Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for load, store and alloca.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");

/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant global, we
/// can optimize this.
static bool
isOnlyCopiedFromConstantMemory(AAResults *AA,
                               Value *V, MemTransferInst *&TheCopy,
                               SmallVectorImpl<Instruction *> &ToDelete) {
  // We track lifetime intrinsics as we encounter them.  If we decide to go
  // ahead and replace the value with the global, this lets the caller quickly
  // eliminate the markers.

  SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
  ValuesToInspect.emplace_back(V, false);
  while (!ValuesToInspect.empty()) {
    auto ValuePair = ValuesToInspect.pop_back_val();
    const bool IsOffset = ValuePair.second;
    for (auto &U : ValuePair.first->uses()) {
      auto *I = cast<Instruction>(U.getUser());

      if (auto *LI = dyn_cast<LoadInst>(I)) {
        // Ignore non-volatile loads, they are always ok.
        if (!LI->isSimple()) return false;
        continue;
      }

      if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
        // If uses of the bitcast are ok, we are ok.
        ValuesToInspect.emplace_back(I, IsOffset);
        continue;
      }
      if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
        // If the GEP has all zero indices, it doesn't offset the pointer. If it
        // doesn't, it does.
        ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
        continue;
      }

      if (auto *Call = dyn_cast<CallBase>(I)) {
        // If this is the function being called then we treat it like a load and
        // ignore it.
        if (Call->isCallee(&U))
          continue;

        unsigned DataOpNo = Call->getDataOperandNo(&U);
        bool IsArgOperand = Call->isArgOperand(&U);

        // Inalloca arguments are clobbered by the call.
        if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
          return false;

        // If this is a readonly/readnone call site, then we know it is just a
        // load (but one that potentially returns the value itself), so we can
        // ignore it if we know that the value isn't captured.
        if (Call->onlyReadsMemory() &&
            (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
          continue;

        // If this is being passed as a byval argument, the caller is making a
        // copy, so it is only a read of the alloca.
        if (IsArgOperand && Call->isByValArgument(DataOpNo))
          continue;
      }

      // Lifetime intrinsics can be handled by the caller.
      if (I->isLifetimeStartOrEnd()) {
        assert(I->use_empty() && "Lifetime markers have no result to use!");
        ToDelete.push_back(I);
        continue;
      }

      // If this is isn't our memcpy/memmove, reject it as something we can't
      // handle.
      MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
      if (!MI)
        return false;

      // If the transfer is using the alloca as a source of the transfer, then
      // ignore it since it is a load (unless the transfer is volatile).
      if (U.getOperandNo() == 1) {
        if (MI->isVolatile()) return false;
        continue;
      }

      // If we already have seen a copy, reject the second one.
      if (TheCopy) return false;

      // If the pointer has been offset from the start of the alloca, we can't
      // safely handle this.
      if (IsOffset) return false;

      // If the memintrinsic isn't using the alloca as the dest, reject it.
      if (U.getOperandNo() != 0) return false;

      // If the source of the memcpy/move is not a constant global, reject it.
      if (!AA->pointsToConstantMemory(MI->getSource()))
        return false;

      // Otherwise, the transform is safe.  Remember the copy instruction.
      TheCopy = MI;
    }
  }
  return true;
}

/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global.  If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
static MemTransferInst *
isOnlyCopiedFromConstantMemory(AAResults *AA,
                               AllocaInst *AI,
                               SmallVectorImpl<Instruction *> &ToDelete) {
  MemTransferInst *TheCopy = nullptr;
  if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
    return TheCopy;
  return nullptr;
}

/// Returns true if V is dereferenceable for size of alloca.
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
                                           const DataLayout &DL) {
  if (AI->isArrayAllocation())
    return false;
  uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
  if (!AllocaSize)
    return false;
  return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
                                            APInt(64, AllocaSize), DL);
}

static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
  // Check for array size of 1 (scalar allocation).
  if (!AI.isArrayAllocation()) {
    // i32 1 is the canonical array size for scalar allocations.
    if (AI.getArraySize()->getType()->isIntegerTy(32))
      return nullptr;

    // Canonicalize it.
    return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
  }

  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
  if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
    if (C->getValue().getActiveBits() <= 64) {
      Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
      AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
      New->setAlignment(AI.getAlign());

      // Scan to the end of the allocation instructions, to skip over a block of
      // allocas if possible...also skip interleaved debug info
      //
      BasicBlock::iterator It(New);
      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
        ++It;

      // Now that I is pointing to the first non-allocation-inst in the block,
      // insert our getelementptr instruction...
      //
      Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
      Value *NullIdx = Constant::getNullValue(IdxTy);
      Value *Idx[2] = {NullIdx, NullIdx};
      Instruction *GEP = GetElementPtrInst::CreateInBounds(
          NewTy, New, Idx, New->getName() + ".sub");
      IC.InsertNewInstBefore(GEP, *It);

      // Now make everything use the getelementptr instead of the original
      // allocation.
      return IC.replaceInstUsesWith(AI, GEP);
    }
  }

  if (isa<UndefValue>(AI.getArraySize()))
    return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));

  // Ensure that the alloca array size argument has type intptr_t, so that
  // any casting is exposed early.
  Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
  if (AI.getArraySize()->getType() != IntPtrTy) {
    Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
    return IC.replaceOperand(AI, 0, V);
  }

  return nullptr;
}

namespace {
// If I and V are pointers in different address space, it is not allowed to
// use replaceAllUsesWith since I and V have different types. A
// non-target-specific transformation should not use addrspacecast on V since
// the two address space may be disjoint depending on target.
//
// This class chases down uses of the old pointer until reaching the load
// instructions, then replaces the old pointer in the load instructions with
// the new pointer. If during the chasing it sees bitcast or GEP, it will
// create new bitcast or GEP with the new pointer and use them in the load
// instruction.
class PointerReplacer {
public:
  PointerReplacer(InstCombiner &IC) : IC(IC) {}
  void replacePointer(Instruction &I, Value *V);

private:
  void findLoadAndReplace(Instruction &I);
  void replace(Instruction *I);
  Value *getReplacement(Value *I);

  SmallVector<Instruction *, 4> Path;
  MapVector<Value *, Value *> WorkMap;
  InstCombiner &IC;
};
} // end anonymous namespace

void PointerReplacer::findLoadAndReplace(Instruction &I) {
  for (auto U : I.users()) {
    auto *Inst = dyn_cast<Instruction>(&*U);
    if (!Inst)
      return;
    LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
    if (isa<LoadInst>(Inst)) {
      for (auto P : Path)
        replace(P);
      replace(Inst);
    } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
      Path.push_back(Inst);
      findLoadAndReplace(*Inst);
      Path.pop_back();
    } else {
      return;
    }
  }
}

Value *PointerReplacer::getReplacement(Value *V) {
  auto Loc = WorkMap.find(V);
  if (Loc != WorkMap.end())
    return Loc->second;
  return nullptr;
}

void PointerReplacer::replace(Instruction *I) {
  if (getReplacement(I))
    return;

  if (auto *LT = dyn_cast<LoadInst>(I)) {
    auto *V = getReplacement(LT->getPointerOperand());
    assert(V && "Operand not replaced");
    auto *NewI = new LoadInst(I->getType(), V, "", false,
                              IC.getDataLayout().getABITypeAlign(I->getType()));
    NewI->takeName(LT);
    IC.InsertNewInstWith(NewI, *LT);
    IC.replaceInstUsesWith(*LT, NewI);
    WorkMap[LT] = NewI;
  } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    auto *V = getReplacement(GEP->getPointerOperand());
    assert(V && "Operand not replaced");
    SmallVector<Value *, 8> Indices;
    Indices.append(GEP->idx_begin(), GEP->idx_end());
    auto *NewI = GetElementPtrInst::Create(
        V->getType()->getPointerElementType(), V, Indices);
    IC.InsertNewInstWith(NewI, *GEP);
    NewI->takeName(GEP);
    WorkMap[GEP] = NewI;
  } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
    auto *V = getReplacement(BC->getOperand(0));
    assert(V && "Operand not replaced");
    auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
                                  V->getType()->getPointerAddressSpace());
    auto *NewI = new BitCastInst(V, NewT);
    IC.InsertNewInstWith(NewI, *BC);
    NewI->takeName(BC);
    WorkMap[BC] = NewI;
  } else {
    llvm_unreachable("should never reach here");
  }
}

void PointerReplacer::replacePointer(Instruction &I, Value *V) {
#ifndef NDEBUG
  auto *PT = cast<PointerType>(I.getType());
  auto *NT = cast<PointerType>(V->getType());
  assert(PT != NT && PT->getElementType() == NT->getElementType() &&
         "Invalid usage");
#endif
  WorkMap[&I] = V;
  findLoadAndReplace(I);
}

Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
  if (auto *I = simplifyAllocaArraySize(*this, AI))
    return I;

  if (AI.getAllocatedType()->isSized()) {
    // Move all alloca's of zero byte objects to the entry block and merge them
    // together.  Note that we only do this for alloca's, because malloc should
    // allocate and return a unique pointer, even for a zero byte allocation.
    if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
      // For a zero sized alloca there is no point in doing an array allocation.
      // This is helpful if the array size is a complicated expression not used
      // elsewhere.
      if (AI.isArrayAllocation())
        return replaceOperand(AI, 0,
            ConstantInt::get(AI.getArraySize()->getType(), 1));

      // Get the first instruction in the entry block.
      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
      if (FirstInst != &AI) {
        // If the entry block doesn't start with a zero-size alloca then move
        // this one to the start of the entry block.  There is no problem with
        // dominance as the array size was forced to a constant earlier already.
        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
            DL.getTypeAllocSize(EntryAI->getAllocatedType())
                    .getKnownMinSize() != 0) {
          AI.moveBefore(FirstInst);
          return &AI;
        }

        // Replace this zero-sized alloca with the one at the start of the entry
        // block after ensuring that the address will be aligned enough for both
        // types.
        const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
        EntryAI->setAlignment(MaxAlign);
        if (AI.getType() != EntryAI->getType())
          return new BitCastInst(EntryAI, AI.getType());
        return replaceInstUsesWith(AI, EntryAI);
      }
    }
  }

  // Check to see if this allocation is only modified by a memcpy/memmove from
  // a constant whose alignment is equal to or exceeds that of the allocation.
  // If this is the case, we can change all users to use the constant global
  // instead.  This is commonly produced by the CFE by constructs like "void
  // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
  // read.
  SmallVector<Instruction *, 4> ToDelete;
  if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
    Align AllocaAlign = AI.getAlign();
    Align SourceAlign = getOrEnforceKnownAlignment(
        Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT);
    if (AllocaAlign <= SourceAlign &&
        isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
      LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
      LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
        eraseInstFromFunction(*ToDelete[i]);
      Value *TheSrc = Copy->getSource();
      auto *SrcTy = TheSrc->getType();
      auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
                                      SrcTy->getPointerAddressSpace());
      Value *Cast =
        Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
      if (AI.getType()->getPointerAddressSpace() ==
          SrcTy->getPointerAddressSpace()) {
        Instruction *NewI = replaceInstUsesWith(AI, Cast);
        eraseInstFromFunction(*Copy);
        ++NumGlobalCopies;
        return NewI;
      }

      PointerReplacer PtrReplacer(*this);
      PtrReplacer.replacePointer(AI, Cast);
      ++NumGlobalCopies;
    }
  }

  // At last, use the generic allocation site handler to aggressively remove
  // unused allocas.
  return visitAllocSite(AI);
}

// Are we allowed to form a atomic load or store of this type?
static bool isSupportedAtomicType(Type *Ty) {
  return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
}

/// Helper to combine a load to a new type.
///
/// This just does the work of combining a load to a new type. It handles
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
/// loaded *value* type. This will convert it to a pointer, cast the operand to
/// that pointer type, load it, etc.
///
/// Note that this will create all of the instructions with whatever insert
/// point the \c InstCombiner currently is using.
LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy,
                                             const Twine &Suffix) {
  assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
         "can't fold an atomic load to requested type");

  Value *Ptr = LI.getPointerOperand();
  unsigned AS = LI.getPointerAddressSpace();
  Value *NewPtr = nullptr;
  if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
        NewPtr->getType()->getPointerElementType() == NewTy &&
        NewPtr->getType()->getPointerAddressSpace() == AS))
    NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));

  LoadInst *NewLoad = Builder.CreateAlignedLoad(
      NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
  NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
  copyMetadataForLoad(*NewLoad, LI);
  return NewLoad;
}

/// Combine a store to a new type.
///
/// Returns the newly created store instruction.
static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
  assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
         "can't fold an atomic store of requested type");

  Value *Ptr = SI.getPointerOperand();
  unsigned AS = SI.getPointerAddressSpace();
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
  SI.getAllMetadata(MD);

  StoreInst *NewStore = IC.Builder.CreateAlignedStore(
      V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
      SI.getAlign(), SI.isVolatile());
  NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
  for (const auto &MDPair : MD) {
    unsigned ID = MDPair.first;
    MDNode *N = MDPair.second;
    // Note, essentially every kind of metadata should be preserved here! This
    // routine is supposed to clone a store instruction changing *only its
    // type*. The only metadata it makes sense to drop is metadata which is
    // invalidated when the pointer type changes. This should essentially
    // never be the case in LLVM, but we explicitly switch over only known
    // metadata to be conservatively correct. If you are adding metadata to
    // LLVM which pertains to stores, you almost certainly want to add it
    // here.
    switch (ID) {
    case LLVMContext::MD_dbg:
    case LLVMContext::MD_tbaa:
    case LLVMContext::MD_prof:
    case LLVMContext::MD_fpmath:
    case LLVMContext::MD_tbaa_struct:
    case LLVMContext::MD_alias_scope:
    case LLVMContext::MD_noalias:
    case LLVMContext::MD_nontemporal:
    case LLVMContext::MD_mem_parallel_loop_access:
    case LLVMContext::MD_access_group:
      // All of these directly apply.
      NewStore->setMetadata(ID, N);
      break;
    case LLVMContext::MD_invariant_load:
    case LLVMContext::MD_nonnull:
    case LLVMContext::MD_range:
    case LLVMContext::MD_align:
    case LLVMContext::MD_dereferenceable:
    case LLVMContext::MD_dereferenceable_or_null:
      // These don't apply for stores.
      break;
    }
  }

  return NewStore;
}

/// Returns true if instruction represent minmax pattern like:
///   select ((cmp load V1, load V2), V1, V2).
static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
  assert(V->getType()->isPointerTy() && "Expected pointer type.");
  // Ignore possible ty* to ixx* bitcast.
  V = peekThroughBitcast(V);
  // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
  // pattern.
  CmpInst::Predicate Pred;
  Instruction *L1;
  Instruction *L2;
  Value *LHS;
  Value *RHS;
  if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
                         m_Value(LHS), m_Value(RHS))))
    return false;
  LoadTy = L1->getType();
  return (match(L1, m_Load(m_Specific(LHS))) &&
          match(L2, m_Load(m_Specific(RHS)))) ||
         (match(L1, m_Load(m_Specific(RHS))) &&
          match(L2, m_Load(m_Specific(LHS))));
}

/// Combine loads to match the type of their uses' value after looking
/// through intervening bitcasts.
///
/// The core idea here is that if the result of a load is used in an operation,
/// we should load the type most conducive to that operation. For example, when
/// loading an integer and converting that immediately to a pointer, we should
/// instead directly load a pointer.
///
/// However, this routine must never change the width of a load or the number of
/// loads as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows loads to more closely model the types
/// of their consuming operations.
///
/// Currently, we also refuse to change the precise type used for an atomic load
/// or a volatile load. This is debatable, and might be reasonable to change
/// later. However, it is risky in case some backend or other part of LLVM is
/// relying on the exact type loaded to select appropriate atomic operations.
static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
  // FIXME: We could probably with some care handle both volatile and ordered
  // atomic loads here but it isn't clear that this is important.
  if (!LI.isUnordered())
    return nullptr;

  if (LI.use_empty())
    return nullptr;

  // swifterror values can't be bitcasted.
  if (LI.getPointerOperand()->isSwiftError())
    return nullptr;

  Type *Ty = LI.getType();
  const DataLayout &DL = IC.getDataLayout();

  // Try to canonicalize loads which are only ever stored to operate over
  // integers instead of any other type. We only do this when the loaded type
  // is sized and has a size exactly the same as its store size and the store
  // size is a legal integer type.
  // Do not perform canonicalization if minmax pattern is found (to avoid
  // infinite loop).
  Type *Dummy;
  if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) &&
      DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
      DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) &&
      !isMinMaxWithLoads(
          peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true),
          Dummy)) {
    if (all_of(LI.users(), [&LI](User *U) {
          auto *SI = dyn_cast<StoreInst>(U);
          return SI && SI->getPointerOperand() != &LI &&
                 !SI->getPointerOperand()->isSwiftError();
        })) {
      LoadInst *NewLoad = IC.combineLoadToNewType(
          LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
      // Replace all the stores with stores of the newly loaded value.
      for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
        auto *SI = cast<StoreInst>(*UI++);
        IC.Builder.SetInsertPoint(SI);
        combineStoreToNewValue(IC, *SI, NewLoad);
        IC.eraseInstFromFunction(*SI);
      }
      assert(LI.use_empty() && "Failed to remove all users of the load!");
      // Return the old load so the combiner can delete it safely.
      return &LI;
    }
  }

  // Fold away bit casts of the loaded value by loading the desired type.
  // We can do this for BitCastInsts as well as casts from and to pointer types,
  // as long as those are noops (i.e., the source or dest type have the same
  // bitwidth as the target's pointers).
  if (LI.hasOneUse())
    if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
      if (CI->isNoopCast(DL))
        if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
          LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
          CI->replaceAllUsesWith(NewLoad);
          IC.eraseInstFromFunction(*CI);
          return &LI;
        }

  // FIXME: We should also canonicalize loads of vectors when their elements are
  // cast to other types.
  return nullptr;
}

static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
  // FIXME: We could probably with some care handle both volatile and atomic
  // stores here but it isn't clear that this is important.
  if (!LI.isSimple())
    return nullptr;

  Type *T = LI.getType();
  if (!T->isAggregateType())
    return nullptr;

  StringRef Name = LI.getName();
  assert(LI.getAlignment() && "Alignment must be set at this point");

  if (auto *ST = dyn_cast<StructType>(T)) {
    // If the struct only have one element, we unpack.
    auto NumElements = ST->getNumElements();
    if (NumElements == 1) {
      LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
                                                  ".unpack");
      AAMDNodes AAMD;
      LI.getAAMetadata(AAMD);
      NewLoad->setAAMetadata(AAMD);
      return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
        UndefValue::get(T), NewLoad, 0, Name));
    }

    // We don't want to break loads with padding here as we'd loose
    // the knowledge that padding exists for the rest of the pipeline.
    const DataLayout &DL = IC.getDataLayout();
    auto *SL = DL.getStructLayout(ST);
    if (SL->hasPadding())
      return nullptr;

    const auto Align = LI.getAlign();
    auto *Addr = LI.getPointerOperand();
    auto *IdxType = Type::getInt32Ty(T->getContext());
    auto *Zero = ConstantInt::get(IdxType, 0);

    Value *V = UndefValue::get(T);
    for (unsigned i = 0; i < NumElements; i++) {
      Value *Indices[2] = {
        Zero,
        ConstantInt::get(IdxType, i),
      };
      auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
                                               Name + ".elt");
      auto *L = IC.Builder.CreateAlignedLoad(
          ST->getElementType(i), Ptr,
          commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
      // Propagate AA metadata. It'll still be valid on the narrowed load.
      AAMDNodes AAMD;
      LI.getAAMetadata(AAMD);
      L->setAAMetadata(AAMD);
      V = IC.Builder.CreateInsertValue(V, L, i);
    }

    V->setName(Name);
    return IC.replaceInstUsesWith(LI, V);
  }

  if (auto *AT = dyn_cast<ArrayType>(T)) {
    auto *ET = AT->getElementType();
    auto NumElements = AT->getNumElements();
    if (NumElements == 1) {
      LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
      AAMDNodes AAMD;
      LI.getAAMetadata(AAMD);
      NewLoad->setAAMetadata(AAMD);
      return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
        UndefValue::get(T), NewLoad, 0, Name));
    }

    // Bail out if the array is too large. Ideally we would like to optimize
    // arrays of arbitrary size but this has a terrible impact on compile time.
    // The threshold here is chosen arbitrarily, maybe needs a little bit of
    // tuning.
    if (NumElements > IC.MaxArraySizeForCombine)
      return nullptr;

    const DataLayout &DL = IC.getDataLayout();
    auto EltSize = DL.getTypeAllocSize(ET);
    const auto Align = LI.getAlign();

    auto *Addr = LI.getPointerOperand();
    auto *IdxType = Type::getInt64Ty(T->getContext());
    auto *Zero = ConstantInt::get(IdxType, 0);

    Value *V = UndefValue::get(T);
    uint64_t Offset = 0;
    for (uint64_t i = 0; i < NumElements; i++) {
      Value *Indices[2] = {
        Zero,
        ConstantInt::get(IdxType, i),
      };
      auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
                                               Name + ".elt");
      auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
                                             commonAlignment(Align, Offset),
                                             Name + ".unpack");
      AAMDNodes AAMD;
      LI.getAAMetadata(AAMD);
      L->setAAMetadata(AAMD);
      V = IC.Builder.CreateInsertValue(V, L, i);
      Offset += EltSize;
    }

    V->setName(Name);
    return IC.replaceInstUsesWith(LI, V);
  }

  return nullptr;
}

// If we can determine that all possible objects pointed to by the provided
// pointer value are, not only dereferenceable, but also definitively less than
// or equal to the provided maximum size, then return true. Otherwise, return
// false (constant global values and allocas fall into this category).
//
// FIXME: This should probably live in ValueTracking (or similar).
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
                                     const DataLayout &DL) {
  SmallPtrSet<Value *, 4> Visited;
  SmallVector<Value *, 4> Worklist(1, V);

  do {
    Value *P = Worklist.pop_back_val();
    P = P->stripPointerCasts();

    if (!Visited.insert(P).second)
      continue;

    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    if (PHINode *PN = dyn_cast<PHINode>(P)) {
      for (Value *IncValue : PN->incoming_values())
        Worklist.push_back(IncValue);
      continue;
    }

    if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
      if (GA->isInterposable())
        return false;
      Worklist.push_back(GA->getAliasee());
      continue;
    }

    // If we know how big this object is, and it is less than MaxSize, continue
    // searching. Otherwise, return false.
    if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
      if (!AI->getAllocatedType()->isSized())
        return false;

      ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
      if (!CS)
        return false;

      uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
      // Make sure that, even if the multiplication below would wrap as an
      // uint64_t, we still do the right thing.
      if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
        return false;
      continue;
    }

    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
      if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
        return false;

      uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
      if (InitSize > MaxSize)
        return false;
      continue;
    }

    return false;
  } while (!Worklist.empty());

  return true;
}

// If we're indexing into an object of a known size, and the outer index is
// not a constant, but having any value but zero would lead to undefined
// behavior, replace it with zero.
//
// For example, if we have:
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
// ...
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
// ... = load i32* %arrayidx, align 4
// Then we know that we can replace %x in the GEP with i64 0.
//
// FIXME: We could fold any GEP index to zero that would cause UB if it were
// not zero. Currently, we only handle the first such index. Also, we could
// also search through non-zero constant indices if we kept track of the
// offsets those indices implied.
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
                                     Instruction *MemI, unsigned &Idx) {
  if (GEPI->getNumOperands() < 2)
    return false;

  // Find the first non-zero index of a GEP. If all indices are zero, return
  // one past the last index.
  auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
    unsigned I = 1;
    for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
      Value *V = GEPI->getOperand(I);
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
        if (CI->isZero())
          continue;

      break;
    }

    return I;
  };

  // Skip through initial 'zero' indices, and find the corresponding pointer
  // type. See if the next index is not a constant.
  Idx = FirstNZIdx(GEPI);
  if (Idx == GEPI->getNumOperands())
    return false;
  if (isa<Constant>(GEPI->getOperand(Idx)))
    return false;

  SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
  Type *AllocTy =
    GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
  if (!AllocTy || !AllocTy->isSized())
    return false;
  const DataLayout &DL = IC.getDataLayout();
  uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);

  // If there are more indices after the one we might replace with a zero, make
  // sure they're all non-negative. If any of them are negative, the overall
  // address being computed might be before the base address determined by the
  // first non-zero index.
  auto IsAllNonNegative = [&]() {
    for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
      KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
      if (Known.isNonNegative())
        continue;
      return false;
    }

    return true;
  };

  // FIXME: If the GEP is not inbounds, and there are extra indices after the
  // one we'll replace, those could cause the address computation to wrap
  // (rendering the IsAllNonNegative() check below insufficient). We can do
  // better, ignoring zero indices (and other indices we can prove small
  // enough not to wrap).
  if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
    return false;

  // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
  // also known to be dereferenceable.
  return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
         IsAllNonNegative();
}

// If we're indexing into an object with a variable index for the memory
// access, but the object has only one element, we can assume that the index
// will always be zero. If we replace the GEP, return it.
template <typename T>
static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
                                          T &MemI) {
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
    unsigned Idx;
    if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
      Instruction *NewGEPI = GEPI->clone();
      NewGEPI->setOperand(Idx,
        ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
      NewGEPI->insertBefore(GEPI);
      MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
      return NewGEPI;
    }
  }

  return nullptr;
}

static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
  if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
    return false;

  auto *Ptr = SI.getPointerOperand();
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
    Ptr = GEPI->getOperand(0);
  return (isa<ConstantPointerNull>(Ptr) &&
          !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
}

static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
    const Value *GEPI0 = GEPI->getOperand(0);
    if (isa<ConstantPointerNull>(GEPI0) &&
        !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
      return true;
  }
  if (isa<UndefValue>(Op) ||
      (isa<ConstantPointerNull>(Op) &&
       !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
    return true;
  return false;
}

Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
  Value *Op = LI.getOperand(0);

  // Try to canonicalize the loaded type.
  if (Instruction *Res = combineLoadToOperationType(*this, LI))
    return Res;

  // Attempt to improve the alignment.
  Align KnownAlign = getOrEnforceKnownAlignment(
      Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
  if (KnownAlign > LI.getAlign())
    LI.setAlignment(KnownAlign);

  // Replace GEP indices if possible.
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
      Worklist.push(NewGEPI);
      return &LI;
  }

  if (Instruction *Res = unpackLoadToAggregate(*this, LI))
    return Res;

  // Do really simple store-to-load forwarding and load CSE, to catch cases
  // where there are several consecutive memory accesses to the same location,
  // separated by a few arithmetic operations.
  BasicBlock::iterator BBI(LI);
  bool IsLoadCSE = false;
  if (Value *AvailableVal = FindAvailableLoadedValue(
          &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
    if (IsLoadCSE)
      combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);

    return replaceInstUsesWith(
        LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
                                           LI.getName() + ".cast"));
  }

  // None of the following transforms are legal for volatile/ordered atomic
  // loads.  Most of them do apply for unordered atomics.
  if (!LI.isUnordered()) return nullptr;

  // load(gep null, ...) -> unreachable
  // load null/undef -> unreachable
  // TODO: Consider a target hook for valid address spaces for this xforms.
  if (canSimplifyNullLoadOrGEP(LI, Op)) {
    // Insert a new store to null instruction before the load to indicate
    // that this code is not reachable.  We do this instead of inserting
    // an unreachable instruction directly because we cannot modify the
    // CFG.
    StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
                                  Constant::getNullValue(Op->getType()), &LI);
    SI->setDebugLoc(LI.getDebugLoc());
    return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
  }

  if (Op->hasOneUse()) {
    // Change select and PHI nodes to select values instead of addresses: this
    // helps alias analysis out a lot, allows many others simplifications, and
    // exposes redundancy in the code.
    //
    // Note that we cannot do the transformation unless we know that the
    // introduced loads cannot trap!  Something like this is valid as long as
    // the condition is always false: load (select bool %C, int* null, int* %G),
    // but it would not be valid if we transformed it to load from null
    // unconditionally.
    //
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
      Align Alignment = LI.getAlign();
      if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
                                      Alignment, DL, SI) &&
          isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
                                      Alignment, DL, SI)) {
        LoadInst *V1 =
            Builder.CreateLoad(LI.getType(), SI->getOperand(1),
                               SI->getOperand(1)->getName() + ".val");
        LoadInst *V2 =
            Builder.CreateLoad(LI.getType(), SI->getOperand(2),
                               SI->getOperand(2)->getName() + ".val");
        assert(LI.isUnordered() && "implied by above");
        V1->setAlignment(Alignment);
        V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
        V2->setAlignment(Alignment);
        V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
        return SelectInst::Create(SI->getCondition(), V1, V2);
      }

      // load (select (cond, null, P)) -> load P
      if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
          !NullPointerIsDefined(SI->getFunction(),
                                LI.getPointerAddressSpace()))
        return replaceOperand(LI, 0, SI->getOperand(2));

      // load (select (cond, P, null)) -> load P
      if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
          !NullPointerIsDefined(SI->getFunction(),
                                LI.getPointerAddressSpace()))
        return replaceOperand(LI, 0, SI->getOperand(1));
    }
  }
  return nullptr;
}

/// Look for extractelement/insertvalue sequence that acts like a bitcast.
///
/// \returns underlying value that was "cast", or nullptr otherwise.
///
/// For example, if we have:
///
///     %E0 = extractelement <2 x double> %U, i32 0
///     %V0 = insertvalue [2 x double] undef, double %E0, 0
///     %E1 = extractelement <2 x double> %U, i32 1
///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
///
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
/// Note that %U may contain non-undef values where %V1 has undef.
static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
  Value *U = nullptr;
  while (auto *IV = dyn_cast<InsertValueInst>(V)) {
    auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
    if (!E)
      return nullptr;
    auto *W = E->getVectorOperand();
    if (!U)
      U = W;
    else if (U != W)
      return nullptr;
    auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
    if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
      return nullptr;
    V = IV->getAggregateOperand();
  }
  if (!isa<UndefValue>(V) ||!U)
    return nullptr;

  auto *UT = cast<VectorType>(U->getType());
  auto *VT = V->getType();
  // Check that types UT and VT are bitwise isomorphic.
  const auto &DL = IC.getDataLayout();
  if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
    return nullptr;
  }
  if (auto *AT = dyn_cast<ArrayType>(VT)) {
    if (AT->getNumElements() != UT->getNumElements())
      return nullptr;
  } else {
    auto *ST = cast<StructType>(VT);
    if (ST->getNumElements() != UT->getNumElements())
      return nullptr;
    for (const auto *EltT : ST->elements()) {
      if (EltT != UT->getElementType())
        return nullptr;
    }
  }
  return U;
}

/// Combine stores to match the type of value being stored.
///
/// The core idea here is that the memory does not have any intrinsic type and
/// where we can we should match the type of a store to the type of value being
/// stored.
///
/// However, this routine must never change the width of a store or the number of
/// stores as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows stores to more closely model the types
/// of their incoming values.
///
/// Currently, we also refuse to change the precise type used for an atomic or
/// volatile store. This is debatable, and might be reasonable to change later.
/// However, it is risky in case some backend or other part of LLVM is relying
/// on the exact type stored to select appropriate atomic operations.
///
/// \returns true if the store was successfully combined away. This indicates
/// the caller must erase the store instruction. We have to let the caller erase
/// the store instruction as otherwise there is no way to signal whether it was
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
  // FIXME: We could probably with some care handle both volatile and ordered
  // atomic stores here but it isn't clear that this is important.
  if (!SI.isUnordered())
    return false;

  // swifterror values can't be bitcasted.
  if (SI.getPointerOperand()->isSwiftError())
    return false;

  Value *V = SI.getValueOperand();

  // Fold away bit casts of the stored value by storing the original type.
  if (auto *BC = dyn_cast<BitCastInst>(V)) {
    V = BC->getOperand(0);
    if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
      combineStoreToNewValue(IC, SI, V);
      return true;
    }
  }

  if (Value *U = likeBitCastFromVector(IC, V))
    if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
      combineStoreToNewValue(IC, SI, U);
      return true;
    }

  // FIXME: We should also canonicalize stores of vectors when their elements
  // are cast to other types.
  return false;
}

static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
  // FIXME: We could probably with some care handle both volatile and atomic
  // stores here but it isn't clear that this is important.
  if (!SI.isSimple())
    return false;

  Value *V = SI.getValueOperand();
  Type *T = V->getType();

  if (!T->isAggregateType())
    return false;

  if (auto *ST = dyn_cast<StructType>(T)) {
    // If the struct only have one element, we unpack.
    unsigned Count = ST->getNumElements();
    if (Count == 1) {
      V = IC.Builder.CreateExtractValue(V, 0);
      combineStoreToNewValue(IC, SI, V);
      return true;
    }

    // We don't want to break loads with padding here as we'd loose
    // the knowledge that padding exists for the rest of the pipeline.
    const DataLayout &DL = IC.getDataLayout();
    auto *SL = DL.getStructLayout(ST);
    if (SL->hasPadding())
      return false;

    const auto Align = SI.getAlign();

    SmallString<16> EltName = V->getName();
    EltName += ".elt";
    auto *Addr = SI.getPointerOperand();
    SmallString<16> AddrName = Addr->getName();
    AddrName += ".repack";

    auto *IdxType = Type::getInt32Ty(ST->getContext());
    auto *Zero = ConstantInt::get(IdxType, 0);
    for (unsigned i = 0; i < Count; i++) {
      Value *Indices[2] = {
        Zero,
        ConstantInt::get(IdxType, i),
      };
      auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
                                               AddrName);
      auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
      auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
      llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
      AAMDNodes AAMD;
      SI.getAAMetadata(AAMD);
      NS->setAAMetadata(AAMD);
    }

    return true;
  }

  if (auto *AT = dyn_cast<ArrayType>(T)) {
    // If the array only have one element, we unpack.
    auto NumElements = AT->getNumElements();
    if (NumElements == 1) {
      V = IC.Builder.CreateExtractValue(V, 0);
      combineStoreToNewValue(IC, SI, V);
      return true;
    }

    // Bail out if the array is too large. Ideally we would like to optimize
    // arrays of arbitrary size but this has a terrible impact on compile time.
    // The threshold here is chosen arbitrarily, maybe needs a little bit of
    // tuning.
    if (NumElements > IC.MaxArraySizeForCombine)
      return false;

    const DataLayout &DL = IC.getDataLayout();
    auto EltSize = DL.getTypeAllocSize(AT->getElementType());
    const auto Align = SI.getAlign();

    SmallString<16> EltName = V->getName();
    EltName += ".elt";
    auto *Addr = SI.getPointerOperand();
    SmallString<16> AddrName = Addr->getName();
    AddrName += ".repack";

    auto *IdxType = Type::getInt64Ty(T->getContext());
    auto *Zero = ConstantInt::get(IdxType, 0);

    uint64_t Offset = 0;
    for (uint64_t i = 0; i < NumElements; i++) {
      Value *Indices[2] = {
        Zero,
        ConstantInt::get(IdxType, i),
      };
      auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
                                               AddrName);
      auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
      auto EltAlign = commonAlignment(Align, Offset);
      Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
      AAMDNodes AAMD;
      SI.getAAMetadata(AAMD);
      NS->setAAMetadata(AAMD);
      Offset += EltSize;
    }

    return true;
  }

  return false;
}

/// equivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
///   %t0 = getelementptr \@a, 0, 3
///   store i32 0, i32* %t0
///   %t1 = getelementptr \@a, 0, 3
///   %t2 = load i32* %t1
///
static bool equivalentAddressValues(Value *A, Value *B) {
  // Test if the values are trivially equivalent.
  if (A == B) return true;

  // Test if the values come form identical arithmetic instructions.
  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
  // its only used to compare two uses within the same basic block, which
  // means that they'll always either have the same value or one of them
  // will have an undefined value.
  if (isa<BinaryOperator>(A) ||
      isa<CastInst>(A) ||
      isa<PHINode>(A) ||
      isa<GetElementPtrInst>(A))
    if (Instruction *BI = dyn_cast<Instruction>(B))
      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
        return true;

  // Otherwise they may not be equivalent.
  return false;
}

/// Converts store (bitcast (load (bitcast (select ...)))) to
/// store (load (select ...)), where select is minmax:
/// select ((cmp load V1, load V2), V1, V2).
static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
                                                StoreInst &SI) {
  // bitcast?
  if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
    return false;
  // load? integer?
  Value *LoadAddr;
  if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
    return false;
  auto *LI = cast<LoadInst>(SI.getValueOperand());
  if (!LI->getType()->isIntegerTy())
    return false;
  Type *CmpLoadTy;
  if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
    return false;

  // Make sure the type would actually change.
  // This condition can be hit with chains of bitcasts.
  if (LI->getType() == CmpLoadTy)
    return false;

  // Make sure we're not changing the size of the load/store.
  const auto &DL = IC.getDataLayout();
  if (DL.getTypeStoreSizeInBits(LI->getType()) !=
      DL.getTypeStoreSizeInBits(CmpLoadTy))
    return false;

  if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
        auto *SI = dyn_cast<StoreInst>(U);
        return SI && SI->getPointerOperand() != LI &&
               peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
               !SI->getPointerOperand()->isSwiftError();
      }))
    return false;

  IC.Builder.SetInsertPoint(LI);
  LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
  // Replace all the stores with stores of the newly loaded value.
  for (auto *UI : LI->users()) {
    auto *USI = cast<StoreInst>(UI);
    IC.Builder.SetInsertPoint(USI);
    combineStoreToNewValue(IC, *USI, NewLI);
  }
  IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
  IC.eraseInstFromFunction(*LI);
  return true;
}

Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
  Value *Val = SI.getOperand(0);
  Value *Ptr = SI.getOperand(1);

  // Try to canonicalize the stored type.
  if (combineStoreToValueType(*this, SI))
    return eraseInstFromFunction(SI);

  // Attempt to improve the alignment.
  const Align KnownAlign = getOrEnforceKnownAlignment(
      Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
  if (KnownAlign > SI.getAlign())
    SI.setAlignment(KnownAlign);

  // Try to canonicalize the stored type.
  if (unpackStoreToAggregate(*this, SI))
    return eraseInstFromFunction(SI);

  if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
    return eraseInstFromFunction(SI);

  // Replace GEP indices if possible.
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
      Worklist.push(NewGEPI);
      return &SI;
  }

  // Don't hack volatile/ordered stores.
  // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
  if (!SI.isUnordered()) return nullptr;

  // If the RHS is an alloca with a single use, zapify the store, making the
  // alloca dead.
  if (Ptr->hasOneUse()) {
    if (isa<AllocaInst>(Ptr))
      return eraseInstFromFunction(SI);
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
      if (isa<AllocaInst>(GEP->getOperand(0))) {
        if (GEP->getOperand(0)->hasOneUse())
          return eraseInstFromFunction(SI);
      }
    }
  }

  // If we have a store to a location which is known constant, we can conclude
  // that the store must be storing the constant value (else the memory
  // wouldn't be constant), and this must be a noop.
  if (AA->pointsToConstantMemory(Ptr))
    return eraseInstFromFunction(SI);

  // Do really simple DSE, to catch cases where there are several consecutive
  // stores to the same location, separated by a few arithmetic operations. This
  // situation often occurs with bitfield accesses.
  BasicBlock::iterator BBI(SI);
  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
       --ScanInsts) {
    --BBI;
    // Don't count debug info directives, lest they affect codegen,
    // and we skip pointer-to-pointer bitcasts, which are NOPs.
    if (isa<DbgInfoIntrinsic>(BBI) ||
        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
      ScanInsts++;
      continue;
    }

    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
      // Prev store isn't volatile, and stores to the same location?
      if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
                                                        SI.getOperand(1))) {
        ++NumDeadStore;
        // Manually add back the original store to the worklist now, so it will
        // be processed after the operands of the removed store, as this may
        // expose additional DSE opportunities.
        Worklist.push(&SI);
        eraseInstFromFunction(*PrevSI);
        return nullptr;
      }
      break;
    }

    // If this is a load, we have to stop.  However, if the loaded value is from
    // the pointer we're loading and is producing the pointer we're storing,
    // then *this* store is dead (X = load P; store X -> P).
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
        assert(SI.isUnordered() && "can't eliminate ordering operation");
        return eraseInstFromFunction(SI);
      }

      // Otherwise, this is a load from some other location.  Stores before it
      // may not be dead.
      break;
    }

    // Don't skip over loads, throws or things that can modify memory.
    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
      break;
  }

  // store X, null    -> turns into 'unreachable' in SimplifyCFG
  // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
  if (canSimplifyNullStoreOrGEP(SI)) {
    if (!isa<UndefValue>(Val))
      return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
    return nullptr;  // Do not modify these!
  }

  // store undef, Ptr -> noop
  if (isa<UndefValue>(Val))
    return eraseInstFromFunction(SI);

  return nullptr;
}

/// Try to transform:
///   if () { *P = v1; } else { *P = v2 }
/// or:
///   *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
  if (!SI.isUnordered())
    return false; // This code has not been audited for volatile/ordered case.

  // Check if the successor block has exactly 2 incoming edges.
  BasicBlock *StoreBB = SI.getParent();
  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
  if (!DestBB->hasNPredecessors(2))
    return false;

  // Capture the other block (the block that doesn't contain our store).
  pred_iterator PredIter = pred_begin(DestBB);
  if (*PredIter == StoreBB)
    ++PredIter;
  BasicBlock *OtherBB = *PredIter;

  // Bail out if all of the relevant blocks aren't distinct. This can happen,
  // for example, if SI is in an infinite loop.
  if (StoreBB == DestBB || OtherBB == DestBB)
    return false;

  // Verify that the other block ends in a branch and is not otherwise empty.
  BasicBlock::iterator BBI(OtherBB->getTerminator());
  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
  if (!OtherBr || BBI == OtherBB->begin())
    return false;

  // If the other block ends in an unconditional branch, check for the 'if then
  // else' case. There is an instruction before the branch.
  StoreInst *OtherStore = nullptr;
  if (OtherBr->isUnconditional()) {
    --BBI;
    // Skip over debugging info.
    while (isa<DbgInfoIntrinsic>(BBI) ||
           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
      if (BBI==OtherBB->begin())
        return false;
      --BBI;
    }
    // If this isn't a store, isn't a store to the same location, or is not the
    // right kind of store, bail out.
    OtherStore = dyn_cast<StoreInst>(BBI);
    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
        !SI.isSameOperationAs(OtherStore))
      return false;
  } else {
    // Otherwise, the other block ended with a conditional branch. If one of the
    // destinations is StoreBB, then we have the if/then case.
    if (OtherBr->getSuccessor(0) != StoreBB &&
        OtherBr->getSuccessor(1) != StoreBB)
      return false;

    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
    // if/then triangle. See if there is a store to the same ptr as SI that
    // lives in OtherBB.
    for (;; --BBI) {
      // Check to see if we find the matching store.
      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
            !SI.isSameOperationAs(OtherStore))
          return false;
        break;
      }
      // If we find something that may be using or overwriting the stored
      // value, or if we run out of instructions, we can't do the transform.
      if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
          BBI->mayWriteToMemory() || BBI == OtherBB->begin())
        return false;
    }

    // In order to eliminate the store in OtherBr, we have to make sure nothing
    // reads or overwrites the stored value in StoreBB.
    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
      // FIXME: This should really be AA driven.
      if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
        return false;
    }
  }

  // Insert a PHI node now if we need it.
  Value *MergedVal = OtherStore->getOperand(0);
  // The debug locations of the original instructions might differ. Merge them.
  DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
                                                     OtherStore->getDebugLoc());
  if (MergedVal != SI.getOperand(0)) {
    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
    PN->addIncoming(SI.getOperand(0), SI.getParent());
    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
    MergedVal = InsertNewInstBefore(PN, DestBB->front());
    PN->setDebugLoc(MergedLoc);
  }

  // Advance to a place where it is safe to insert the new store and insert it.
  BBI = DestBB->getFirstInsertionPt();
  StoreInst *NewSI =
      new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
                    SI.getOrdering(), SI.getSyncScopeID());
  InsertNewInstBefore(NewSI, *BBI);
  NewSI->setDebugLoc(MergedLoc);

  // If the two stores had AA tags, merge them.
  AAMDNodes AATags;
  SI.getAAMetadata(AATags);
  if (AATags) {
    OtherStore->getAAMetadata(AATags, /* Merge = */ true);
    NewSI->setAAMetadata(AATags);
  }

  // Nuke the old stores.
  eraseInstFromFunction(SI);
  eraseInstFromFunction(*OtherStore);
  return true;
}