Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
.\" Copyright (c) 1983, 1991, 1993
.\"	The Regents of the University of California.
.\" Copyright (c) 2010-2011 The FreeBSD Foundation
.\" All rights reserved.
.\"
.\" Portions of this documentation were written at the Centre for Advanced
.\" Internet Architectures, Swinburne University of Technology, Melbourne,
.\" Australia by David Hayes under sponsorship from the FreeBSD Foundation.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
.\"    may be used to endorse or promote products derived from this software
.\"    without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\"     From: @(#)tcp.4	8.1 (Berkeley) 6/5/93
.\" $FreeBSD$
.\"
.Dd July 23, 2020
.Dt TCP 4
.Os
.Sh NAME
.Nm tcp
.Nd Internet Transmission Control Protocol
.Sh SYNOPSIS
.In sys/types.h
.In sys/socket.h
.In netinet/in.h
.In netinet/tcp.h
.Ft int
.Fn socket AF_INET SOCK_STREAM 0
.Sh DESCRIPTION
The
.Tn TCP
protocol provides reliable, flow-controlled, two-way
transmission of data.
It is a byte-stream protocol used to
support the
.Dv SOCK_STREAM
abstraction.
.Tn TCP
uses the standard
Internet address format and, in addition, provides a per-host
collection of
.Dq "port addresses" .
Thus, each address is composed
of an Internet address specifying the host and network,
with a specific
.Tn TCP
port on the host identifying the peer entity.
.Pp
Sockets utilizing the
.Tn TCP
protocol are either
.Dq active
or
.Dq passive .
Active sockets initiate connections to passive
sockets.
By default,
.Tn TCP
sockets are created active; to create a
passive socket, the
.Xr listen 2
system call must be used
after binding the socket with the
.Xr bind 2
system call.
Only passive sockets may use the
.Xr accept 2
call to accept incoming connections.
Only active sockets may use the
.Xr connect 2
call to initiate connections.
.Pp
Passive sockets may
.Dq underspecify
their location to match
incoming connection requests from multiple networks.
This technique, termed
.Dq "wildcard addressing" ,
allows a single
server to provide service to clients on multiple networks.
To create a socket which listens on all networks, the Internet
address
.Dv INADDR_ANY
must be bound.
The
.Tn TCP
port may still be specified
at this time; if the port is not specified, the system will assign one.
Once a connection has been established, the socket's address is
fixed by the peer entity's location.
The address assigned to the
socket is the address associated with the network interface
through which packets are being transmitted and received.
Normally, this address corresponds to the peer entity's network.
.Pp
.Tn TCP
supports a number of socket options which can be set with
.Xr setsockopt 2
and tested with
.Xr getsockopt 2 :
.Bl -tag -width ".Dv TCP_FUNCTION_BLK"
.It Dv TCP_INFO
Information about a socket's underlying TCP session may be retrieved
by passing the read-only option
.Dv TCP_INFO
to
.Xr getsockopt 2 .
It accepts a single argument: a pointer to an instance of
.Vt "struct tcp_info" .
.Pp
This API is subject to change; consult the source to determine
which fields are currently filled out by this option.
.Fx
specific additions include
send window size,
receive window size,
and
bandwidth-controlled window space.
.It Dv TCP_CCALGOOPT
Set or query congestion control algorithm specific parameters.
See
.Xr mod_cc 4
for details.
.It Dv TCP_CONGESTION
Select or query the congestion control algorithm that TCP will use for the
connection.
See
.Xr mod_cc 4
for details.
.It Dv TCP_FUNCTION_BLK
Select or query the set of functions that TCP will use for this connection.
This allows a user to select an alternate TCP stack.
The alternate TCP stack must already be loaded in the kernel.
To list the available TCP stacks, see
.Va functions_available
in the
.Sx MIB Variables
section further down.
To list the default TCP stack, see
.Va functions_default
in the
.Sx MIB Variables
section.
.It Dv TCP_KEEPINIT
This
.Xr setsockopt 2
option accepts a per-socket timeout argument of
.Vt "u_int"
in seconds, for new, non-established
.Tn TCP
connections.
For the global default in milliseconds see
.Va keepinit
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPIDLE
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
for the amount of time, in seconds, that the connection must be idle
before keepalive probes (if enabled) are sent for the connection of this
socket.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default in milliseconds see
.Va keepidle
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPINTVL
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
to set the per-socket interval, in seconds, between keepalive probes sent
to a peer.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default in milliseconds see
.Va keepintvl
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPCNT
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
and allows a per-socket tuning of the number of probes sent, with no response,
before the connection will be dropped.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default see the
.Va keepcnt
in the
.Sx MIB Variables
section further down.
.It Dv TCP_NODELAY
Under most circumstances,
.Tn TCP
sends data when it is presented;
when outstanding data has not yet been acknowledged, it gathers
small amounts of output to be sent in a single packet once
an acknowledgement is received.
For a small number of clients, such as window systems
that send a stream of mouse events which receive no replies,
this packetization may cause significant delays.
The boolean option
.Dv TCP_NODELAY
defeats this algorithm.
.It Dv TCP_MAXSEG
By default, a sender- and
.No receiver- Ns Tn TCP
will negotiate among themselves to determine the maximum segment size
to be used for each connection.
The
.Dv TCP_MAXSEG
option allows the user to determine the result of this negotiation,
and to reduce it if desired.
.It Dv TCP_NOOPT
.Tn TCP
usually sends a number of options in each packet, corresponding to
various
.Tn TCP
extensions which are provided in this implementation.
The boolean option
.Dv TCP_NOOPT
is provided to disable
.Tn TCP
option use on a per-connection basis.
.It Dv TCP_NOPUSH
By convention, the
.No sender- Ns Tn TCP
will set the
.Dq push
bit, and begin transmission immediately (if permitted) at the end of
every user call to
.Xr write 2
or
.Xr writev 2 .
When this option is set to a non-zero value,
.Tn TCP
will delay sending any data at all until either the socket is closed,
or the internal send buffer is filled.
.It Dv TCP_MD5SIG
This option enables the use of MD5 digests (also known as TCP-MD5)
on writes to the specified socket.
Outgoing traffic is digested;
digests on incoming traffic are verified.
When this option is enabled on a socket, all inbound and outgoing
TCP segments must be signed with MD5 digests.
.Pp
One common use for this in a
.Fx
router deployment is to enable
based routers to interwork with Cisco equipment at peering points.
Support for this feature conforms to RFC 2385.
.Pp
In order for this option to function correctly, it is necessary for the
administrator to add a tcp-md5 key entry to the system's security
associations database (SADB) using the
.Xr setkey 8
utility.
This entry can only be specified on a per-host basis at this time.
.Pp
If an SADB entry cannot be found for the destination,
the system does not send any outgoing segments and drops any inbound segments.
.It Dv TCP_STATS
Manage collection of connection level statistics using the
.Xr stats 3
framework.
.Pp
Each dropped segment is taken into account in the TCP protocol statistics.
.It Dv TCP_TXTLS_ENABLE
Enable in-kernel Transport Layer Security (TLS) for data written to this
socket.
The
.Vt struct tls_so_enable
argument defines the encryption and authentication algorithms and keys
used to encrypt the socket data as well as the maximum TLS record
payload size.
.Pp
All data written to this socket will be encapsulated in TLS records
and subsequently encrypted.
By default all data written to this socket is treated as application data.
Individual TLS records with a type other than application data
(for example, handshake messages),
may be transmitted by invoking
.Xr sendmsg 2
with a custom TLS record type set in a
.Dv TLS_SET_RECORD_TYPE
control message.
The payload of this control message is a single byte holding the desired
TLS record type.
.Pp
At present, only a single transmit key may be set on a socket.
As such, users of this option must disable rekeying.
.It Dv TCP_TXTLS_MODE
The integer argument can be used to get or set the current TLS transmit mode
of a socket.
Setting the mode can only used to toggle between software and NIC TLS after
TLS has been initially enabled via the
.Dv TCP_TXTLS_ENABLE
option.
The available modes are:
.Bl -tag -width "Dv TCP_TLS_MODE_IFNET"
.It Dv TCP_TLS_MODE_NONE
In-kernel TLS framing and encryption is not enabled for this socket.
.It Dv TCP_TLS_MODE_SW
TLS records are encrypted by the kernel prior to placing the data in the
socket buffer.
Typically this encryption is performed in software.
.It Dv TCP_TLS_MODE_IFNET
TLS records are encrypted by the network interface card (NIC).
.It Dv TCP_TLS_MODE_TOE
TLS records are encrypted by the NIC using a TCP offload engine (TOE).
.El
.It Dv TCP_RXTLS_ENABLE
Enable in-kernel TLS for data read from this socket.
The
.Vt struct tls_so_enable
argument defines the encryption and authentication algorithms and keys
used to decrypt the socket data.
.Pp
Each received TLS record must be read from the socket using
.Xr recvmsg 2 .
Each received TLS record will contain a
.Dv TLS_GET_RECORD
control message along with the decrypted payload.
The control message contains a
.Vt struct tls_get_record
which includes fields from the TLS record header.
If an invalid or corrupted TLS record is received,
recvmsg 2
will fail with one of the following errors:
.Bl -tag -width Er
.It Bq Er EINVAL
The version fields in a TLS record's header did not match the version required
by the
.Vt struct tls_so_enable
structure used to enable in-kernel TLS.
.It Bq Er EMSGSIZE
A TLS record's length was either too small or too large.
.It Bq Er EMSGSIZE
The connection was closed after sending a truncated TLS record.
.It Bq Er EBADMSG
The TLS record failed to match the included authentication tag.
.El
.Pp
At present, only a single receive key may be set on a socket.
As such, users of this option must disable rekeying.
.It Dv TCP_RXTLS_MODE
The integer argument can be used to get the current TLS receive mode
of a socket.
The available modes are the same as for
.Dv TCP_TXTLS_MODE .
.El
.Pp
The option level for the
.Xr setsockopt 2
call is the protocol number for
.Tn TCP ,
available from
.Xr getprotobyname 3 ,
or
.Dv IPPROTO_TCP .
All options are declared in
.In netinet/tcp.h .
.Pp
Options at the
.Tn IP
transport level may be used with
.Tn TCP ;
see
.Xr ip 4 .
Incoming connection requests that are source-routed are noted,
and the reverse source route is used in responding.
.Pp
The default congestion control algorithm for
.Tn TCP
is
.Xr cc_newreno 4 .
Other congestion control algorithms can be made available using the
.Xr mod_cc 4
framework.
.Ss MIB Variables
The
.Tn TCP
protocol implements a number of variables in the
.Va net.inet.tcp
branch of the
.Xr sysctl 3
MIB.
.Bl -tag -width ".Va TCPCTL_DO_RFC1323"
.It Dv TCPCTL_DO_RFC1323
.Pq Va rfc1323
Implement the window scaling and timestamp options of RFC 1323
(default is true).
.It Dv TCPCTL_MSSDFLT
.Pq Va mssdflt
The default value used for the maximum segment size
.Pq Dq MSS
when no advice to the contrary is received from MSS negotiation.
.It Dv TCPCTL_SENDSPACE
.Pq Va sendspace
Maximum
.Tn TCP
send window.
.It Dv TCPCTL_RECVSPACE
.Pq Va recvspace
Maximum
.Tn TCP
receive window.
.It Va log_in_vain
Log any connection attempts to ports where there is not a socket
accepting connections.
The value of 1 limits the logging to
.Tn SYN
(connection establishment) packets only.
That of 2 results in any
.Tn TCP
packets to closed ports being logged.
Any value unlisted above disables the logging
(default is 0, i.e., the logging is disabled).
.It Va msl
The Maximum Segment Lifetime, in milliseconds, for a packet.
.It Va keepinit
Timeout, in milliseconds, for new, non-established
.Tn TCP
connections.
The default is 75000 msec.
.It Va keepidle
Amount of time, in milliseconds, that the connection must be idle
before keepalive probes (if enabled) are sent.
The default is 7200000 msec (2 hours).
.It Va keepintvl
The interval, in milliseconds, between keepalive probes sent to remote
machines, when no response is received on a
.Va keepidle
probe.
The default is 75000 msec.
.It Va keepcnt
Number of probes sent, with no response, before a connection
is dropped.
The default is 8 packets.
.It Va always_keepalive
Assume that
.Dv SO_KEEPALIVE
is set on all
.Tn TCP
connections, the kernel will
periodically send a packet to the remote host to verify the connection
is still up.
.It Va icmp_may_rst
Certain
.Tn ICMP
unreachable messages may abort connections in
.Tn SYN-SENT
state.
.It Va do_tcpdrain
Flush packets in the
.Tn TCP
reassembly queue if the system is low on mbufs.
.It Va blackhole
If enabled, disable sending of RST when a connection is attempted
to a port where there is not a socket accepting connections.
See
.Xr blackhole 4 .
.It Va delayed_ack
Delay ACK to try and piggyback it onto a data packet.
.It Va delacktime
Maximum amount of time, in milliseconds, before a delayed ACK is sent.
.It Va path_mtu_discovery
Enable Path MTU Discovery.
.It Va tcbhashsize
Size of the
.Tn TCP
control-block hash table
(read-only).
This may be tuned using the kernel option
.Dv TCBHASHSIZE
or by setting
.Va net.inet.tcp.tcbhashsize
in the
.Xr loader 8 .
.It Va pcbcount
Number of active process control blocks
(read-only).
.It Va syncookies
Determines whether or not
.Tn SYN
cookies should be generated for outbound
.Tn SYN-ACK
packets.
.Tn SYN
cookies are a great help during
.Tn SYN
flood attacks, and are enabled by default.
(See
.Xr syncookies 4 . )
.It Va isn_reseed_interval
The interval (in seconds) specifying how often the secret data used in
RFC 1948 initial sequence number calculations should be reseeded.
By default, this variable is set to zero, indicating that
no reseeding will occur.
Reseeding should not be necessary, and will break
.Dv TIME_WAIT
recycling for a few minutes.
.It Va reass.cursegments
The current total number of segments present in all reassembly queues.
.It Va reass.maxsegments
The maximum limit on the total number of segments across all reassembly
queues.
The limit can be adjusted as a tunable.
.It Va reass.maxqueuelen
The maximum number of segments allowed in each reassembly queue.
By default, the system chooses a limit based on each TCP connection's
receive buffer size and maximum segment size (MSS).
The actual limit applied to a session's reassembly queue will be the lower of
the system-calculated automatic limit and the user-specified
.Va reass.maxqueuelen
limit.
.It Va rexmit_initial , rexmit_min , rexmit_slop
Adjust the retransmit timer calculation for
.Tn TCP .
The slop is
typically added to the raw calculation to take into account
occasional variances that the
.Tn SRTT
(smoothed round-trip time)
is unable to accommodate, while the minimum specifies an
absolute minimum.
While a number of
.Tn TCP
RFCs suggest a 1
second minimum, these RFCs tend to focus on streaming behavior,
and fail to deal with the fact that a 1 second minimum has severe
detrimental effects over lossy interactive connections, such
as a 802.11b wireless link, and over very fast but lossy
connections for those cases not covered by the fast retransmit
code.
For this reason, we use 200ms of slop and a near-0
minimum, which gives us an effective minimum of 200ms (similar to
.Tn Linux ) .
The initial value is used before an RTT measurement has been performed.
.It Va initcwnd_segments
Enable the ability to specify initial congestion window in number of segments.
The default value is 10 as suggested by RFC 6928.
Changing the value on fly would not affect connections using congestion window
from the hostcache.
Caution:
This regulates the burst of packets allowed to be sent in the first RTT.
The value should be relative to the link capacity.
Start with small values for lower-capacity links.
Large bursts can cause buffer overruns and packet drops if routers have small
buffers or the link is experiencing congestion.
.It Va newcwd
Enable the New Congestion Window Validation mechanism as described in RFC 7661.
This gently reduces the congestion window during periods, where TCP is
application limited and the network bandwidth is not utilized completely.
That prevents self-inflicted packet losses once the application starts to
transmit data at a higher speed.
.It Va rfc6675_pipe
Calculate the bytes in flight using the algorithm described in RFC 6675, and
is also a prerequisite to enable Proportional Rate Reduction.
.It Va rfc3042
Enable the Limited Transmit algorithm as described in RFC 3042.
It helps avoid timeouts on lossy links and also when the congestion window
is small, as happens on short transfers.
.It Va rfc3390
Enable support for RFC 3390, which allows for a variable-sized
starting congestion window on new connections, depending on the
maximum segment size.
This helps throughput in general, but
particularly affects short transfers and high-bandwidth large
propagation-delay connections.
.It Va sack.enable
Enable support for RFC 2018, TCP Selective Acknowledgment option,
which allows the receiver to inform the sender about all successfully
arrived segments, allowing the sender to retransmit the missing segments
only.
.It Va sack.maxholes
Maximum number of SACK holes per connection.
Defaults to 128.
.It Va sack.globalmaxholes
Maximum number of SACK holes per system, across all connections.
Defaults to 65536.
.It Va maxtcptw
When a TCP connection enters the
.Dv TIME_WAIT
state, its associated socket structure is freed, since it is of
negligible size and use, and a new structure is allocated to contain a
minimal amount of information necessary for sustaining a connection in
this state, called the compressed TCP TIME_WAIT state.
Since this structure is smaller than a socket structure, it can save
a significant amount of system memory.
The
.Va net.inet.tcp.maxtcptw
MIB variable controls the maximum number of these structures allocated.
By default, it is initialized to
.Va kern.ipc.maxsockets
/ 5.
.It Va nolocaltimewait
Suppress creating of compressed TCP TIME_WAIT states for connections in
which both endpoints are local.
.It Va fast_finwait2_recycle
Recycle
.Tn TCP
.Dv FIN_WAIT_2
connections faster when the socket is marked as
.Dv SBS_CANTRCVMORE
(no user process has the socket open, data received on
the socket cannot be read).
The timeout used here is
.Va finwait2_timeout .
.It Va finwait2_timeout
Timeout to use for fast recycling of
.Tn TCP
.Dv FIN_WAIT_2
connections.
Defaults to 60 seconds.
.It Va ecn.enable
Enable support for TCP Explicit Congestion Notification (ECN).
ECN allows a TCP sender to reduce the transmission rate in order to
avoid packet drops.
Settings:
.Bl -tag -compact
.It 0
Disable ECN.
.It 1
Allow incoming connections to request ECN.
Outgoing connections will request ECN.
.It 2
Allow incoming connections to request ECN.
Outgoing connections will not request ECN.
.El
.It Va ecn.maxretries
Number of retries (SYN or SYN/ACK retransmits) before disabling ECN on a
specific connection.
This is needed to help with connection establishment
when a broken firewall is in the network path.
.It Va pmtud_blackhole_detection
Enable automatic path MTU blackhole detection.
In case of retransmits of MSS sized segments,
the OS will lower the MSS to check if it's an MTU problem.
If the current MSS is greater than the configured value to try
.Po Va net.inet.tcp.pmtud_blackhole_mss
and
.Va net.inet.tcp.v6pmtud_blackhole_mss
.Pc ,
it will be set to this value, otherwise,
the MSS will be set to the default values
.Po Va net.inet.tcp.mssdflt
and
.Va net.inet.tcp.v6mssdflt
.Pc .
Settings:
.Bl -tag -compact
.It 0
Disable path MTU blackhole detection.
.It 1
Enable path MTU blackhole detection for IPv4 and IPv6.
.It 2
Enable path MTU blackhole detection only for IPv4.
.It 3
Enable path MTU blackhole detection only for IPv6.
.El
.It Va pmtud_blackhole_mss
MSS to try for IPv4 if PMTU blackhole detection is turned on.
.It Va v6pmtud_blackhole_mss
MSS to try for IPv6 if PMTU blackhole detection is turned on.
.It Va functions_available
List of available TCP function blocks (TCP stacks).
.It Va functions_default
The default TCP function block (TCP stack).
.It Va functions_inherit_listen_socket_stack
Determines whether to inherit listen socket's tcp stack or use the current
system default tcp stack, as defined by
.Va functions_default .
Default is true.
.It Va insecure_rst
Use criteria defined in RFC793 instead of RFC5961 for accepting RST segments.
Default is false.
.It Va insecure_syn
Use criteria defined in RFC793 instead of RFC5961 for accepting SYN segments.
Default is false.
.It Va ts_offset_per_conn
When initializing the TCP timestamps, use a per connection offset instead of a
per host pair offset.
Default is to use per connection offsets as recommended in RFC 7323.
.It Va perconn_stats_enable
Controls the default collection of statistics for all connections using the
.Xr stats 3
framework.
0 disables, 1 enables, 2 enables random sampling across log id connection
groups with all connections in a group receiving the same setting.
.It Va perconn_stats_sample_rates
A CSV list of template_spec=percent key-value pairs which controls the per
template sampling rates when
.Xr stats 3
sampling is enabled.
.El
.Sh ERRORS
A socket operation may fail with one of the following errors returned:
.Bl -tag -width Er
.It Bq Er EISCONN
when trying to establish a connection on a socket which
already has one;
.It Bo Er ENOBUFS Bc or Bo Er ENOMEM Bc
when the system runs out of memory for
an internal data structure;
.It Bq Er ETIMEDOUT
when a connection was dropped
due to excessive retransmissions;
.It Bq Er ECONNRESET
when the remote peer
forces the connection to be closed;
.It Bq Er ECONNREFUSED
when the remote
peer actively refuses connection establishment (usually because
no process is listening to the port);
.It Bq Er EADDRINUSE
when an attempt
is made to create a socket with a port which has already been
allocated;
.It Bq Er EADDRNOTAVAIL
when an attempt is made to create a
socket with a network address for which no network interface
exists;
.It Bq Er EAFNOSUPPORT
when an attempt is made to bind or connect a socket to a multicast
address.
.It Bq Er EINVAL
when trying to change TCP function blocks at an invalid point in the session;
.It Bq Er ENOENT
when trying to use a TCP function block that is not available;
.El
.Sh SEE ALSO
.Xr getsockopt 2 ,
.Xr socket 2 ,
.Xr stats 3 ,
.Xr sysctl 3 ,
.Xr blackhole 4 ,
.Xr inet 4 ,
.Xr intro 4 ,
.Xr ip 4 ,
.Xr mod_cc 4 ,
.Xr siftr 4 ,
.Xr syncache 4 ,
.Xr tcp_bbr 4 ,
.Xr setkey 8 ,
.Xr tcp_functions 9
.Rs
.%A "V. Jacobson"
.%A "R. Braden"
.%A "D. Borman"
.%T "TCP Extensions for High Performance"
.%O "RFC 1323"
.Re
.Rs
.%A "A. Heffernan"
.%T "Protection of BGP Sessions via the TCP MD5 Signature Option"
.%O "RFC 2385"
.Re
.Rs
.%A "K. Ramakrishnan"
.%A "S. Floyd"
.%A "D. Black"
.%T "The Addition of Explicit Congestion Notification (ECN) to IP"
.%O "RFC 3168"
.Re
.Sh HISTORY
The
.Tn TCP
protocol appeared in
.Bx 4.2 .
The RFC 1323 extensions for window scaling and timestamps were added
in
.Bx 4.4 .
The
.Dv TCP_INFO
option was introduced in
.Tn Linux 2.6
and is
.Em subject to change .