/*-
* Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filio.h>
#include <sys/pciio.h>
#include <sys/pctrie.h>
#include <sys/rwlock.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/stdarg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <dev/pci/pci_iov.h>
#include <dev/backlight/backlight.h>
#include <linux/kobject.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/file.h>
#include <linux/sysfs.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/compat.h>
#include <linux/backlight.h>
#include "backlight_if.h"
static device_probe_t linux_pci_probe;
static device_attach_t linux_pci_attach;
static device_detach_t linux_pci_detach;
static device_suspend_t linux_pci_suspend;
static device_resume_t linux_pci_resume;
static device_shutdown_t linux_pci_shutdown;
static pci_iov_init_t linux_pci_iov_init;
static pci_iov_uninit_t linux_pci_iov_uninit;
static pci_iov_add_vf_t linux_pci_iov_add_vf;
static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
static device_method_t pci_methods[] = {
DEVMETHOD(device_probe, linux_pci_probe),
DEVMETHOD(device_attach, linux_pci_attach),
DEVMETHOD(device_detach, linux_pci_detach),
DEVMETHOD(device_suspend, linux_pci_suspend),
DEVMETHOD(device_resume, linux_pci_resume),
DEVMETHOD(device_shutdown, linux_pci_shutdown),
DEVMETHOD(pci_iov_init, linux_pci_iov_init),
DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
/* backlight interface */
DEVMETHOD(backlight_update_status, linux_backlight_update_status),
DEVMETHOD(backlight_get_status, linux_backlight_get_status),
DEVMETHOD(backlight_get_info, linux_backlight_get_info),
DEVMETHOD_END
};
struct linux_dma_priv {
uint64_t dma_mask;
struct mtx lock;
bus_dma_tag_t dmat;
struct pctrie ptree;
};
#define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
#define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
static int
linux_pdev_dma_init(struct pci_dev *pdev)
{
struct linux_dma_priv *priv;
int error;
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
pdev->dev.dma_priv = priv;
mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
pctrie_init(&priv->ptree);
/* create a default DMA tag */
error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
if (error) {
mtx_destroy(&priv->lock);
free(priv, M_DEVBUF);
pdev->dev.dma_priv = NULL;
}
return (error);
}
static int
linux_pdev_dma_uninit(struct pci_dev *pdev)
{
struct linux_dma_priv *priv;
priv = pdev->dev.dma_priv;
if (priv->dmat)
bus_dma_tag_destroy(priv->dmat);
mtx_destroy(&priv->lock);
free(priv, M_DEVBUF);
pdev->dev.dma_priv = NULL;
return (0);
}
int
linux_dma_tag_init(struct device *dev, u64 dma_mask)
{
struct linux_dma_priv *priv;
int error;
priv = dev->dma_priv;
if (priv->dmat) {
if (priv->dma_mask == dma_mask)
return (0);
bus_dma_tag_destroy(priv->dmat);
}
priv->dma_mask = dma_mask;
error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1, 0, /* alignment, boundary */
dma_mask, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
BUS_SPACE_MAXSIZE, /* maxsize */
1, /* nsegments */
BUS_SPACE_MAXSIZE, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&priv->dmat);
return (-error);
}
static struct pci_driver *
linux_pci_find(device_t dev, const struct pci_device_id **idp)
{
const struct pci_device_id *id;
struct pci_driver *pdrv;
uint16_t vendor;
uint16_t device;
uint16_t subvendor;
uint16_t subdevice;
vendor = pci_get_vendor(dev);
device = pci_get_device(dev);
subvendor = pci_get_subvendor(dev);
subdevice = pci_get_subdevice(dev);
spin_lock(&pci_lock);
list_for_each_entry(pdrv, &pci_drivers, links) {
for (id = pdrv->id_table; id->vendor != 0; id++) {
if (vendor == id->vendor &&
(PCI_ANY_ID == id->device || device == id->device) &&
(PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
(PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
*idp = id;
spin_unlock(&pci_lock);
return (pdrv);
}
}
}
spin_unlock(&pci_lock);
return (NULL);
}
static int
linux_pci_probe(device_t dev)
{
const struct pci_device_id *id;
struct pci_driver *pdrv;
if ((pdrv = linux_pci_find(dev, &id)) == NULL)
return (ENXIO);
if (device_get_driver(dev) != &pdrv->bsddriver)
return (ENXIO);
device_set_desc(dev, pdrv->name);
return (0);
}
static int
linux_pci_attach(device_t dev)
{
const struct pci_device_id *id;
struct pci_driver *pdrv;
struct pci_dev *pdev;
pdrv = linux_pci_find(dev, &id);
pdev = device_get_softc(dev);
MPASS(pdrv != NULL);
MPASS(pdev != NULL);
return (linux_pci_attach_device(dev, pdrv, id, pdev));
}
int
linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
const struct pci_device_id *id, struct pci_dev *pdev)
{
struct resource_list_entry *rle;
struct pci_bus *pbus;
struct pci_devinfo *dinfo;
device_t parent;
int error;
linux_set_current(curthread);
if (pdrv != NULL && pdrv->isdrm) {
parent = device_get_parent(dev);
dinfo = device_get_ivars(parent);
device_set_ivars(dev, dinfo);
} else {
dinfo = device_get_ivars(dev);
}
pdev->dev.parent = &linux_root_device;
pdev->dev.bsddev = dev;
INIT_LIST_HEAD(&pdev->dev.irqents);
pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
pdev->device = dinfo->cfg.device;
pdev->vendor = dinfo->cfg.vendor;
pdev->subsystem_vendor = dinfo->cfg.subvendor;
pdev->subsystem_device = dinfo->cfg.subdevice;
pdev->class = pci_get_class(dev);
pdev->revision = pci_get_revid(dev);
pdev->pdrv = pdrv;
kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
kobject_name(&pdev->dev.kobj));
rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0);
if (rle != NULL)
pdev->dev.irq = rle->start;
else
pdev->dev.irq = LINUX_IRQ_INVALID;
pdev->irq = pdev->dev.irq;
error = linux_pdev_dma_init(pdev);
if (error)
goto out_dma_init;
TAILQ_INIT(&pdev->mmio);
pbus = malloc(sizeof(*pbus), M_DEVBUF, M_WAITOK | M_ZERO);
pbus->self = pdev;
pbus->number = pci_get_bus(dev);
pbus->domain = pci_get_domain(dev);
pdev->bus = pbus;
spin_lock(&pci_lock);
list_add(&pdev->links, &pci_devices);
spin_unlock(&pci_lock);
if (pdrv != NULL) {
error = pdrv->probe(pdev, id);
if (error)
goto out_probe;
}
return (0);
out_probe:
free(pdev->bus, M_DEVBUF);
linux_pdev_dma_uninit(pdev);
out_dma_init:
spin_lock(&pci_lock);
list_del(&pdev->links);
spin_unlock(&pci_lock);
put_device(&pdev->dev);
return (-error);
}
static int
linux_pci_detach(device_t dev)
{
struct pci_dev *pdev;
pdev = device_get_softc(dev);
MPASS(pdev != NULL);
device_set_desc(dev, NULL);
return (linux_pci_detach_device(pdev));
}
int
linux_pci_detach_device(struct pci_dev *pdev)
{
linux_set_current(curthread);
if (pdev->pdrv != NULL)
pdev->pdrv->remove(pdev);
free(pdev->bus, M_DEVBUF);
linux_pdev_dma_uninit(pdev);
spin_lock(&pci_lock);
list_del(&pdev->links);
spin_unlock(&pci_lock);
put_device(&pdev->dev);
return (0);
}
static int
linux_pci_suspend(device_t dev)
{
const struct dev_pm_ops *pmops;
struct pm_message pm = { };
struct pci_dev *pdev;
int error;
error = 0;
linux_set_current(curthread);
pdev = device_get_softc(dev);
pmops = pdev->pdrv->driver.pm;
if (pdev->pdrv->suspend != NULL)
error = -pdev->pdrv->suspend(pdev, pm);
else if (pmops != NULL && pmops->suspend != NULL) {
error = -pmops->suspend(&pdev->dev);
if (error == 0 && pmops->suspend_late != NULL)
error = -pmops->suspend_late(&pdev->dev);
}
return (error);
}
static int
linux_pci_resume(device_t dev)
{
const struct dev_pm_ops *pmops;
struct pci_dev *pdev;
int error;
error = 0;
linux_set_current(curthread);
pdev = device_get_softc(dev);
pmops = pdev->pdrv->driver.pm;
if (pdev->pdrv->resume != NULL)
error = -pdev->pdrv->resume(pdev);
else if (pmops != NULL && pmops->resume != NULL) {
if (pmops->resume_early != NULL)
error = -pmops->resume_early(&pdev->dev);
if (error == 0 && pmops->resume != NULL)
error = -pmops->resume(&pdev->dev);
}
return (error);
}
static int
linux_pci_shutdown(device_t dev)
{
struct pci_dev *pdev;
linux_set_current(curthread);
pdev = device_get_softc(dev);
if (pdev->pdrv->shutdown != NULL)
pdev->pdrv->shutdown(pdev);
return (0);
}
static int
linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
{
struct pci_dev *pdev;
int error;
linux_set_current(curthread);
pdev = device_get_softc(dev);
if (pdev->pdrv->bsd_iov_init != NULL)
error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
else
error = EINVAL;
return (error);
}
static void
linux_pci_iov_uninit(device_t dev)
{
struct pci_dev *pdev;
linux_set_current(curthread);
pdev = device_get_softc(dev);
if (pdev->pdrv->bsd_iov_uninit != NULL)
pdev->pdrv->bsd_iov_uninit(dev);
}
static int
linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
{
struct pci_dev *pdev;
int error;
linux_set_current(curthread);
pdev = device_get_softc(dev);
if (pdev->pdrv->bsd_iov_add_vf != NULL)
error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
else
error = EINVAL;
return (error);
}
static int
_linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
{
int error;
linux_set_current(curthread);
spin_lock(&pci_lock);
list_add(&pdrv->links, &pci_drivers);
spin_unlock(&pci_lock);
pdrv->bsddriver.name = pdrv->name;
pdrv->bsddriver.methods = pci_methods;
pdrv->bsddriver.size = sizeof(struct pci_dev);
mtx_lock(&Giant);
error = devclass_add_driver(dc, &pdrv->bsddriver,
BUS_PASS_DEFAULT, &pdrv->bsdclass);
mtx_unlock(&Giant);
return (-error);
}
int
linux_pci_register_driver(struct pci_driver *pdrv)
{
devclass_t dc;
dc = devclass_find("pci");
if (dc == NULL)
return (-ENXIO);
pdrv->isdrm = false;
return (_linux_pci_register_driver(pdrv, dc));
}
unsigned long
pci_resource_start(struct pci_dev *pdev, int bar)
{
struct resource_list_entry *rle;
rman_res_t newstart;
device_t dev;
if ((rle = linux_pci_get_bar(pdev, bar)) == NULL)
return (0);
dev = pci_find_dbsf(pdev->bus->domain, pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
MPASS(dev != NULL);
if (BUS_TRANSLATE_RESOURCE(dev, rle->type, rle->start, &newstart)) {
device_printf(pdev->dev.bsddev, "translate of %#jx failed\n",
(uintmax_t)rle->start);
return (0);
}
return (newstart);
}
unsigned long
pci_resource_len(struct pci_dev *pdev, int bar)
{
struct resource_list_entry *rle;
if ((rle = linux_pci_get_bar(pdev, bar)) == NULL)
return (0);
return (rle->count);
}
int
linux_pci_register_drm_driver(struct pci_driver *pdrv)
{
devclass_t dc;
dc = devclass_create("vgapci");
if (dc == NULL)
return (-ENXIO);
pdrv->isdrm = true;
pdrv->name = "drmn";
return (_linux_pci_register_driver(pdrv, dc));
}
void
linux_pci_unregister_driver(struct pci_driver *pdrv)
{
devclass_t bus;
bus = devclass_find("pci");
spin_lock(&pci_lock);
list_del(&pdrv->links);
spin_unlock(&pci_lock);
mtx_lock(&Giant);
if (bus != NULL)
devclass_delete_driver(bus, &pdrv->bsddriver);
mtx_unlock(&Giant);
}
void
linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
{
devclass_t bus;
bus = devclass_find("vgapci");
spin_lock(&pci_lock);
list_del(&pdrv->links);
spin_unlock(&pci_lock);
mtx_lock(&Giant);
if (bus != NULL)
devclass_delete_driver(bus, &pdrv->bsddriver);
mtx_unlock(&Giant);
}
CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
struct linux_dma_obj {
void *vaddr;
uint64_t dma_addr;
bus_dmamap_t dmamap;
};
static uma_zone_t linux_dma_trie_zone;
static uma_zone_t linux_dma_obj_zone;
static void
linux_dma_init(void *arg)
{
linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
UMA_ALIGN_PTR, 0);
linux_dma_obj_zone = uma_zcreate("linux_dma_object",
sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
}
SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
static void
linux_dma_uninit(void *arg)
{
uma_zdestroy(linux_dma_obj_zone);
uma_zdestroy(linux_dma_trie_zone);
}
SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
static void *
linux_dma_trie_alloc(struct pctrie *ptree)
{
return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
}
static void
linux_dma_trie_free(struct pctrie *ptree, void *node)
{
uma_zfree(linux_dma_trie_zone, node);
}
PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
linux_dma_trie_free);
void *
linux_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
struct linux_dma_priv *priv;
vm_paddr_t high;
size_t align;
void *mem;
if (dev == NULL || dev->dma_priv == NULL) {
*dma_handle = 0;
return (NULL);
}
priv = dev->dma_priv;
if (priv->dma_mask)
high = priv->dma_mask;
else if (flag & GFP_DMA32)
high = BUS_SPACE_MAXADDR_32BIT;
else
high = BUS_SPACE_MAXADDR;
align = PAGE_SIZE << get_order(size);
mem = (void *)kmem_alloc_contig(size, flag, 0, high, align, 0,
VM_MEMATTR_DEFAULT);
if (mem != NULL) {
*dma_handle = linux_dma_map_phys(dev, vtophys(mem), size);
if (*dma_handle == 0) {
kmem_free((vm_offset_t)mem, size);
mem = NULL;
}
} else {
*dma_handle = 0;
}
return (mem);
}
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
dma_addr_t
linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int error, nseg;
bus_dma_segment_t seg;
priv = dev->dma_priv;
/*
* If the resultant mapping will be entirely 1:1 with the
* physical address, short-circuit the remainder of the
* bus_dma API. This avoids tracking collisions in the pctrie
* with the additional benefit of reducing overhead.
*/
if (bus_dma_id_mapped(priv->dmat, phys, len))
return (phys);
obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
if (obj == NULL) {
return (0);
}
DMA_PRIV_LOCK(priv);
if (bus_dmamap_create(priv->dmat, 0, &obj->dmamap) != 0) {
DMA_PRIV_UNLOCK(priv);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
nseg = -1;
if (_bus_dmamap_load_phys(priv->dmat, obj->dmamap, phys, len,
BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
bus_dmamap_destroy(priv->dmat, obj->dmamap);
DMA_PRIV_UNLOCK(priv);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
obj->dma_addr = seg.ds_addr;
error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
if (error != 0) {
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
DMA_PRIV_UNLOCK(priv);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
DMA_PRIV_UNLOCK(priv);
return (obj->dma_addr);
}
#else
dma_addr_t
linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
{
return (phys);
}
#endif
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
void
linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
priv = dev->dma_priv;
if (pctrie_is_empty(&priv->ptree))
return;
DMA_PRIV_LOCK(priv);
obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
if (obj == NULL) {
DMA_PRIV_UNLOCK(priv);
return;
}
LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
DMA_PRIV_UNLOCK(priv);
uma_zfree(linux_dma_obj_zone, obj);
}
#else
void
linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
{
}
#endif
int
linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct linux_dma_priv *priv;
struct scatterlist *sg;
int i, nseg;
bus_dma_segment_t seg;
priv = dev->dma_priv;
DMA_PRIV_LOCK(priv);
/* create common DMA map in the first S/G entry */
if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
DMA_PRIV_UNLOCK(priv);
return (0);
}
/* load all S/G list entries */
for_each_sg(sgl, sg, nents, i) {
nseg = -1;
if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
&seg, &nseg) != 0) {
bus_dmamap_unload(priv->dmat, sgl->dma_map);
bus_dmamap_destroy(priv->dmat, sgl->dma_map);
DMA_PRIV_UNLOCK(priv);
return (0);
}
KASSERT(nseg == 0,
("More than one segment (nseg=%d)", nseg + 1));
sg_dma_address(sg) = seg.ds_addr;
}
DMA_PRIV_UNLOCK(priv);
return (nents);
}
void
linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct linux_dma_priv *priv;
priv = dev->dma_priv;
DMA_PRIV_LOCK(priv);
bus_dmamap_unload(priv->dmat, sgl->dma_map);
bus_dmamap_destroy(priv->dmat, sgl->dma_map);
DMA_PRIV_UNLOCK(priv);
}
struct dma_pool {
struct device *pool_device;
uma_zone_t pool_zone;
struct mtx pool_lock;
bus_dma_tag_t pool_dmat;
size_t pool_entry_size;
struct pctrie pool_ptree;
};
#define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
#define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
static inline int
dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
{
struct linux_dma_obj *obj = mem;
struct dma_pool *pool = arg;
int error, nseg;
bus_dma_segment_t seg;
nseg = -1;
DMA_POOL_LOCK(pool);
error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
&seg, &nseg);
DMA_POOL_UNLOCK(pool);
if (error != 0) {
return (error);
}
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
obj->dma_addr = seg.ds_addr;
return (0);
}
static void
dma_pool_obj_dtor(void *mem, int size, void *arg)
{
struct linux_dma_obj *obj = mem;
struct dma_pool *pool = arg;
DMA_POOL_LOCK(pool);
bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
DMA_POOL_UNLOCK(pool);
}
static int
dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
int flags)
{
struct dma_pool *pool = arg;
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int error, i;
priv = pool->pool_device->dma_priv;
for (i = 0; i < count; i++) {
obj = uma_zalloc(linux_dma_obj_zone, flags);
if (obj == NULL)
break;
error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
BUS_DMA_NOWAIT, &obj->dmamap);
if (error!= 0) {
uma_zfree(linux_dma_obj_zone, obj);
break;
}
store[i] = obj;
}
return (i);
}
static void
dma_pool_obj_release(void *arg, void **store, int count)
{
struct dma_pool *pool = arg;
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int i;
priv = pool->pool_device->dma_priv;
for (i = 0; i < count; i++) {
obj = store[i];
bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
uma_zfree(linux_dma_obj_zone, obj);
}
}
struct dma_pool *
linux_dma_pool_create(char *name, struct device *dev, size_t size,
size_t align, size_t boundary)
{
struct linux_dma_priv *priv;
struct dma_pool *pool;
priv = dev->dma_priv;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
pool->pool_device = dev;
pool->pool_entry_size = size;
if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
align, boundary, /* alignment, boundary */
priv->dma_mask, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&pool->pool_dmat)) {
kfree(pool);
return (NULL);
}
pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
dma_pool_obj_release, pool, 0);
mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
pctrie_init(&pool->pool_ptree);
return (pool);
}
void
linux_dma_pool_destroy(struct dma_pool *pool)
{
uma_zdestroy(pool->pool_zone);
bus_dma_tag_destroy(pool->pool_dmat);
mtx_destroy(&pool->pool_lock);
kfree(pool);
}
void *
linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
dma_addr_t *handle)
{
struct linux_dma_obj *obj;
obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags);
if (obj == NULL)
return (NULL);
DMA_POOL_LOCK(pool);
if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
DMA_POOL_UNLOCK(pool);
uma_zfree_arg(pool->pool_zone, obj, pool);
return (NULL);
}
DMA_POOL_UNLOCK(pool);
*handle = obj->dma_addr;
return (obj->vaddr);
}
void
linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
{
struct linux_dma_obj *obj;
DMA_POOL_LOCK(pool);
obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
if (obj == NULL) {
DMA_POOL_UNLOCK(pool);
return;
}
LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
DMA_POOL_UNLOCK(pool);
uma_zfree_arg(pool->pool_zone, obj, pool);
}
static int
linux_backlight_get_status(device_t dev, struct backlight_props *props)
{
struct pci_dev *pdev;
linux_set_current(curthread);
pdev = device_get_softc(dev);
props->brightness = pdev->dev.bd->props.brightness;
props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
props->nlevels = 0;
return (0);
}
static int
linux_backlight_get_info(device_t dev, struct backlight_info *info)
{
struct pci_dev *pdev;
linux_set_current(curthread);
pdev = device_get_softc(dev);
info->type = BACKLIGHT_TYPE_PANEL;
strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
return (0);
}
static int
linux_backlight_update_status(device_t dev, struct backlight_props *props)
{
struct pci_dev *pdev;
linux_set_current(curthread);
pdev = device_get_softc(dev);
pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
props->brightness / 100;
return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
}
struct backlight_device *
linux_backlight_device_register(const char *name, struct device *dev,
void *data, const struct backlight_ops *ops, struct backlight_properties *props)
{
dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
dev->bd->ops = ops;
dev->bd->props.type = props->type;
dev->bd->props.max_brightness = props->max_brightness;
dev->bd->props.brightness = props->brightness;
dev->bd->props.power = props->power;
dev->bd->data = data;
dev->bd->dev = dev;
dev->bd->name = strdup(name, M_DEVBUF);
dev->backlight_dev = backlight_register(name, dev->bsddev);
return (dev->bd);
}
void
linux_backlight_device_unregister(struct backlight_device *bd)
{
backlight_destroy(bd->dev->backlight_dev);
free(bd->name, M_DEVBUF);
free(bd, M_DEVBUF);
}