy(DL))
      return X86SelectAddress(U->getOperand(0), AM);
    break;

  case Instruction::PtrToInt:
    // Look past no-op ptrtoints.
    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
      return X86SelectAddress(U->getOperand(0), AM);
    break;

  case Instruction::Alloca: {
    // Do static allocas.
    const AllocaInst *A = cast<AllocaInst>(V);
    DenseMap<const AllocaInst *, int>::iterator SI =
      FuncInfo.StaticAllocaMap.find(A);
    if (SI != FuncInfo.StaticAllocaMap.end()) {
      AM.BaseType = X86AddressMode::FrameIndexBase;
      AM.Base.FrameIndex = SI->second;
      return true;
    }
    break;
  }

  case Instruction::Add: {
    // Adds of constants are common and easy enough.
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
      // They have to fit in the 32-bit signed displacement field though.
      if (isInt<32>(Disp)) {
        AM.Disp = (uint32_t)Disp;
        return X86SelectAddress(U->getOperand(0), AM);
      }
    }
    break;
  }

  case Instruction::GetElementPtr: {
    X86AddressMode SavedAM = AM;

    // Pattern-match simple GEPs.
    uint64_t Disp = (int32_t)AM.Disp;
    unsigned IndexReg = AM.IndexReg;
    unsigned Scale = AM.Scale;
    gep_type_iterator GTI = gep_type_begin(U);
    // Iterate through the indices, folding what we can. Constants can be
    // folded, and one dynamic index can be handled, if the scale is supported.
    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
         i != e; ++i, ++GTI) {
      const Value *Op = *i;
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        const StructLayout *SL = DL.getStructLayout(STy);
        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
        continue;
      }

      // A array/variable index is always of the form i*S where S is the
      // constant scale size.  See if we can push the scale into immediates.
      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
      for (;;) {
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
          // Constant-offset addressing.
          Disp += CI->getSExtValue() * S;
          break;
        }
        if (canFoldAddIntoGEP(U, Op)) {
          // A compatible add with a constant operand. Fold the constant.
          ConstantInt *CI =
            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
          Disp += CI->getSExtValue() * S;
          // Iterate on the other operand.
          Op = cast<AddOperator>(Op)->getOperand(0);
          continue;
        }
        if (IndexReg == 0 &&
            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
            (S == 1 || S == 2 || S == 4 || S == 8)) {
          // Scaled-index addressing.
          Scale = S;
          IndexReg = getRegForGEPIndex(Op).first;
          if (IndexReg == 0)
            return false;
          break;
        }
        // Unsupported.
        goto unsupported_gep;
      }
    }

    // Check for displacement overflow.
    if (!isInt<32>(Disp))
      break;

    AM.IndexReg = IndexReg;
    AM.Scale = Scale;
    AM.Disp = (uint32_t)Disp;
    GEPs.push_back(V);

    if (const GetElementPtrInst *GEP =
          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
      // Ok, the GEP indices were covered by constant-offset and scaled-index
      // addressing. Update the address state and move on to examining the base.
      V = GEP;
      goto redo_gep;
    } else if (X86SelectAddress(U->getOperand(0), AM)) {
      return true;
    }

    // If we couldn't merge the gep value into this addr mode, revert back to
    // our address and just match the value instead of completely failing.
    AM = SavedAM;

    for (const Value *I : reverse(GEPs))
      if (handleConstantAddresses(I, AM))
        return true;

    return false;
  unsupported_gep:
    // Ok, the GEP indices weren't all covered.
    break;
  }
  }

  return handleConstantAddresses(V, AM);
}

/// X86SelectCallAddress - Attempt to fill in an address from the given value.
///
bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
  const User *U = nullptr;
  unsigned Opcode = Instruction::UserOp1;
  const Instruction *I = dyn_cast<Instruction>(V);
  // Record if the value is defined in the same basic block.
  //
  // This information is crucial to know whether or not folding an
  // operand is valid.
  // Indeed, FastISel generates or reuses a virtual register for all
  // operands of all instructions it selects. Obviously, the definition and
  // its uses must use the same virtual register otherwise the produced
  // code is incorrect.
  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
  // registers for values that are alive across basic blocks. This ensures
  // that the values are consistently set between across basic block, even
  // if different instruction selection mechanisms are used (e.g., a mix of
  // SDISel and FastISel).
  // For values local to a basic block, the instruction selection process
  // generates these virtual registers with whatever method is appropriate
  // for its needs. In particular, FastISel and SDISel do not share the way
  // local virtual registers are set.
  // Therefore, this is impossible (or at least unsafe) to share values
  // between basic blocks unless they use the same instruction selection
  // method, which is not guarantee for X86.
  // Moreover, things like hasOneUse could not be used accurately, if we
  // allow to reference values across basic blocks whereas they are not
  // alive across basic blocks initially.
  bool InMBB = true;
  if (I) {
    Opcode = I->getOpcode();
    U = I;
    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    Opcode = C->getOpcode();
    U = C;
  }

  switch (Opcode) {
  default: break;
  case Instruction::BitCast:
    // Look past bitcasts if its operand is in the same BB.
    if (InMBB)
      return X86SelectCallAddress(U->getOperand(0), AM);
    break;

  case Instruction::IntToPtr:
    // Look past no-op inttoptrs if its operand is in the same BB.
    if (InMBB &&
        TLI.getValueType(DL, U->getOperand(0)->getType()) ==
            TLI.getPointerTy(DL))
      return X86SelectCallAddress(U->getOperand(0), AM);
    break;

  case Instruction::PtrToInt:
    // Look past no-op ptrtoints if its operand is in the same BB.
    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
      return X86SelectCallAddress(U->getOperand(0), AM);
    break;
  }

  // Handle constant address.
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    // Can't handle alternate code models yet.
    if (TM.getCodeModel() != CodeModel::Small)
      return false;

    // RIP-relative addresses can't have additional register operands.
    if (Subtarget->isPICStyleRIPRel() &&
        (AM.Base.Reg != 0 || AM.IndexReg != 0))
      return false;

    // Can't handle TLS.
    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
      if (GVar->isThreadLocal())
        return false;

    // Okay, we've committed to selecting this global. Set up the basic address.
    AM.GV = GV;

    // Return a direct reference to the global. Fastisel can handle calls to
    // functions that require loads, such as dllimport and nonlazybind
    // functions.
    if (Subtarget->isPICStyleRIPRel()) {
      // Use rip-relative addressing if we can.  Above we verified that the
      // base and index registers are unused.
      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
      AM.Base.Reg = X86::RIP;
    } else {
      AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
    }

    return true;
  }

  // If all else fails, try to materialize the value in a register.
  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    if (AM.Base.Reg == 0) {
      AM.Base.Reg = getRegForValue(V);
      return AM.Base.Reg != 0;
    }
    if (AM.IndexReg == 0) {
      assert(AM.Scale == 1 && "Scale with no index!");
      AM.IndexReg = getRegForValue(V);
      return AM.IndexReg != 0;
    }
  }

  return false;
}


/// X86SelectStore - Select and emit code to implement store instructions.
bool X86FastISel::X86SelectStore(const Instruction *I) {
  // Atomic stores need special handling.
  const StoreInst *S = cast<StoreInst>(I);

  if (S->isAtomic())
    return false;

  const Value *PtrV = I->getOperand(1);
  if (TLI.supportSwiftError()) {
    // Swifterror values can come from either a function parameter with
    // swifterror attribute or an alloca with swifterror attribute.
    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
      if (Arg->hasSwiftErrorAttr())
        return false;
    }

    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
      if (Alloca->isSwiftError())
        return false;
    }
  }

  const Value *Val = S->getValueOperand();
  const Value *Ptr = S->getPointerOperand();

  MVT VT;
  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
    return false;

  Align Alignment = S->getAlign();
  Align ABIAlignment = DL.getABITypeAlign(Val->getType());
  bool Aligned = Alignment >= ABIAlignment;

  X86AddressMode AM;
  if (!X86SelectAddress(Ptr, AM))
    return false;

  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
}

/// X86SelectRet - Select and emit code to implement ret instructions.
bool X86FastISel::X86SelectRet(const Instruction *I) {
  const ReturnInst *Ret = cast<ReturnInst>(I);
  const Function &F = *I->getParent()->getParent();
  const X86MachineFunctionInfo *X86MFInfo =
      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();

  if (!FuncInfo.CanLowerReturn)
    return false;

  if (TLI.supportSwiftError() &&
      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return false;

  if (TLI.supportSplitCSR(FuncInfo.MF))
    return false;

  CallingConv::ID CC = F.getCallingConv();
  if (CC != CallingConv::C &&
      CC != CallingConv::Fast &&
      CC != CallingConv::Tail &&
      CC != CallingConv::X86_FastCall &&
      CC != CallingConv::X86_StdCall &&
      CC != CallingConv::X86_ThisCall &&
      CC != CallingConv::X86_64_SysV &&
      CC != CallingConv::Win64)
    return false;

  // Don't handle popping bytes if they don't fit the ret's immediate.
  if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
    return false;

  // fastcc with -tailcallopt is intended to provide a guaranteed
  // tail call optimization. Fastisel doesn't know how to do that.
  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
      CC == CallingConv::Tail)
    return false;

  // Let SDISel handle vararg functions.
  if (F.isVarArg())
    return false;

  // Build a list of return value registers.
  SmallVector<unsigned, 4> RetRegs;

  if (Ret->getNumOperands() > 0) {
    SmallVector<ISD::OutputArg, 4> Outs;
    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);

    // Analyze operands of the call, assigning locations to each operand.
    SmallVector<CCValAssign, 16> ValLocs;
    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
    CCInfo.AnalyzeReturn(Outs, RetCC_X86);

    const Value *RV = Ret->getOperand(0);
    Register Reg = getRegForValue(RV);
    if (Reg == 0)
      return false;

    // Only handle a single return value for now.
    if (ValLocs.size() != 1)
      return false;

    CCValAssign &VA = ValLocs[0];

    // Don't bother handling odd stuff for now.
    if (VA.getLocInfo() != CCValAssign::Full)
      return false;
    // Only handle register returns for now.
    if (!VA.isRegLoc())
      return false;

    // The calling-convention tables for x87 returns don't tell
    // the whole story.
    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
      return false;

    unsigned SrcReg = Reg + VA.getValNo();
    EVT SrcVT = TLI.getValueType(DL, RV->getType());
    EVT DstVT = VA.getValVT();
    // Special handling for extended integers.
    if (SrcVT != DstVT) {
      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
        return false;

      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
        return false;

      assert(DstVT == MVT::i32 && "X86 should always ext to i32");

      if (SrcVT == MVT::i1) {
        if (Outs[0].Flags.isSExt())
          return false;
        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
        SrcVT = MVT::i8;
      }
      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
                                             ISD::SIGN_EXTEND;
      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
                          SrcReg, /*TODO: Kill=*/false);
    }

    // Make the copy.
    Register DstReg = VA.getLocReg();
    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
    // Avoid a cross-class copy. This is very unlikely.
    if (!SrcRC->contains(DstReg))
      return false;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);

    // Add register to return instruction.
    RetRegs.push_back(VA.getLocReg());
  }

  // Swift calling convention does not require we copy the sret argument
  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.

  // All x86 ABIs require that for returning structs by value we copy
  // the sret argument into %rax/%eax (depending on ABI) for the return.
  // We saved the argument into a virtual register in the entry block,
  // so now we copy the value out and into %rax/%eax.
  if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
    Register Reg = X86MFInfo->getSRetReturnReg();
    assert(Reg &&
           "SRetReturnReg should have been set in LowerFormalArguments()!");
    unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
    RetRegs.push_back(RetReg);
  }

  // Now emit the RET.
  MachineInstrBuilder MIB;
  if (X86MFInfo->getBytesToPopOnReturn()) {
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                  TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
              .addImm(X86MFInfo->getBytesToPopOnReturn());
  } else {
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                  TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
  }
  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
    MIB.addReg(RetRegs[i], RegState::Implicit);
  return true;
}

/// X86SelectLoad - Select and emit code to implement load instructions.
///
bool X86FastISel::X86SelectLoad(const Instruction *I) {
  const LoadInst *LI = cast<LoadInst>(I);

  // Atomic loads need special handling.
  if (LI->isAtomic())
    return false;

  const Value *SV = I->getOperand(0);
  if (TLI.supportSwiftError()) {
    // Swifterror values can come from either a function parameter with
    // swifterror attribute or an alloca with swifterror attribute.
    if (const Argument *Arg = dyn_cast<Argument>(SV)) {
      if (Arg->hasSwiftErrorAttr())
        return false;
    }

    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
      if (Alloca->isSwiftError())
        return false;
    }
  }

  MVT VT;
  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
    return false;

  const Value *Ptr = LI->getPointerOperand();

  X86AddressMode AM;
  if (!X86SelectAddress(Ptr, AM))
    return false;

  unsigned ResultReg = 0;
  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
                       LI->getAlign().value()))
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
  bool HasAVX512 = Subtarget->hasAVX512();
  bool HasAVX = Subtarget->hasAVX();
  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
  bool X86ScalarSSEf64 = Subtarget->hasSSE2();

  switch (VT.getSimpleVT().SimpleTy) {
  default:       return 0;
  case MVT::i8:  return X86::CMP8rr;
  case MVT::i16: return X86::CMP16rr;
  case MVT::i32: return X86::CMP32rr;
  case MVT::i64: return X86::CMP64rr;
  case MVT::f32:
    return X86ScalarSSEf32
               ? (HasAVX512 ? X86::VUCOMISSZrr
                            : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
               : 0;
  case MVT::f64:
    return X86ScalarSSEf64
               ? (HasAVX512 ? X86::VUCOMISDZrr
                            : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
               : 0;
  }
}

/// If we have a comparison with RHS as the RHS  of the comparison, return an
/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
  int64_t Val = RHSC->getSExtValue();
  switch (VT.getSimpleVT().SimpleTy) {
  // Otherwise, we can't fold the immediate into this comparison.
  default:
    return 0;
  case MVT::i8:
    return X86::CMP8ri;
  case MVT::i16:
    if (isInt<8>(Val))
      return X86::CMP16ri8;
    return X86::CMP16ri;
  case MVT::i32:
    if (isInt<8>(Val))
      return X86::CMP32ri8;
    return X86::CMP32ri;
  case MVT::i64:
    if (isInt<8>(Val))
      return X86::CMP64ri8;
    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
    // field.
    if (isInt<32>(Val))
      return X86::CMP64ri32;
    return 0;
  }
}

bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
                                     const DebugLoc &CurDbgLoc) {
  Register Op0Reg = getRegForValue(Op0);
  if (Op0Reg == 0) return false;

  // Handle 'null' like i32/i64 0.
  if (isa<ConstantPointerNull>(Op1))
    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));

  // We have two options: compare with register or immediate.  If the RHS of
  // the compare is an immediate that we can fold into this compare, use
  // CMPri, otherwise use CMPrr.
  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
        .addReg(Op0Reg)
        .addImm(Op1C->getSExtValue());
      return true;
    }
  }

  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
  if (CompareOpc == 0) return false;

  Register Op1Reg = getRegForValue(Op1);
  if (Op1Reg == 0) return false;
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
    .addReg(Op0Reg)
    .addReg(Op1Reg);

  return true;
}

bool X86FastISel::X86SelectCmp(const Instruction *I) {
  const CmpInst *CI = cast<CmpInst>(I);

  MVT VT;
  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
    return false;

  // Try to optimize or fold the cmp.
  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
  unsigned ResultReg = 0;
  switch (Predicate) {
  default: break;
  case CmpInst::FCMP_FALSE: {
    ResultReg = createResultReg(&X86::GR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
            ResultReg);
    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
                                           X86::sub_8bit);
    if (!ResultReg)
      return false;
    break;
  }
  case CmpInst::FCMP_TRUE: {
    ResultReg = createResultReg(&X86::GR8RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
            ResultReg).addImm(1);
    break;
  }
  }

  if (ResultReg) {
    updateValueMap(I, ResultReg);
    return true;
  }

  const Value *LHS = CI->getOperand(0);
  const Value *RHS = CI->getOperand(1);

  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
  // We don't have to materialize a zero constant for this case and can just use
  // %x again on the RHS.
  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
    const auto *RHSC = dyn_cast<ConstantFP>(RHS);
    if (RHSC && RHSC->isNullValue())
      RHS = LHS;
  }

  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
  static const uint16_t SETFOpcTable[2][3] = {
    { X86::COND_E,  X86::COND_NP, X86::AND8rr },
    { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
  };
  const uint16_t *SETFOpc = nullptr;
  switch (Predicate) {
  default: break;
  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
  }

  ResultReg = createResultReg(&X86::GR8RegClass);
  if (SETFOpc) {
    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
      return false;

    Register FlagReg1 = createResultReg(&X86::GR8RegClass);
    Register FlagReg2 = createResultReg(&X86::GR8RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
            FlagReg1).addImm(SETFOpc[0]);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
            FlagReg2).addImm(SETFOpc[1]);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
            ResultReg).addReg(FlagReg1).addReg(FlagReg2);
    updateValueMap(I, ResultReg);
    return true;
  }

  X86::CondCode CC;
  bool SwapArgs;
  std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");

  if (SwapArgs)
    std::swap(LHS, RHS);

  // Emit a compare of LHS/RHS.
  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
    return false;

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
          ResultReg).addImm(CC);
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectZExt(const Instruction *I) {
  EVT DstVT = TLI.getValueType(DL, I->getType());
  if (!TLI.isTypeLegal(DstVT))
    return false;

  Register ResultReg = getRegForValue(I->getOperand(0));
  if (ResultReg == 0)
    return false;

  // Handle zero-extension from i1 to i8, which is common.
  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
  if (SrcVT == MVT::i1) {
    // Set the high bits to zero.
    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
    SrcVT = MVT::i8;

    if (ResultReg == 0)
      return false;
  }

  if (DstVT == MVT::i64) {
    // Handle extension to 64-bits via sub-register shenanigans.
    unsigned MovInst;

    switch (SrcVT.SimpleTy) {
    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
    case MVT::i32: MovInst = X86::MOV32rr;     break;
    default: llvm_unreachable("Unexpected zext to i64 source type");
    }

    Register Result32 = createResultReg(&X86::GR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
      .addReg(ResultReg);

    ResultReg = createResultReg(&X86::GR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
            ResultReg)
      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
  } else if (DstVT == MVT::i16) {
    // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
    // extend to 32-bits and then extract down to 16-bits.
    Register Result32 = createResultReg(&X86::GR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
            Result32).addReg(ResultReg);

    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
                                           X86::sub_16bit);
  } else if (DstVT != MVT::i8) {
    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
                           ResultReg, /*Kill=*/true);
    if (ResultReg == 0)
      return false;
  }

  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectSExt(const Instruction *I) {
  EVT DstVT = TLI.getValueType(DL, I->getType());
  if (!TLI.isTypeLegal(DstVT))
    return false;

  Register ResultReg = getRegForValue(I->getOperand(0));
  if (ResultReg == 0)
    return false;

  // Handle sign-extension from i1 to i8.
  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
  if (SrcVT == MVT::i1) {
    // Set the high bits to zero.
    Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
                                          /*TODO: Kill=*/false);
    if (ZExtReg == 0)
      return false;

    // Negate the result to make an 8-bit sign extended value.
    ResultReg = createResultReg(&X86::GR8RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
            ResultReg).addReg(ZExtReg);

    SrcVT = MVT::i8;
  }

  if (DstVT == MVT::i16) {
    // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
    // extend to 32-bits and then extract down to 16-bits.
    Register Result32 = createResultReg(&X86::GR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
            Result32).addReg(ResultReg);

    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
                                           X86::sub_16bit);
  } else if (DstVT != MVT::i8) {
    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
                           ResultReg, /*Kill=*/true);
    if (ResultReg == 0)
      return false;
  }

  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectBranch(const Instruction *I) {
  // Unconditional branches are selected by tablegen-generated code.
  // Handle a conditional branch.
  const BranchInst *BI = cast<BranchInst>(I);
  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];

  // Fold the common case of a conditional branch with a comparison
  // in the same block (values defined on other blocks may not have
  // initialized registers).
  X86::CondCode CC;
  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());

      // Try to optimize or fold the cmp.
      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
      switch (Predicate) {
      default: break;
      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
      }

      const Value *CmpLHS = CI->getOperand(0);
      const Value *CmpRHS = CI->getOperand(1);

      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
      // 0.0.
      // We don't have to materialize a zero constant for this case and can just
      // use %x again on the RHS.
      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
        if (CmpRHSC && CmpRHSC->isNullValue())
          CmpRHS = CmpLHS;
      }

      // Try to take advantage of fallthrough opportunities.
      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
        std::swap(TrueMBB, FalseMBB);
        Predicate = CmpInst::getInversePredicate(Predicate);
      }

      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
      // code check. Instead two branch instructions are required to check all
      // the flags. First we change the predicate to a supported condition code,
      // which will be the first branch. Later one we will emit the second
      // branch.
      bool NeedExtraBranch = false;
      switch (Predicate) {
      default: break;
      case CmpInst::FCMP_OEQ:
        std::swap(TrueMBB, FalseMBB);
        LLVM_FALLTHROUGH;
      case CmpInst::FCMP_UNE:
        NeedExtraBranch = true;
        Predicate = CmpInst::FCMP_ONE;
        break;
      }

      bool SwapArgs;
      std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");

      if (SwapArgs)
        std::swap(CmpLHS, CmpRHS);

      // Emit a compare of the LHS and RHS, setting the flags.
      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
        return false;

      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
        .addMBB(TrueMBB).addImm(CC);

      // X86 requires a second branch to handle UNE (and OEQ, which is mapped
      // to UNE above).
      if (NeedExtraBranch) {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
          .addMBB(TrueMBB).addImm(X86::COND_P);
      }

      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
      return true;
    }
  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
    // typically happen for _Bool and C++ bools.
    MVT SourceVT;
    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
      unsigned TestOpc = 0;
      switch (SourceVT.SimpleTy) {
      default: break;
      case MVT::i8:  TestOpc = X86::TEST8ri; break;
      case MVT::i16: TestOpc = X86::TEST16ri; break;
      case MVT::i32: TestOpc = X86::TEST32ri; break;
      case MVT::i64: TestOpc = X86::TEST64ri32; break;
      }
      if (TestOpc) {
        Register OpReg = getRegForValue(TI->getOperand(0));
        if (OpReg == 0) return false;

        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
          .addReg(OpReg).addImm(1);

        unsigned JmpCond = X86::COND_NE;
        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
          std::swap(TrueMBB, FalseMBB);
          JmpCond = X86::COND_E;
        }

        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
          .addMBB(TrueMBB).addImm(JmpCond);

        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
        return true;
      }
    }
  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
    // Fake request the condition, otherwise the intrinsic might be completely
    // optimized away.
    Register TmpReg = getRegForValue(BI->getCondition());
    if (TmpReg == 0)
      return false;

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
      .addMBB(TrueMBB).addImm(CC);
    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
    return true;
  }

  // Otherwise do a clumsy setcc and re-test it.
  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
  // in an explicit cast, so make sure to handle that correctly.
  Register OpReg = getRegForValue(BI->getCondition());
  if (OpReg == 0) return false;

  // In case OpReg is a K register, COPY to a GPR
  if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
    unsigned KOpReg = OpReg;
    OpReg = createResultReg(&X86::GR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), OpReg)
        .addReg(KOpReg);
    OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
                                       X86::sub_8bit);
  }
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
      .addReg(OpReg)
      .addImm(1);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
    .addMBB(TrueMBB).addImm(X86::COND_NE);
  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
  return true;
}

bool X86FastISel::X86SelectShift(const Instruction *I) {
  unsigned CReg = 0, OpReg = 0;
  const TargetRegisterClass *RC = nullptr;
  if (I->getType()->isIntegerTy(8)) {
    CReg = X86::CL;
    RC = &X86::GR8RegClass;
    switch (I->getOpcode()) {
    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
    default: return false;
    }
  } else if (I->getType()->isIntegerTy(16)) {
    CReg = X86::CX;
    RC = &X86::GR16RegClass;
    switch (I->getOpcode()) {
    default: llvm_unreachable("Unexpected shift opcode");
    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
    }
  } else if (I->getType()->isIntegerTy(32)) {
    CReg = X86::ECX;
    RC = &X86::GR32RegClass;
    switch (I->getOpcode()) {
    default: llvm_unreachable("Unexpected shift opcode");
    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
    }
  } else if (I->getType()->isIntegerTy(64)) {
    CReg = X86::RCX;
    RC = &X86::GR64RegClass;
    switch (I->getOpcode()) {
    default: llvm_unreachable("Unexpected shift opcode");
    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
    }
  } else {
    return false;
  }

  MVT VT;
  if (!isTypeLegal(I->getType(), VT))
    return false;

  Register Op0Reg = getRegForValue(I->getOperand(0));
  if (Op0Reg == 0) return false;

  Register Op1Reg = getRegForValue(I->getOperand(1));
  if (Op1Reg == 0) return false;
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
          CReg).addReg(Op1Reg);

  // The shift instruction uses X86::CL. If we defined a super-register
  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
  if (CReg != X86::CL)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::KILL), X86::CL)
      .addReg(CReg, RegState::Kill);

  Register ResultReg = createResultReg(RC);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
    .addReg(Op0Reg);
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectDivRem(const Instruction *I) {
  const static unsigned NumTypes = 4; // i8, i16, i32, i64
  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
  const static bool S = true;  // IsSigned
  const static bool U = false; // !IsSigned
  const static unsigned Copy = TargetOpcode::COPY;
  // For the X86 DIV/IDIV instruction, in most cases the dividend
  // (numerator) must be in a specific register pair highreg:lowreg,
  // producing the quotient in lowreg and the remainder in highreg.
  // For most data types, to set up the instruction, the dividend is
  // copied into lowreg, and lowreg is sign-extended or zero-extended
  // into highreg.  The exception is i8, where the dividend is defined
  // as a single register rather than a register pair, and we
  // therefore directly sign-extend or zero-extend the dividend into
  // lowreg, instead of copying, and ignore the highreg.
  const static struct DivRemEntry {
    // The following portion depends only on the data type.
    const TargetRegisterClass *RC;
    unsigned LowInReg;  // low part of the register pair
    unsigned HighInReg; // high part of the register pair
    // The following portion depends on both the data type and the operation.
    struct DivRemResult {
    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
                              // highreg, or copying a zero into highreg.
    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
                              // zero/sign-extending into lowreg for i8.
    unsigned DivRemResultReg; // Register containing the desired result.
    bool IsOpSigned;          // Whether to use signed or unsigned form.
    } ResultTable[NumOps];
  } OpTable[NumTypes] = {
    { &X86::GR8RegClass,  X86::AX,  0, {
        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
      }
    }, // i8
    { &X86::GR16RegClass, X86::AX,  X86::DX, {
        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
      }
    }, // i16
    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
      }
    }, // i32
    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
      }
    }, // i64
  };

  MVT VT;
  if (!isTypeLegal(I->getType(), VT))
    return false;

  unsigned TypeIndex, OpIndex;
  switch (VT.SimpleTy) {
  default: return false;
  case MVT::i8:  TypeIndex = 0; break;
  case MVT::i16: TypeIndex = 1; break;
  case MVT::i32: TypeIndex = 2; break;
  case MVT::i64: TypeIndex = 3;
    if (!Subtarget->is64Bit())
      return false;
    break;
  }

  switch (I->getOpcode()) {
  default: llvm_unreachable("Unexpected div/rem opcode");
  case Instruction::SDiv: OpIndex = 0; break;
  case Instruction::SRem: OpIndex = 1; break;
  case Instruction::UDiv: OpIndex = 2; break;
  case Instruction::URem: OpIndex = 3; break;
  }

  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
  Register Op0Reg = getRegForValue(I->getOperand(0));
  if (Op0Reg == 0)
    return false;
  Register Op1Reg = getRegForValue(I->getOperand(1));
  if (Op1Reg == 0)
    return false;

  // Move op0 into low-order input register.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
  // Zero-extend or sign-extend into high-order input register.
  if (OpEntry.OpSignExtend) {
    if (OpEntry.IsOpSigned)
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(OpEntry.OpSignExtend));
    else {
      Register Zero32 = createResultReg(&X86::GR32RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(X86::MOV32r0), Zero32);

      // Copy the zero into the appropriate sub/super/identical physical
      // register. Unfortunately the operations needed are not uniform enough
      // to fit neatly into the table above.
      if (VT == MVT::i16) {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                TII.get(Copy), TypeEntry.HighInReg)
          .addReg(Zero32, 0, X86::sub_16bit);
      } else if (VT == MVT::i32) {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                TII.get(Copy), TypeEntry.HighInReg)
            .addReg(Zero32);
      } else if (VT == MVT::i64) {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
      }
    }
  }
  // Generate the DIV/IDIV instruction.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
  // For i8 remainder, we can't reference ah directly, as we'll end
  // up with bogus copies like %r9b = COPY %ah. Reference ax
  // instead to prevent ah references in a rex instruction.
  //
  // The current assumption of the fast register allocator is that isel
  // won't generate explicit references to the GR8_NOREX registers. If
  // the allocator and/or the backend get enhanced to be more robust in
  // that regard, this can be, and should be, removed.
  unsigned ResultReg = 0;
  if ((I->getOpcode() == Instruction::SRem ||
       I->getOpcode() == Instruction::URem) &&
      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
    Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
    Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(Copy), SourceSuperReg).addReg(X86::AX);

    // Shift AX right by 8 bits instead of using AH.
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
            ResultSuperReg).addReg(SourceSuperReg).addImm(8);

    // Now reference the 8-bit subreg of the result.
    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
                                           /*Kill=*/true, X86::sub_8bit);
  }
  // Copy the result out of the physreg if we haven't already.
  if (!ResultReg) {
    ResultReg = createResultReg(TypeEntry.RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
        .addReg(OpEntry.DivRemResultReg);
  }
  updateValueMap(I, ResultReg);

  return true;
}

/// Emit a conditional move instruction (if the are supported) to lower
/// the select.
bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
  // Check if the subtarget supports these instructions.
  if (!Subtarget->hasCMov())
    return false;

  // FIXME: Add support for i8.
  if (RetVT < MVT::i16 || RetVT > MVT::i64)
    return false;

  const Value *Cond = I->getOperand(0);
  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
  bool NeedTest = true;
  X86::CondCode CC = X86::COND_NE;

  // Optimize conditions coming from a compare if both instructions are in the
  // same basic block (values defined in other basic blocks may not have
  // initialized registers).
  const auto *CI = dyn_cast<CmpInst>(Cond);
  if (CI && (CI->getParent() == I->getParent())) {
    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);

    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
    static const uint16_t SETFOpcTable[2][3] = {
      { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
      { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
    };
    const uint16_t *SETFOpc = nullptr;
    switch (Predicate) {
    default: break;
    case CmpInst::FCMP_OEQ:
      SETFOpc = &SETFOpcTable[0][0];
      Predicate = CmpInst::ICMP_NE;
      break;
    case CmpInst::FCMP_UNE:
      SETFOpc = &SETFOpcTable[1][0];
      Predicate = CmpInst::ICMP_NE;
      break;
    }

    bool NeedSwap;
    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");

    const Value *CmpLHS = CI->getOperand(0);
    const Value *CmpRHS = CI->getOperand(1);
    if (NeedSwap)
      std::swap(CmpLHS, CmpRHS);

    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
    // Emit a compare of the LHS and RHS, setting the flags.
    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
      return false;

    if (SETFOpc) {
      Register FlagReg1 = createResultReg(&X86::GR8RegClass);
      Register FlagReg2 = createResultReg(&X86::GR8RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
              FlagReg1).addImm(SETFOpc[0]);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
              FlagReg2).addImm(SETFOpc[1]);
      auto const &II = TII.get(SETFOpc[2]);
      if (II.getNumDefs()) {
        Register TmpReg = createResultReg(&X86::GR8RegClass);
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
          .addReg(FlagReg2).addReg(FlagReg1);
      } else {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
          .addReg(FlagReg2).addReg(FlagReg1);
      }
    }
    NeedTest = false;
  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
    // Fake request the condition, otherwise the intrinsic might be completely
    // optimized away.
    Register TmpReg = getRegForValue(Cond);
    if (TmpReg == 0)
      return false;

    NeedTest = false;
  }

  if (NeedTest) {
    // Selects operate on i1, however, CondReg is 8 bits width and may contain
    // garbage. Indeed, only the less significant bit is supposed to be
    // accurate. If we read more than the lsb, we may see non-zero values
    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
    // the select. This is achieved by performing TEST against 1.
    Register CondReg = getRegForValue(Cond);
    if (CondReg == 0)
      return false;
    bool CondIsKill = hasTrivialKill(Cond);

    // In case OpReg is a K register, COPY to a GPR
    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
      unsigned KCondReg = CondReg;
      CondReg = createResultReg(&X86::GR32RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), CondReg)
          .addReg(KCondReg, getKillRegState(CondIsKill));
      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
                                           X86::sub_8bit);
    }
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
        .addReg(CondReg, getKillRegState(CondIsKill))
        .addImm(1);
  }

  const Value *LHS = I->getOperand(1);
  const Value *RHS = I->getOperand(2);

  Register RHSReg = getRegForValue(RHS);
  bool RHSIsKill = hasTrivialKill(RHS);

  Register LHSReg = getRegForValue(LHS);
  bool LHSIsKill = hasTrivialKill(LHS);

  if (!LHSReg || !RHSReg)
    return false;

  const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
  Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
                                        LHSReg, LHSIsKill, CC);
  updateValueMap(I, ResultReg);
  return true;
}

/// Emit SSE or AVX instructions to lower the select.
///
/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
  // Optimize conditions coming from a compare if both instructions are in the
  // same basic block (values defined in other basic blocks may not have
  // initialized registers).
  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
  if (!CI || (CI->getParent() != I->getParent()))
    return false;

  if (I->getType() != CI->getOperand(0)->getType() ||
      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
        (Subtarget->hasSSE2() && RetVT == MVT::f64)))
    return false;

  const Value *CmpLHS = CI->getOperand(0);
  const Value *CmpRHS = CI->getOperand(1);
  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);

  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
  // We don't have to materialize a zero constant for this case and can just use
  // %x again on the RHS.
  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
    if (CmpRHSC && CmpRHSC->isNullValue())
      CmpRHS = CmpLHS;
  }

  unsigned CC;
  bool NeedSwap;
  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
  if (CC > 7 && !Subtarget->hasAVX())
    return false;

  if (NeedSwap)
    std::swap(CmpLHS, CmpRHS);

  const Value *LHS = I->getOperand(1);
  const Value *RHS = I->getOperand(2);

  Register LHSReg = getRegForValue(LHS);
  bool LHSIsKill = hasTrivialKill(LHS);

  Register RHSReg = getRegForValue(RHS);
  bool RHSIsKill = hasTrivialKill(RHS);

  Register CmpLHSReg = getRegForValue(CmpLHS);
  bool CmpLHSIsKill = hasTrivialKill(CmpLHS);

  Register CmpRHSReg = getRegForValue(CmpRHS);
  bool CmpRHSIsKill = hasTrivialKill(CmpRHS);

  if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
    return false;

  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
  unsigned ResultReg;

  if (Subtarget->hasAVX512()) {
    // If we have AVX512 we can use a mask compare and masked movss/sd.
    const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
    const TargetRegisterClass *VK1 = &X86::VK1RegClass;

    unsigned CmpOpcode =
      (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
    Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
                                       CmpRHSReg, CmpRHSIsKill, CC);

    // Need an IMPLICIT_DEF for the input that is used to generate the upper
    // bits of the result register since its not based on any of the inputs.
    Register ImplicitDefReg = createResultReg(VR128X);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);

    // Place RHSReg is the passthru of the masked movss/sd operation and put
    // LHS in the input. The mask input comes from the compare.
    unsigned MovOpcode =
      (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
    unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
                                        CmpReg, true, ImplicitDefReg, true,
                                        LHSReg, LHSIsKill);

    ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);

  } else if (Subtarget->hasAVX()) {
    const TargetRegisterClass *VR128 = &X86::VR128RegClass;

    // If we have AVX, create 1 blendv instead of 3 logic instructions.
    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
    // uses XMM0 as the selection register. That may need just as many
    // instructions as the AND/ANDN/OR sequence due to register moves, so
    // don't bother.
    unsigned CmpOpcode =
      (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
    unsigned BlendOpcode =
      (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;

    Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
                                       CmpRHSReg, CmpRHSIsKill, CC);
    Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
                                          LHSReg, LHSIsKill, CmpReg, true);
    ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
  } else {
    // Choose the SSE instruction sequence based on data type (float or double).
    static const uint16_t OpcTable[2][4] = {
      { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
      { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
    };

    const uint16_t *Opc = nullptr;
    switch (RetVT.SimpleTy) {
    default: return false;
    case MVT::f32: Opc = &OpcTable[0][0]; break;
    case MVT::f64: Opc = &OpcTable[1][0]; break;
    }

    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
    Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
                                       CmpRHSReg, CmpRHSIsKill, CC);
    Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
                                      LHSReg, LHSIsKill);
    Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
                                       RHSReg, RHSIsKill);
    Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
                                     AndReg, /*IsKill=*/true);
    ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
  }
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
  // These are pseudo CMOV instructions and will be later expanded into control-
  // flow.
  unsigned Opc;
  switch (RetVT.SimpleTy) {
  default: return false;
  case MVT::i8:  Opc = X86::CMOV_GR8;  break;
  case MVT::i16: Opc = X86::CMOV_GR16; break;
  case MVT::i32: Opc = X86::CMOV_GR32; break;
  case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
                                              : X86::CMOV_FR32; break;
  case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
                                              : X86::CMOV_FR64; break;
  }

  const Value *Cond = I->getOperand(0);
  X86::CondCode CC = X86::COND_NE;

  // Optimize conditions coming from a compare if both instructions are in the
  // same basic block (values defined in other basic blocks may not have
  // initialized registers).
  const auto *CI = dyn_cast<CmpInst>(Cond);
  if (CI && (CI->getParent() == I->getParent())) {
    bool NeedSwap;
    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
    if (CC > X86::LAST_VALID_COND)
      return false;

    const Value *CmpLHS = CI->getOperand(0);
    const Value *CmpRHS = CI->getOperand(1);

    if (NeedSwap)
      std::swap(CmpLHS, CmpRHS);

    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
      return false;
  } else {
    Register CondReg = getRegForValue(Cond);
    if (CondReg == 0)
      return false;
    bool CondIsKill = hasTrivialKill(Cond);

    // In case OpReg is a K register, COPY to a GPR
    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
      unsigned KCondReg = CondReg;
      CondReg = createResultReg(&X86::GR32RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), CondReg)
          .addReg(KCondReg, getKillRegState(CondIsKill));
      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
                                           X86::sub_8bit);
    }
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
        .addReg(CondReg, getKillRegState(CondIsKill))
        .addImm(1);
  }

  const Value *LHS = I->getOperand(1);
  const Value *RHS = I->getOperand(2);

  Register LHSReg = getRegForValue(LHS);
  bool LHSIsKill = hasTrivialKill(LHS);

  Register RHSReg = getRegForValue(RHS);
  bool RHSIsKill = hasTrivialKill(RHS);

  if (!LHSReg || !RHSReg)
    return false;

  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);

  Register ResultReg =
    fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectSelect(const Instruction *I) {
  MVT RetVT;
  if (!isTypeLegal(I->getType(), RetVT))
    return false;

  // Check if we can fold the select.
  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
    const Value *Opnd = nullptr;
    switch (Predicate) {
    default:                              break;
    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
    }
    // No need for a select anymore - this is an unconditional move.
    if (Opnd) {
      Register OpReg = getRegForValue(Opnd);
      if (OpReg == 0)
        return false;
      bool OpIsKill = hasTrivialKill(Opnd);
      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
      Register ResultReg = createResultReg(RC);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg)
        .addReg(OpReg, getKillRegState(OpIsKill));
      updateValueMap(I, ResultReg);
      return true;
    }
  }

  // First try to use real conditional move instructions.
  if (X86FastEmitCMoveSelect(RetVT, I))
    return true;

  // Try to use a sequence of SSE instructions to simulate a conditional move.
  if (X86FastEmitSSESelect(RetVT, I))
    return true;

  // Fall-back to pseudo conditional move instructions, which will be later
  // converted to control-flow.
  if (X86FastEmitPseudoSelect(RetVT, I))
    return true;

  return false;
}

// Common code for X86SelectSIToFP and X86SelectUIToFP.
bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
  // The target-independent selection algorithm in FastISel already knows how
  // to select a SINT_TO_FP if the target is SSE but not AVX.
  // Early exit if the subtarget doesn't have AVX.
  // Unsigned conversion requires avx512.
  bool HasAVX512 = Subtarget->hasAVX512();
  if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
    return false;

  // TODO: We could sign extend narrower types.
  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
  if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
    return false;

  // Select integer to float/double conversion.
  Register OpReg = getRegForValue(I->getOperand(0));
  if (OpReg == 0)
    return false;

  unsigned Opcode;

  static const uint16_t SCvtOpc[2][2][2] = {
    { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
      { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
    { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
      { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
  };
  static const uint16_t UCvtOpc[2][2] = {
    { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
    { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
  };
  bool Is64Bit = SrcVT == MVT::i64;

  if (I->getType()->isDoubleTy()) {
    // s/uitofp int -> double
    Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
  } else if (I->getType()->isFloatTy()) {
    // s/uitofp int -> float
    Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
  } else
    return false;

  MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
  const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
  Register ImplicitDefReg = createResultReg(RC);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
  Register ResultReg =
      fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
  return X86SelectIntToFP(I, /*IsSigned*/true);
}

bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
  return X86SelectIntToFP(I, /*IsSigned*/false);
}

// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
                                          unsigned TargetOpc,
                                          const TargetRegisterClass *RC) {
  assert((I->getOpcode() == Instruction::FPExt ||
          I->getOpcode() == Instruction::FPTrunc) &&
         "Instruction must be an FPExt or FPTrunc!");
  bool HasAVX = Subtarget->hasAVX();

  Register OpReg = getRegForValue(I->getOperand(0));
  if (OpReg == 0)
    return false;

  unsigned ImplicitDefReg;
  if (HasAVX) {
    ImplicitDefReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);

  }

  Register ResultReg = createResultReg(RC);
  MachineInstrBuilder MIB;
  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
                ResultReg);

  if (HasAVX)
    MIB.addReg(ImplicitDefReg);

  MIB.addReg(OpReg);
  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::X86SelectFPExt(const Instruction *I) {
  if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
      I->getOperand(0)->getType()->isFloatTy()) {
    bool HasAVX512 = Subtarget->hasAVX512();
    // fpext from float to double.
    unsigned Opc =
        HasAVX512 ? X86::VCVTSS2SDZrr
                  : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
  }

  return false;
}

bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
  if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
      I->getOperand(0)->getType()->isDoubleTy()) {
    bool HasAVX512 = Subtarget->hasAVX512();
    // fptrunc from double to float.
    unsigned Opc =
        HasAVX512 ? X86::VCVTSD2SSZrr
                  : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
  }

  return false;
}

bool X86FastISel::X86SelectTrunc(const Instruction *I) {
  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(DL, I->getType());

  // This code only handles truncation to byte.
  if (DstVT != MVT::i8 && DstVT != MVT::i1)
    return false;
  if (!TLI.isTypeLegal(SrcVT))
    return false;

  Register InputReg = getRegForValue(I->getOperand(0));
  if (!InputReg)
    // Unhandled operand.  Halt "fast" selection and bail.
    return false;

  if (SrcVT == MVT::i8) {
    // Truncate from i8 to i1; no code needed.
    updateValueMap(I, InputReg);
    return true;
  }

  // Issue an extract_subreg.
  Register ResultReg = fastEmitInst_extractsubreg(MVT::i8,
                                                  InputReg, false,
                                                  X86::sub_8bit);
  if (!ResultReg)
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

bool X86FastISel::IsMemcpySmall(uint64_t Len) {
  return Len <= (Subtarget->is64Bit() ? 32 : 16);
}

bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
                                     X86AddressMode SrcAM, uint64_t Len) {

  // Make sure we don't bloat code by inlining very large memcpy's.
  if (!IsMemcpySmall(Len))
    return false;

  bool i64Legal = Subtarget->is64Bit();

  // We don't care about alignment here since we just emit integer accesses.
  while (Len) {
    MVT VT;
    if (Len >= 8 && i64Legal)
      VT = MVT::i64;
    else if (Len >= 4)
      VT = MVT::i32;
    else if (Len >= 2)
      VT = MVT::i16;
    else
      VT = MVT::i8;

    unsigned Reg;
    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
    RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
    assert(RV && "Failed to emit load or store??");

    unsigned Size = VT.getSizeInBits()/8;
    Len -= Size;
    DestAM.Disp += Size;
    SrcAM.Disp += Size;
  }

  return true;
}

bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
  // FIXME: Handle more intrinsics.
  switch (II->getIntrinsicID()) {
  default: return false;
  case Intrinsic::convert_from_fp16:
  case Intrinsic::convert_to_fp16: {
    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
      return false;

    const Value *Op = II->getArgOperand(0);
    Register InputReg = getRegForValue(Op);
    if (InputReg == 0)
      return false;

    // F16C only allows converting from float to half and from half to float.
    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
    if (IsFloatToHalf) {
      if (!Op->getType()->isFloatTy())
        return false;
    } else {
      if (!II->getType()->isFloatTy())
        return false;
    }

    unsigned ResultReg = 0;
    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
    if (IsFloatToHalf) {
      // 'InputReg' is implicitly promoted from register class FR32 to
      // register class VR128 by method 'constrainOperandRegClass' which is
      // directly called by 'fastEmitInst_ri'.
      // Instruction VCVTPS2PHrr takes an extra immediate operand which is
      // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
      // It's consistent with the other FP instructions, which are usually
      // controlled by MXCSR.
      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
                                         : X86::VCVTPS2PHrr;
      InputReg = fastEmitInst_ri(Opc, RC, InputReg, false, 4);

      // Move the lower 32-bits of ResultReg to another register of class GR32.
      Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
                                   : X86::VMOVPDI2DIrr;
      ResultReg = createResultReg(&X86::GR32RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
          .addReg(InputReg, RegState::Kill);

      // The result value is in the lower 16-bits of ResultReg.
      unsigned RegIdx = X86::sub_16bit;
      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
    } else {
      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
      // Explicitly zero-extend the input to 32-bit.
      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg,
                            /*Kill=*/false);

      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
                            InputReg, /*Kill=*/true);

      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
                                         : X86::VCVTPH2PSrr;
      InputReg = fastEmitInst_r(Opc, RC, InputReg, /*Kill=*/true);

      // The result value is in the lower 32-bits of ResultReg.
      // Emit an explicit copy from register class VR128 to register class FR32.
      ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg)
          .addReg(InputReg, RegState::Kill);
    }

    updateValueMap(II, ResultReg);
    return true;
  }
  case Intrinsic::frameaddress: {
    MachineFunction *MF = FuncInfo.MF;
    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
      return false;

    Type *RetTy = II->getCalledFunction()->getReturnType();

    MVT VT;
    if (!isTypeLegal(RetTy, VT))
      return false;

    unsigned Opc;
    const TargetRegisterClass *RC = nullptr;

    switch (VT.SimpleTy) {
    default: llvm_unreachable("Invalid result type for frameaddress.");
    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
    }

    // This needs to be set before we call getPtrSizedFrameRegister, otherwise
    // we get the wrong frame register.
    MachineFrameInfo &MFI = MF->getFrameInfo();
    MFI.setFrameAddressIsTaken(true);

    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
            (FrameReg == X86::EBP && VT == MVT::i32)) &&
           "Invalid Frame Register!");

    // Always make a copy of the frame register to a vreg first, so that we
    // never directly reference the frame register (the TwoAddressInstruction-
    // Pass doesn't like that).
    Register SrcReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);

    // Now recursively load from the frame address.
    // movq (%rbp), %rax
    // movq (%rax), %rax
    // movq (%rax), %rax
    // ...
    unsigned DestReg;
    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
    while (Depth--) {
      DestReg = createResultReg(RC);
      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                           TII.get(Opc), DestReg), SrcReg);
      SrcReg = DestReg;
    }

    updateValueMap(II, SrcReg);
    return true;
  }
  case Intrinsic::memcpy: {
    const MemCpyInst *MCI = cast<MemCpyInst>(II);
    // Don't handle volatile or variable length memcpys.
    if (MCI->isVolatile())
      return false;

    if (isa<ConstantInt>(MCI->getLength())) {
      // Small memcpy's are common enough that we want to do them
      // without a call if possible.
      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
      if (IsMemcpySmall(Len)) {
        X86AddressMode DestAM, SrcAM;
        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
            !X86SelectAddress(MCI->getRawSource(), SrcAM))
          return false;
        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
        return true;
      }
    }

    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
      return false;

    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
      return false;

    return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
  }
  case Intrinsic::memset: {
    const MemSetInst *MSI = cast<MemSetInst>(II);

    if (MSI->isVolatile())
      return false;

    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
      return false;

    if (MSI->getDestAddressSpace() > 255)
      return false;

    return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
  }
  case Intrinsic::stackprotector: {
    // Emit code to store the stack guard onto the stack.
    EVT PtrTy = TLI.getPointerTy(DL);

    const Value *Op1 = II->getArgOperand(0); // The guard's value.
    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));

    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);

    // Grab the frame index.
    X86AddressMode AM;
    if (!X86SelectAddress(Slot, AM)) return false;
    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
    return true;
  }
  case Intrinsic::dbg_declare: {
    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
    X86AddressMode AM;
    assert(DI->getAddress() && "Null address should be checked earlier!");
    if (!X86SelectAddress(DI->getAddress(), AM))
      return false;
    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
    // FIXME may need to add RegState::Debug to any registers produced,
    // although ESP/EBP should be the only ones at the moment.
    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
           "Expected inlined-at fields to agree");
    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
        .addImm(0)
        .addMetadata(DI->getVariable())
        .addMetadata(DI->getExpression());
    return true;
  }
  case Intrinsic::trap: {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
    return true;
  }
  case Intrinsic::sqrt: {
    if (!Subtarget->hasSSE1())
      return false;

    Type *RetTy = II->getCalledFunction()->getReturnType();

    MVT VT;
    if (!isTypeLegal(RetTy, VT))
      return false;

    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
    // is not generated by FastISel yet.
    // FIXME: Update this code once tablegen can handle it.
    static const uint16_t SqrtOpc[3][2] = {
      { X86::SQRTSSr,   X86::SQRTSDr },
      { X86::VSQRTSSr,  X86::VSQRTSDr },
      { X86::VSQRTSSZr, X86::VSQRTSDZr },
    };
    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
                        Subtarget->hasAVX()    ? 1 :
                                                 0;
    unsigned Opc;
    switch (VT.SimpleTy) {
    default: return false;
    case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
    case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
    }

    const Value *SrcVal = II->getArgOperand(0);
    Register SrcReg = getRegForValue(SrcVal);

    if (SrcReg == 0)
      return false;

    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
    unsigned ImplicitDefReg = 0;
    if (AVXLevel > 0) {
      ImplicitDefReg = createResultReg(RC);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
    }

    Register ResultReg = createResultReg(RC);
    MachineInstrBuilder MIB;
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
                  ResultReg);

    if (ImplicitDefReg)
      MIB.addReg(ImplicitDefReg);

    MIB.addReg(SrcReg);

    updateValueMap(II, ResultReg);
    return true;
  }
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow: {
    // This implements the basic lowering of the xalu with overflow intrinsics
    // into add/sub/mul followed by either seto or setb.
    const Function *Callee = II->getCalledFunction();
    auto *Ty = cast<StructType>(Callee->getReturnType());
    Type *RetTy = Ty->getTypeAtIndex(0U);
    assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
           Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
           "Overflow value expected to be an i1");

    MVT VT;
    if (!isTypeLegal(RetTy, VT))
      return false;

    if (VT < MVT::i8 || VT > MVT::i64)
      return false;

    const Value *LHS = II->getArgOperand(0);
    const Value *RHS = II->getArgOperand(1);

    // Canonicalize immediate to the RHS.
    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
        isCommutativeIntrinsic(II))
      std::swap(LHS, RHS);

    unsigned BaseOpc, CondCode;
    switch (II->getIntrinsicID()) {
    default: llvm_unreachable("Unexpected intrinsic!");
    case Intrinsic::sadd_with_overflow:
      BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
    case Intrinsic::uadd_with_overflow:
      BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
    case Intrinsic::ssub_with_overflow:
      BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
    case Intrinsic::usub_with_overflow:
      BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
    case Intrinsic::smul_with_overflow:
      BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
    case Intrinsic::umul_with_overflow:
      BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
    }

    Register LHSReg = getRegForValue(LHS);
    if (LHSReg == 0)
      return false;
    bool LHSIsKill = hasTrivialKill(LHS);

    unsigned ResultReg = 0;
    // Check if we have an immediate version.
    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
      static const uint16_t Opc[2][4] = {
        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
      };

      if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
          CondCode == X86::COND_O) {
        // We can use INC/DEC.
        ResultReg = createResultReg(TLI.getRegClassFor(VT));
        bool IsDec = BaseOpc == ISD::SUB;
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
          .addReg(LHSReg, getKillRegState(LHSIsKill));
      } else
        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
                                CI->getZExtValue());
    }

    unsigned RHSReg;
    bool RHSIsKill;
    if (!ResultReg) {
      RHSReg = getRegForValue(RHS);
      if (RHSReg == 0)
        return false;
      RHSIsKill = hasTrivialKill(RHS);
      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
                              RHSIsKill);
    }

    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
    // it manually.
    if (BaseOpc == X86ISD::UMUL && !ResultReg) {
      static const uint16_t MULOpc[] =
        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
      static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
      // First copy the first operand into RAX, which is an implicit input to
      // the X86::MUL*r instruction.
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
        .addReg(LHSReg, getKillRegState(LHSIsKill));
      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
                                 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
      static const uint16_t MULOpc[] =
        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
      if (VT == MVT::i8) {
        // Copy the first operand into AL, which is an implicit input to the
        // X86::IMUL8r instruction.
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
               TII.get(TargetOpcode::COPY), X86::AL)
          .addReg(LHSReg, getKillRegState(LHSIsKill));
        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
                                   RHSIsKill);
      } else
        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
                                    TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
                                    RHSReg, RHSIsKill);
    }

    if (!ResultReg)
      return false;

    // Assign to a GPR since the overflow return value is lowered to a SETcc.
    Register ResultReg2 = createResultReg(&X86::GR8RegClass);
    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
            ResultReg2).addImm(CondCode);

    updateValueMap(II, ResultReg, 2);
    return true;
  }
  case Intrinsic::x86_sse_cvttss2si:
  case Intrinsic::x86_sse_cvttss2si64:
  case Intrinsic::x86_sse2_cvttsd2si:
  case Intrinsic::x86_sse2_cvttsd2si64: {
    bool IsInputDouble;
    switch (II->getIntrinsicID()) {
    default: llvm_unreachable("Unexpected intrinsic.");
    case Intrinsic::x86_sse_cvttss2si:
    case Intrinsic::x86_sse_cvttss2si64:
      if (!Subtarget->hasSSE1())
        return false;
      IsInputDouble = false;
      break;
    case Intrinsic::x86_sse2_cvttsd2si:
    case Intrinsic::x86_sse2_cvttsd2si64:
      if (!Subtarget->hasSSE2())
        return false;
      IsInputDouble = true;
      break;
    }

    Type *RetTy = II->getCalledFunction()->getReturnType();
    MVT VT;
    if (!isTypeLegal(RetTy, VT))
      return false;

    static const uint16_t CvtOpc[3][2][2] = {
      { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
        { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
      { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
        { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
      { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
        { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
    };
    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
                        Subtarget->hasAVX()    ? 1 :
                                                 0;
    unsigned Opc;
    switch (VT.SimpleTy) {
    default: llvm_unreachable("Unexpected result type.");
    case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
    case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
    }

    // Check if we can fold insertelement instructions into the convert.
    const Value *Op = II->getArgOperand(0);
    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
      const Value *Index = IE->getOperand(2);
      if (!isa<ConstantInt>(Index))
        break;
      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();

      if (Idx == 0) {
        Op = IE->getOperand(1);
        break;
      }
      Op = IE->getOperand(0);
    }

    Register Reg = getRegForValue(Op);
    if (Reg == 0)
      return false;

    Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(Reg);

    updateValueMap(II, ResultReg);
    return true;
  }
  }
}

bool X86FastISel::fastLowerArguments() {
  if (!FuncInfo.CanLowerReturn)
    return false;

  const Function *F = FuncInfo.Fn;
  if (F->isVarArg())
    return false;

  CallingConv::ID CC = F->getCallingConv();
  if (CC != CallingConv::C)
    return false;

  if (Subtarget->isCallingConvWin64(CC))
    return false;

  if (!Subtarget->is64Bit())
    return false;

  if (Subtarget->useSoftFloat())
    return false;

  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
  unsigned GPRCnt = 0;
  unsigned FPRCnt = 0;
  for (auto const &Arg : F->args()) {
    if (Arg.hasAttribute(Attribute::ByVal) ||
        Arg.hasAttribute(Attribute::InReg) ||
        Arg.hasAttribute(Attribute::StructRet) ||
        Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::Nest))
      return false;

    Type *ArgTy = Arg.getType();
    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
      return false;

    EVT ArgVT = TLI.getValueType(DL, ArgTy);
    if (!ArgVT.isSimple()) return false;
    switch (ArgVT.getSimpleVT().SimpleTy) {
    default: return false;
    case MVT::i32:
    case MVT::i64:
      ++GPRCnt;
      break;
    case MVT::f32:
    case MVT::f64:
      if (!Subtarget->hasSSE1())
        return false;
      ++FPRCnt;
      break;
    }

    if (GPRCnt > 6)
      return false;

    if (FPRCnt > 8)
      return false;
  }

  static const MCPhysReg GPR32ArgRegs[] = {
    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
  };
  static const MCPhysReg GPR64ArgRegs[] = {
    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
  };
  static const MCPhysReg XMMArgRegs[] = {
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
  };

  unsigned GPRIdx = 0;
  unsigned FPRIdx = 0;
  for (auto const &Arg : F->args()) {
    MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
    unsigned SrcReg;
    switch (VT.SimpleTy) {
    default: llvm_unreachable("Unexpected value type.");
    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
    case MVT::f32: LLVM_FALLTHROUGH;
    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
    }
    Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
    // Without this, EmitLiveInCopies may eliminate the livein if its only
    // use is a bitcast (which isn't turned into an instruction).
    Register ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg)
      .addReg(DstReg, getKillRegState(true));
    updateValueMap(&Arg, ResultReg);
  }
  return true;
}

static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
                                                  CallingConv::ID CC,
                                                  const CallBase *CB) {
  if (Subtarget->is64Bit())
    return 0;
  if (Subtarget->getTargetTriple().isOSMSVCRT())
    return 0;
  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
      CC == CallingConv::HiPE || CC == CallingConv::Tail)
    return 0;

  if (CB)
    if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
        CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
      return 0;

  return 4;
}

bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
  auto &OutVals       = CLI.OutVals;
  auto &OutFlags      = CLI.OutFlags;
  auto &OutRegs       = CLI.OutRegs;
  auto &Ins           = CLI.Ins;
  auto &InRegs        = CLI.InRegs;
  CallingConv::ID CC  = CLI.CallConv;
  bool &IsTailCall    = CLI.IsTailCall;
  bool IsVarArg       = CLI.IsVarArg;
  const Value *Callee = CLI.Callee;
  MCSymbol *Symbol = CLI.Symbol;

  bool Is64Bit        = Subtarget->is64Bit();
  bool IsWin64        = Subtarget->isCallingConvWin64(CC);

  const CallInst *CI = dyn_cast_or_null<CallInst>(CLI.CB);
  const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;

  // Call / invoke instructions with NoCfCheck attribute require special
  // handling.
  const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CB);
  if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
    return false;

  // Functions with no_caller_saved_registers that need special handling.
  if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
      (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
    return false;

  // Functions using thunks for indirect calls need to use SDISel.
  if (Subtarget->useIndirectThunkCalls())
    return false;

  // Handle only C, fastcc, and webkit_js calling conventions for now.
  switch (CC) {
  default: return false;
  case CallingConv::C:
  case CallingConv::Fast:
  case CallingConv::Tail:
  case CallingConv::WebKit_JS:
  case CallingConv::Swift:
  case CallingConv::X86_FastCall:
  case CallingConv::X86_StdCall:
  case CallingConv::X86_ThisCall:
  case CallingConv::Win64:
  case CallingConv::X86_64_SysV:
  case CallingConv::CFGuard_Check:
    break;
  }

  // Allow SelectionDAG isel to handle tail calls.
  if (IsTailCall)
    return false;

  // fastcc with -tailcallopt is intended to provide a guaranteed
  // tail call optimization. Fastisel doesn't know how to do that.
  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
      CC == CallingConv::Tail)
    return false;

  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
  // x86-32. Special handling for x86-64 is implemented.
  if (IsVarArg && IsWin64)
    return false;

  // Don't know about inalloca yet.
  if (CLI.CB && CLI.CB->hasInAllocaArgument())
    return false;

  for (auto Flag : CLI.OutFlags)
    if (Flag.isSwiftError() || Flag.isPreallocated())
      return false;

  SmallVector<MVT, 16> OutVTs;
  SmallVector<unsigned, 16> ArgRegs;

  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
  // instruction. This is safe because it is common to all FastISel supported
  // calling conventions on x86.
  for (int i = 0, e = OutVals.size(); i != e; ++i) {
    Value *&Val = OutVals[i];
    ISD::ArgFlagsTy Flags = OutFlags[i];
    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
      if (CI->getBitWidth() < 32) {
        if (Flags.isSExt())
          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
        else
          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
      }
    }

    // Passing bools around ends up doing a trunc to i1 and passing it.
    // Codegen this as an argument + "and 1".
    MVT VT;
    auto *TI = dyn_cast<TruncInst>(Val);
    unsigned ResultReg;
    if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
        (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
      Value *PrevVal = TI->getOperand(0);
      ResultReg = getRegForValue(PrevVal);

      if (!ResultReg)
        return false;

      if (!isTypeLegal(PrevVal->getType(), VT))
        return false;

      ResultReg =
        fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
    } else {
      if (!isTypeLegal(Val->getType(), VT) ||
          (VT.isVector() && VT.getVectorElementType() == MVT::i1))
        return false;
      ResultReg = getRegForValue(Val);
    }

    if (!ResultReg)
      return false;

    ArgRegs.push_back(ResultReg);
    OutVTs.push_back(VT);
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());

  // Allocate shadow area for Win64
  if (IsWin64)
    CCInfo.AllocateStack(32, Align(8));

  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();

  // Issue CALLSEQ_START
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
    .addImm(NumBytes).addImm(0).addImm(0);

  // Walk the register/memloc assignments, inserting copies/loads.
  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign const &VA = ArgLocs[i];
    const Value *ArgVal = OutVals[VA.getValNo()];
    MVT ArgVT = OutVTs[VA.getValNo()];

    if (ArgVT == MVT::x86mmx)
      return false;

    unsigned ArgReg = ArgRegs[VA.getValNo()];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full: break;
    case CCValAssign::SExt: {
      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
             "Unexpected extend");

      if (ArgVT == MVT::i1)
        return false;

      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
                                       ArgVT, ArgReg);
      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
      ArgVT = VA.getLocVT();
      break;
    }
    case CCValAssign::ZExt: {
      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
             "Unexpected extend");

      // Handle zero-extension from i1 to i8, which is common.
      if (ArgVT == MVT::i1) {
        // Set the high bits to zero.
        ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
        ArgVT = MVT::i8;

        if (ArgReg == 0)
          return false;
      }

      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
                                       ArgVT, ArgReg);
      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
      ArgVT = VA.getLocVT();
      break;
    }
    case CCValAssign::AExt: {
      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
             "Unexpected extend");
      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
                                       ArgVT, ArgReg);
      if (!Emitted)
        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
                                    ArgVT, ArgReg);
      if (!Emitted)
        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
                                    ArgVT, ArgReg);

      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
      ArgVT = VA.getLocVT();
      break;
    }
    case CCValAssign::BCvt: {
      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
                          /*TODO: Kill=*/false);
      assert(ArgReg && "Failed to emit a bitcast!");
      ArgVT = VA.getLocVT();
      break;
    }
    case CCValAssign::VExt:
      // VExt has not been implemented, so this should be impossible to reach
      // for now.  However, fallback to Selection DAG isel once implemented.
      return false;
    case CCValAssign::AExtUpper:
    case CCValAssign::SExtUpper:
    case CCValAssign::ZExtUpper:
    case CCValAssign::FPExt:
    case CCValAssign::Trunc:
      llvm_unreachable("Unexpected loc info!");
    case CCValAssign::Indirect:
      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
      // support this.
      return false;
    }

    if (VA.isRegLoc()) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
      OutRegs.push_back(VA.getLocReg());
    } else {
      assert(VA.isMemLoc() && "Unknown value location!");

      // Don't emit stores for undef values.
      if (isa<UndefValue>(ArgVal))
        continue;

      unsigned LocMemOffset = VA.getLocMemOffset();
      X86AddressMode AM;
      AM.Base.Reg = RegInfo->getStackRegister();
      AM.Disp = LocMemOffset;
      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
      Align Alignment = DL.getABITypeAlign(ArgVal->getType());
      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
      if (Flags.isByVal()) {
        X86AddressMode SrcAM;
        SrcAM.Base.Reg = ArgReg;
        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
          return false;
      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
        // If this is a really simple value, emit this with the Value* version
        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
        // as it can cause us to reevaluate the argument.
        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
          return false;
      } else {
        bool ValIsKill = hasTrivialKill(ArgVal);
        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
          return false;
      }
    }
  }

  // ELF / PIC requires GOT in the EBX register before function calls via PLT
  // GOT pointer.
  if (Subtarget->isPICStyleGOT()) {
    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
  }

  if (Is64Bit && IsVarArg && !IsWin64) {
    // From AMD64 ABI document:
    // For calls that may call functions that use varargs or stdargs
    // (prototype-less calls or calls to functions containing ellipsis (...) in
    // the declaration) %al is used as hidden argument to specify the number
    // of SSE registers used. The contents of %al do not need to match exactly
    // the number of registers, but must be an ubound on the number of SSE
    // registers used and is in the range 0 - 8 inclusive.

    // Count the number of XMM registers allocated.
    static const MCPhysReg XMMArgRegs[] = {
      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
    };
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
    assert((Subtarget->hasSSE1() || !NumXMMRegs)
           && "SSE registers cannot be used when SSE is disabled");
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
            X86::AL).addImm(NumXMMRegs);
  }

  // Materialize callee address in a register. FIXME: GV address can be
  // handled with a CALLpcrel32 instead.
  X86AddressMode CalleeAM;
  if (!X86SelectCallAddress(Callee, CalleeAM))
    return false;

  unsigned CalleeOp = 0;
  const GlobalValue *GV = nullptr;
  if (CalleeAM.GV != nullptr) {
    GV = CalleeAM.GV;
  } else if (CalleeAM.Base.Reg != 0) {
    CalleeOp = CalleeAM.Base.Reg;
  } else
    return false;

  // Issue the call.
  MachineInstrBuilder MIB;
  if (CalleeOp) {
    // Register-indirect call.
    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
      .addReg(CalleeOp);
  } else {
    // Direct call.
    assert(GV && "Not a direct call");
    // See if we need any target-specific flags on the GV operand.
    unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);

    // This will be a direct call, or an indirect call through memory for
    // NonLazyBind calls or dllimport calls.
    bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
                    OpFlags == X86II::MO_GOTPCREL ||
                    OpFlags == X86II::MO_COFFSTUB;
    unsigned CallOpc = NeedLoad
                           ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
                           : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);

    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
    if (NeedLoad)
      MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
    if (Symbol)
      MIB.addSym(Symbol, OpFlags);
    else
      MIB.addGlobalAddress(GV, 0, OpFlags);
    if (NeedLoad)
      MIB.addReg(0);
  }

  // Add a register mask operand representing the call-preserved registers.
  // Proper defs for return values will be added by setPhysRegsDeadExcept().
  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));

  // Add an implicit use GOT pointer in EBX.
  if (Subtarget->isPICStyleGOT())
    MIB.addReg(X86::EBX, RegState::Implicit);

  if (Is64Bit && IsVarArg && !IsWin64)
    MIB.addReg(X86::AL, RegState::Implicit);

  // Add implicit physical register uses to the call.
  for (auto Reg : OutRegs)
    MIB.addReg(Reg, RegState::Implicit);

  // Issue CALLSEQ_END
  unsigned NumBytesForCalleeToPop =
      X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
                       TM.Options.GuaranteedTailCallOpt)
          ? NumBytes // Callee pops everything.
          : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);

  // Now handle call return values.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
                    CLI.RetTy->getContext());
  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);

  // Copy all of the result registers out of their specified physreg.
  Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    EVT CopyVT = VA.getValVT();
    unsigned CopyReg = ResultReg + i;
    Register SrcReg = VA.getLocReg();

    // If this is x86-64, and we disabled SSE, we can't return FP values
    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
      report_fatal_error("SSE register return with SSE disabled");
    }

    // If we prefer to use the value in xmm registers, copy it out as f80 and
    // use a truncate to move it from fp stack reg to xmm reg.
    if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
        isScalarFPTypeInSSEReg(VA.getValVT())) {
      CopyVT = MVT::f80;
      CopyReg = createResultReg(&X86::RFP80RegClass);
    }

    // Copy out the result.
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
    InRegs.push_back(VA.getLocReg());

    // Round the f80 to the right size, which also moves it to the appropriate
    // xmm register. This is accomplished by storing the f80 value in memory
    // and then loading it back.
    if (CopyVT != VA.getValVT()) {
      EVT ResVT = VA.getValVT();
      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
      unsigned MemSize = ResVT.getSizeInBits()/8;
      int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                TII.get(Opc)), FI)
        .addReg(CopyReg);
      Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                TII.get(Opc), ResultReg + i), FI);
    }
  }

  CLI.ResultReg = ResultReg;
  CLI.NumResultRegs = RVLocs.size();
  CLI.Call = MIB;

  return true;
}

bool
X86FastISel::fastSelectInstruction(const Instruction *I)  {
  switch (I->getOpcode()) {
  default: break;
  case Instruction::Load:
    return X86SelectLoad(I);
  case Instruction::Store:
    return X86SelectStore(I);
  case Instruction::Ret:
    return X86SelectRet(I);
  case Instruction::ICmp:
  case Instruction::FCmp:
    return X86SelectCmp(I);
  case Instruction::ZExt:
    return X86SelectZExt(I);
  case Instruction::SExt:
    return X86SelectSExt(I);
  case Instruction::Br:
    return X86SelectBranch(I);
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::Shl:
    return X86SelectShift(I);
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    return X86SelectDivRem(I);
  case Instruction::Select:
    return X86SelectSelect(I);
  case Instruction::Trunc:
    return X86SelectTrunc(I);
  case Instruction::FPExt:
    return X86SelectFPExt(I);
  case Instruction::FPTrunc:
    return X86SelectFPTrunc(I);
  case Instruction::SIToFP:
    return X86SelectSIToFP(I);
  case Instruction::UIToFP:
    return X86SelectUIToFP(I);
  case Instruction::IntToPtr: // Deliberate fall-through.
  case Instruction::PtrToInt: {
    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
    EVT DstVT = TLI.getValueType(DL, I->getType());
    if (DstVT.bitsGT(SrcVT))
      return X86SelectZExt(I);
    if (DstVT.bitsLT(SrcVT))
      return X86SelectTrunc(I);
    Register Reg = getRegForValue(I->getOperand(0));
    if (Reg == 0) return false;
    updateValueMap(I, Reg);
    return true;
  }
  case Instruction::BitCast: {
    // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
    if (!Subtarget->hasSSE2())
      return false;

    MVT SrcVT, DstVT;
    if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
        !isTypeLegal(I->getType(), DstVT))
      return false;

    // Only allow vectors that use xmm/ymm/zmm.
    if (!SrcVT.isVector() || !DstVT.isVector() ||
        SrcVT.getVectorElementType() == MVT::i1 ||
        DstVT.getVectorElementType() == MVT::i1)
      return false;

    Register Reg = getRegForValue(I->getOperand(0));
    if (!Reg)
      return false;

    // Emit a reg-reg copy so we don't propagate cached known bits information
    // with the wrong VT if we fall out of fast isel after selecting this.
    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
    Register ResultReg = createResultReg(DstClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);

    updateValueMap(I, ResultReg);
    return true;
  }
  }

  return false;
}

unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
  if (VT > MVT::i64)
    return 0;

  uint64_t Imm = CI->getZExtValue();
  if (Imm == 0) {
    Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
    switch (VT.SimpleTy) {
    default: llvm_unreachable("Unexpected value type");
    case MVT::i1:
    case MVT::i8:
      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
                                        X86::sub_8bit);
    case MVT::i16:
      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
                                        X86::sub_16bit);
    case MVT::i32:
      return SrcReg;
    case MVT::i64: {
      Register ResultReg = createResultReg(&X86::GR64RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
      return ResultReg;
    }
    }
  }

  unsigned Opc = 0;
  switch (VT.SimpleTy) {
  default: llvm_unreachable("Unexpected value type");
  case MVT::i1:
    VT = MVT::i8;
    LLVM_FALLTHROUGH;
  case MVT::i8:  Opc = X86::MOV8ri;  break;
  case MVT::i16: Opc = X86::MOV16ri; break;
  case MVT::i32: Opc = X86::MOV32ri; break;
  case MVT::i64: {
    if (isUInt<32>(Imm))
      Opc = X86::MOV32ri64;
    else if (isInt<32>(Imm))
      Opc = X86::MOV64ri32;
    else
      Opc = X86::MOV64ri;
    break;
  }
  }
  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
}

unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
  if (CFP->isNullValue())
    return fastMaterializeFloatZero(CFP);

  // Can't handle alternate code models yet.
  CodeModel::Model CM = TM.getCodeModel();
  if (CM != CodeModel::Small && CM != CodeModel::Large)
    return 0;

  // Get opcode and regclass of the output for the given load instruction.
  unsigned Opc = 0;
  bool HasAVX = Subtarget->hasAVX();
  bool HasAVX512 = Subtarget->hasAVX512();
  switch (VT.SimpleTy) {
  default: return 0;
  case MVT::f32:
    if (X86ScalarSSEf32)
      Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
            HasAVX    ? X86::VMOVSSrm_alt :
                        X86::MOVSSrm_alt;
    else
      Opc = X86::LD_Fp32m;
    break;
  case MVT::f64:
    if (X86ScalarSSEf64)
      Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
            HasAVX    ? X86::VMOVSDrm_alt :
                        X86::MOVSDrm_alt;
    else
      Opc = X86::LD_Fp64m;
    break;
  case MVT::f80:
    // No f80 support yet.
    return 0;
  }

  // MachineConstantPool wants an explicit alignment.
  Align Alignment = DL.getPrefTypeAlign(CFP->getType());

  // x86-32 PIC requires a PIC base register for constant pools.
  unsigned PICBase = 0;
  unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
  if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
  else if (OpFlag == X86II::MO_GOTOFF)
    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
  else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
    PICBase = X86::RIP;

  // Create the load from the constant pool.
  unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
  Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));

  // Large code model only applies to 64-bit mode.
  if (Subtarget->is64Bit() && CM == CodeModel::Large) {
    Register AddrReg = createResultReg(&X86::GR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
            AddrReg)
      .addConstantPoolIndex(CPI, 0, OpFlag);
    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                      TII.get(Opc), ResultReg);
    addDirectMem(MIB, AddrReg);
    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
        MachinePointerInfo::getConstantPool(*FuncInfo.MF),
        MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
    MIB->addMemOperand(*FuncInfo.MF, MMO);
    return ResultReg;
  }

  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                   TII.get(Opc), ResultReg),
                           CPI, PICBase, OpFlag);
  return ResultReg;
}

unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
  // Can't handle alternate code models yet.
  if (TM.getCodeModel() != CodeModel::Small)
    return 0;

  // Materialize addresses with LEA/MOV instructions.
  X86AddressMode AM;
  if (X86SelectAddress(GV, AM)) {
    // If the expression is just a basereg, then we're done, otherwise we need
    // to emit an LEA.
    if (AM.BaseType == X86AddressMode::RegBase &&
        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
      return AM.Base.Reg;

    Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
    if (TM.getRelocationModel() == Reloc::Static &&
        TLI.getPointerTy(DL) == MVT::i64) {
      // The displacement code could be more than 32 bits away so we need to use
      // an instruction with a 64 bit immediate
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
              ResultReg)
        .addGlobalAddress(GV);
    } else {
      unsigned Opc =
          TLI.getPointerTy(DL) == MVT::i32
              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
              : X86::LEA64r;
      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                             TII.get(Opc), ResultReg), AM);
    }
    return ResultReg;
  }
  return 0;
}

unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
  EVT CEVT = TLI.getValueType(DL, C->getType(), true);

  // Only handle simple types.
  if (!CEVT.isSimple())
    return 0;
  MVT VT = CEVT.getSimpleVT();

  if (const auto *CI = dyn_cast<ConstantInt>(C))
    return X86MaterializeInt(CI, VT);
  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    return X86MaterializeFP(CFP, VT);
  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return X86MaterializeGV(GV, VT);

  return 0;
}

unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
  // Fail on dynamic allocas. At this point, getRegForValue has already
  // checked its CSE maps, so if we're here trying to handle a dynamic
  // alloca, we're not going to succeed. X86SelectAddress has a
  // check for dynamic allocas, because it's called directly from
  // various places, but targetMaterializeAlloca also needs a check
  // in order to avoid recursion between getRegForValue,
  // X86SelectAddrss, and targetMaterializeAlloca.
  if (!FuncInfo.StaticAllocaMap.count(C))
    return 0;
  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");

  X86AddressMode AM;
  if (!X86SelectAddress(C, AM))
    return 0;
  unsigned Opc =
      TLI.getPointerTy(DL) == MVT::i32
          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
          : X86::LEA64r;
  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
  Register ResultReg = createResultReg(RC);
  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                         TII.get(Opc), ResultReg), AM);
  return ResultReg;
}

unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
  MVT VT;
  if (!isTypeLegal(CF->getType(), VT))
    return 0;

  // Get opcode and regclass for the given zero.
  bool HasAVX512 = Subtarget->hasAVX512();
  unsigned Opc = 0;
  switch (VT.SimpleTy) {
  default: return 0;
  case MVT::f32:
    if (X86ScalarSSEf32)
      Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
    else
      Opc = X86::LD_Fp032;
    break;
  case MVT::f64:
    if (X86ScalarSSEf64)
      Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
    else
      Opc = X86::LD_Fp064;
    break;
  case MVT::f80:
    // No f80 support yet.
    return 0;
  }

  Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
  return ResultReg;
}


bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                                      const LoadInst *LI) {
  const Value *Ptr = LI->getPointerOperand();
  X86AddressMode AM;
  if (!X86SelectAddress(Ptr, AM))
    return false;

  const X86InstrInfo &XII = (const X86InstrInfo &)TII;

  unsigned Size = DL.getTypeAllocSize(LI->getType());

  SmallVector<MachineOperand, 8> AddrOps;
  AM.getFullAddress(AddrOps);

  MachineInstr *Result = XII.foldMemoryOperandImpl(
      *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
      /*AllowCommute=*/true);
  if (!Result)
    return false;

  // The index register could be in the wrong register class.  Unfortunately,
  // foldMemoryOperandImpl could have commuted the instruction so its not enough
  // to just look at OpNo + the offset to the index reg.  We actually need to
  // scan the instruction to find the index reg and see if its the correct reg
  // class.
  unsigned OperandNo = 0;
  for (MachineInstr::mop_iterator I = Result->operands_begin(),
       E = Result->operands_end(); I != E; ++I, ++OperandNo) {
    MachineOperand &MO = *I;
    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
      continue;
    // Found the index reg, now try to rewrite it.
    Register IndexReg = constrainOperandRegClass(Result->getDesc(),
                                                 MO.getReg(), OperandNo);
    if (IndexReg == MO.getReg())
      continue;
    MO.setReg(IndexReg);
  }

  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
  Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
  MachineBasicBlock::iterator I(MI);
  removeDeadCode(I, std::next(I));
  return true;
}

unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
                                        const TargetRegisterClass *RC,
                                        unsigned Op0, bool Op0IsKill,
                                        unsigned Op1, bool Op1IsKill,
                                        unsigned Op2, bool Op2IsKill,
                                        unsigned Op3, bool Op3IsKill) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  Register ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
  Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addReg(Op2, getKillRegState(Op2IsKill))
        .addReg(Op3, getKillRegState(Op3IsKill));
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addReg(Op2, getKillRegState(Op2IsKill))
        .addReg(Op3, getKillRegState(Op3IsKill));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}


namespace llvm {
  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
                                const TargetLibraryInfo *libInfo) {
    return new X86FastISel(funcInfo, libInfo);
  }
}