Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
/*-
 * SPDX-License-Identifier: BSD-4-Clause
 *
 * Copyright (c) 2005
 *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/unistd.h>
#include <sys/types.h>

#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/mbuf.h>
#include <sys/bus.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>

#include <sys/queue.h>

#ifdef __i386__
#include <machine/segments.h>
#endif

#ifdef __amd64__
#include <machine/fpu.h>
#endif

#include <dev/usb/usb.h>

#include <compat/ndis/pe_var.h>
#include <compat/ndis/cfg_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/ndis_var.h>
#include <compat/ndis/hal_var.h>
#include <compat/ndis/usbd_var.h>

#ifdef __amd64__
struct fpu_cc_ent {
	struct fpu_kern_ctx	*ctx;
	LIST_ENTRY(fpu_cc_ent)	entries;
};
static LIST_HEAD(fpu_ctx_free, fpu_cc_ent) fpu_free_head =
    LIST_HEAD_INITIALIZER(fpu_free_head);
static LIST_HEAD(fpu_ctx_busy, fpu_cc_ent) fpu_busy_head =
    LIST_HEAD_INITIALIZER(fpu_busy_head);
static struct mtx fpu_free_mtx;
static struct mtx fpu_busy_mtx;
#endif

static struct mtx drvdb_mtx;
static STAILQ_HEAD(drvdb, drvdb_ent) drvdb_head;

static driver_object	fake_pci_driver; /* serves both PCI and cardbus */
static driver_object	fake_pccard_driver;

#ifdef __i386__
static void x86_oldldt(void *);
static void x86_newldt(void *);

struct tid {
	void			*tid_except_list;	/* 0x00 */
	uint32_t		tid_oldfs;		/* 0x04 */
	uint32_t		tid_selector;		/* 0x08 */
	struct tid		*tid_self;		/* 0x0C */
	int			tid_cpu;		/* 0x10 */
};

static struct tid	*my_tids;
#endif /* __i386__ */

#define DUMMY_REGISTRY_PATH "\\\\some\\bogus\\path"

int
windrv_libinit(void)
{
	STAILQ_INIT(&drvdb_head);
	mtx_init(&drvdb_mtx, "Windows driver DB lock",
	    "Windows internal lock", MTX_DEF);

#ifdef __amd64__
	LIST_INIT(&fpu_free_head);
	LIST_INIT(&fpu_busy_head);
	mtx_init(&fpu_free_mtx, "free fpu context list lock", NULL, MTX_DEF);
	mtx_init(&fpu_busy_mtx, "busy fpu context list lock", NULL, MTX_DEF);
#endif

	/*
	 * PCI and pccard devices don't need to use IRPs to
	 * interact with their bus drivers (usually), so our
	 * emulated PCI and pccard drivers are just stubs.
	 * USB devices, on the other hand, do all their I/O
	 * by exchanging IRPs with the USB bus driver, so
	 * for that we need to provide emulator dispatcher
	 * routines, which are in a separate module.
	 */

	windrv_bus_attach(&fake_pci_driver, "PCI Bus");
	windrv_bus_attach(&fake_pccard_driver, "PCCARD Bus");

#ifdef __i386__

	/*
	 * In order to properly support SMP machines, we have
	 * to modify the GDT on each CPU, since we never know
	 * on which one we'll end up running.
	 */

	my_tids = ExAllocatePoolWithTag(NonPagedPool,
	    sizeof(struct tid) * mp_ncpus, 0);
	if (my_tids == NULL)
		panic("failed to allocate thread info blocks");
	smp_rendezvous(NULL, x86_newldt, NULL, NULL);
#endif
	return (0);
}

int
windrv_libfini(void)
{
	struct drvdb_ent	*d;
#ifdef __amd64__
	struct fpu_cc_ent	*ent;
#endif

	mtx_lock(&drvdb_mtx); 
	while(STAILQ_FIRST(&drvdb_head) != NULL) {
		d = STAILQ_FIRST(&drvdb_head);
		STAILQ_REMOVE_HEAD(&drvdb_head, link);
		free(d, M_DEVBUF);
	}
	mtx_unlock(&drvdb_mtx);

	RtlFreeUnicodeString(&fake_pci_driver.dro_drivername);
	RtlFreeUnicodeString(&fake_pccard_driver.dro_drivername);

	mtx_destroy(&drvdb_mtx);

#ifdef __i386__
	smp_rendezvous(NULL, x86_oldldt, NULL, NULL);
	ExFreePool(my_tids);
#endif
#ifdef __amd64__
	while ((ent = LIST_FIRST(&fpu_free_head)) != NULL) {
		LIST_REMOVE(ent, entries);
		fpu_kern_free_ctx(ent->ctx);
		free(ent, M_DEVBUF);
	}
	mtx_destroy(&fpu_free_mtx);

	ent = LIST_FIRST(&fpu_busy_head);
	KASSERT(ent == NULL, ("busy fpu context list is not empty"));
	mtx_destroy(&fpu_busy_mtx);
#endif
	return (0);
}

/*
 * Given the address of a driver image, find its corresponding
 * driver_object.
 */

driver_object *
windrv_lookup(img, name)
	vm_offset_t		img;
	char			*name;
{
	struct drvdb_ent	*d;
	unicode_string		us;
	ansi_string		as;

	bzero((char *)&us, sizeof(us));

	/* Damn unicode. */

	if (name != NULL) {
		RtlInitAnsiString(&as, name);
		if (RtlAnsiStringToUnicodeString(&us, &as, TRUE))
			return (NULL);
	}

	mtx_lock(&drvdb_mtx); 
	STAILQ_FOREACH(d, &drvdb_head, link) {
		if (d->windrv_object->dro_driverstart == (void *)img ||
		    (bcmp((char *)d->windrv_object->dro_drivername.us_buf,
		    (char *)us.us_buf, us.us_len) == 0 && us.us_len)) {
			mtx_unlock(&drvdb_mtx);
			if (name != NULL)
				ExFreePool(us.us_buf);
			return (d->windrv_object);
		}
	}
	mtx_unlock(&drvdb_mtx);

	if (name != NULL)
		RtlFreeUnicodeString(&us);

	return (NULL);
}

struct drvdb_ent *
windrv_match(matchfunc, ctx)
	matchfuncptr		matchfunc;
	void			*ctx;
{
	struct drvdb_ent	*d;
	int			match;

	mtx_lock(&drvdb_mtx); 
	STAILQ_FOREACH(d, &drvdb_head, link) {
		if (d->windrv_devlist == NULL)
			continue;
		match = matchfunc(d->windrv_bustype, d->windrv_devlist, ctx);
		if (match == TRUE) {
			mtx_unlock(&drvdb_mtx);
			return (d);
		}
	}
	mtx_unlock(&drvdb_mtx);

	return (NULL);
}

/*
 * Remove a driver_object from our datatabase and destroy it. Throw
 * away any custom driver extension info that may have been added.
 */

int
windrv_unload(mod, img, len)
	module_t		mod;
	vm_offset_t		img;
	int			len;
{
	struct drvdb_ent	*db, *r = NULL;
	driver_object		*drv;
	device_object		*d, *pdo;
	device_t		dev;
	list_entry		*e;

	drv = windrv_lookup(img, NULL);

	/*
	 * When we unload a driver image, we need to force a
	 * detach of any devices that might be using it. We
	 * need the PDOs of all attached devices for this.
	 * Getting at them is a little hard. We basically
	 * have to walk the device lists of all our bus
	 * drivers.
	 */

	mtx_lock(&drvdb_mtx); 
	STAILQ_FOREACH(db, &drvdb_head, link) {
		/*
		 * Fake bus drivers have no devlist info.
		 * If this driver has devlist info, it's
		 * a loaded Windows driver and has no PDOs,
		 * so skip it.
		 */
		if (db->windrv_devlist != NULL)
			continue;
		pdo = db->windrv_object->dro_devobj;
		while (pdo != NULL) {
			d = pdo->do_attacheddev;
			if (d->do_drvobj != drv) {
				pdo = pdo->do_nextdev;
				continue;
			}
			dev = pdo->do_devext;
			pdo = pdo->do_nextdev;
			mtx_unlock(&drvdb_mtx); 
			device_detach(dev);
			mtx_lock(&drvdb_mtx);
		}
	}

	STAILQ_FOREACH(db, &drvdb_head, link) {
		if (db->windrv_object->dro_driverstart == (void *)img) {
			r = db;
			STAILQ_REMOVE(&drvdb_head, db, drvdb_ent, link);
			break;
		}
	}
	mtx_unlock(&drvdb_mtx);

	if (r == NULL)
		return (ENOENT);

	if (drv == NULL)
		return (ENOENT);

	/*
	 * Destroy any custom extensions that may have been added.
	 */
	drv = r->windrv_object;
	while (!IsListEmpty(&drv->dro_driverext->dre_usrext)) {
		e = RemoveHeadList(&drv->dro_driverext->dre_usrext);
		ExFreePool(e);
	}

	/* Free the driver extension */
	free(drv->dro_driverext, M_DEVBUF);

	/* Free the driver name */
	RtlFreeUnicodeString(&drv->dro_drivername);

	/* Free driver object */
	free(drv, M_DEVBUF);

	/* Free our DB handle */
	free(r, M_DEVBUF);

	return (0);
}

#define WINDRV_LOADED		htonl(0x42534F44)

#ifdef __amd64__
static void
patch_user_shared_data_address(vm_offset_t img, size_t len)
{
	unsigned long i, n, max_addr, *addr;

	n = len - sizeof(unsigned long);
	max_addr = KI_USER_SHARED_DATA + sizeof(kuser_shared_data);
	for (i = 0; i < n; i++) {
		addr = (unsigned long *)(img + i);
		if (*addr >= KI_USER_SHARED_DATA && *addr < max_addr) {
			*addr -= KI_USER_SHARED_DATA;
			*addr += (unsigned long)&kuser_shared_data;
		}
	}
}
#endif

/*
 * Loader routine for actual Windows driver modules, ultimately
 * calls the driver's DriverEntry() routine.
 */

int
windrv_load(mod, img, len, bustype, devlist, regvals)
	module_t		mod;
	vm_offset_t		img;
	int			len;
	interface_type		bustype;
	void			*devlist;
	ndis_cfg		*regvals;
{
	image_import_descriptor	imp_desc;
	image_optional_header	opt_hdr;
	driver_entry		entry;
	struct drvdb_ent	*new;
	struct driver_object	*drv;
	int			status;
	uint32_t		*ptr;
	ansi_string		as;

	/*
	 * First step: try to relocate and dynalink the executable
	 * driver image.
	 */

	ptr = (uint32_t *)(img + 8);
	if (*ptr == WINDRV_LOADED)
		goto skipreloc;

	/* Perform text relocation */
	if (pe_relocate(img))
		return (ENOEXEC);

	/* Dynamically link the NDIS.SYS routines -- required. */
	if (pe_patch_imports(img, "NDIS", ndis_functbl))
		return (ENOEXEC);

	/* Dynamically link the HAL.dll routines -- optional. */
	if (pe_get_import_descriptor(img, &imp_desc, "HAL") == 0) {
		if (pe_patch_imports(img, "HAL", hal_functbl))
			return (ENOEXEC);
	}

	/* Dynamically link ntoskrnl.exe -- optional. */
	if (pe_get_import_descriptor(img, &imp_desc, "ntoskrnl") == 0) {
		if (pe_patch_imports(img, "ntoskrnl", ntoskrnl_functbl))
			return (ENOEXEC);
	}

#ifdef __amd64__
	patch_user_shared_data_address(img, len);
#endif

	/* Dynamically link USBD.SYS -- optional */
	if (pe_get_import_descriptor(img, &imp_desc, "USBD") == 0) {
		if (pe_patch_imports(img, "USBD", usbd_functbl))
			return (ENOEXEC);
	}

	*ptr = WINDRV_LOADED;

skipreloc:

	/* Next step: find the driver entry point. */

	pe_get_optional_header(img, &opt_hdr);
	entry = (driver_entry)pe_translate_addr(img, opt_hdr.ioh_entryaddr);

	/* Next step: allocate and store a driver object. */

	new = malloc(sizeof(struct drvdb_ent), M_DEVBUF, M_NOWAIT|M_ZERO);
	if (new == NULL)
		return (ENOMEM);

	drv = malloc(sizeof(driver_object), M_DEVBUF, M_NOWAIT|M_ZERO);
	if (drv == NULL) {
		free (new, M_DEVBUF);
		return (ENOMEM);
	}

	/* Allocate a driver extension structure too. */

	drv->dro_driverext = malloc(sizeof(driver_extension),
	    M_DEVBUF, M_NOWAIT|M_ZERO);

	if (drv->dro_driverext == NULL) {
		free(new, M_DEVBUF);
		free(drv, M_DEVBUF);
		return (ENOMEM);
	}

	InitializeListHead((&drv->dro_driverext->dre_usrext));

	drv->dro_driverstart = (void *)img;
	drv->dro_driversize = len;

	RtlInitAnsiString(&as, DUMMY_REGISTRY_PATH);
	if (RtlAnsiStringToUnicodeString(&drv->dro_drivername, &as, TRUE)) {
		free(new, M_DEVBUF);
		free(drv, M_DEVBUF);
		return (ENOMEM);
	}

	new->windrv_object = drv;
	new->windrv_regvals = regvals;
	new->windrv_devlist = devlist;
	new->windrv_bustype = bustype;

	/* Now call the DriverEntry() function. */

	status = MSCALL2(entry, drv, &drv->dro_drivername);

	if (status != STATUS_SUCCESS) {
		RtlFreeUnicodeString(&drv->dro_drivername);
		free(drv, M_DEVBUF);
		free(new, M_DEVBUF);
		return (ENODEV);
	}

	mtx_lock(&drvdb_mtx); 
	STAILQ_INSERT_HEAD(&drvdb_head, new, link);
	mtx_unlock(&drvdb_mtx); 

	return (0);
}

/*
 * Make a new Physical Device Object for a device that was
 * detected/plugged in. For us, the PDO is just a way to
 * get at the device_t.
 */

int
windrv_create_pdo(drv, bsddev)
	driver_object		*drv;
	device_t		bsddev;
{
	device_object		*dev;

	/*
	 * This is a new physical device object, which technically
	 * is the "top of the stack." Consequently, we don't do
	 * an IoAttachDeviceToDeviceStack() here.
	 */

	mtx_lock(&drvdb_mtx);
	IoCreateDevice(drv, 0, NULL, FILE_DEVICE_UNKNOWN, 0, FALSE, &dev);
	mtx_unlock(&drvdb_mtx);

	/* Stash pointer to our BSD device handle. */

	dev->do_devext = bsddev;

	return (STATUS_SUCCESS);
}

void
windrv_destroy_pdo(drv, bsddev)
	driver_object		*drv;
	device_t		bsddev;
{
	device_object		*pdo;

	pdo = windrv_find_pdo(drv, bsddev);

	/* Remove reference to device_t */

	pdo->do_devext = NULL;

	mtx_lock(&drvdb_mtx);
	IoDeleteDevice(pdo);
	mtx_unlock(&drvdb_mtx);
}

/*
 * Given a device_t, find the corresponding PDO in a driver's
 * device list.
 */

device_object *
windrv_find_pdo(drv, bsddev)
	driver_object		*drv;
	device_t		bsddev;
{
	device_object		*pdo;

	mtx_lock(&drvdb_mtx);
	pdo = drv->dro_devobj;
	while (pdo != NULL) {
		if (pdo->do_devext == bsddev) {
			mtx_unlock(&drvdb_mtx);
			return (pdo);
		}
		pdo = pdo->do_nextdev;
	}
	mtx_unlock(&drvdb_mtx);

	return (NULL);
}

/*
 * Add an internally emulated driver to the database. We need this
 * to set up an emulated bus driver so that it can receive IRPs.
 */

int
windrv_bus_attach(drv, name)
	driver_object		*drv;
	char			*name;
{
	struct drvdb_ent	*new;
	ansi_string		as;

	new = malloc(sizeof(struct drvdb_ent), M_DEVBUF, M_NOWAIT|M_ZERO);
	if (new == NULL)
		return (ENOMEM);

	RtlInitAnsiString(&as, name);
	if (RtlAnsiStringToUnicodeString(&drv->dro_drivername, &as, TRUE))
	{
		free(new, M_DEVBUF);
		return (ENOMEM);
	}

	/*
	 * Set up a fake image pointer to avoid false matches
	 * in windrv_lookup().
	 */
	drv->dro_driverstart = (void *)0xFFFFFFFF;

	new->windrv_object = drv;
	new->windrv_devlist = NULL;
	new->windrv_regvals = NULL;

	mtx_lock(&drvdb_mtx);
	STAILQ_INSERT_HEAD(&drvdb_head, new, link);
	mtx_unlock(&drvdb_mtx);

	return (0);
}

#ifdef __amd64__

extern void	x86_64_wrap(void);
extern void	x86_64_wrap_call(void);
extern void	x86_64_wrap_end(void);

int
windrv_wrap(func, wrap, argcnt, ftype)
	funcptr			func;
	funcptr			*wrap;
	int			argcnt;
	int			ftype;
{
	funcptr			p;
	vm_offset_t		*calladdr;
	vm_offset_t		wrapstart, wrapend, wrapcall;

	wrapstart = (vm_offset_t)&x86_64_wrap;
	wrapend = (vm_offset_t)&x86_64_wrap_end;
	wrapcall = (vm_offset_t)&x86_64_wrap_call;

	/* Allocate a new wrapper instance. */

	p = malloc((wrapend - wrapstart), M_DEVBUF, M_NOWAIT);
	if (p == NULL)
		return (ENOMEM);

	/* Copy over the code. */

	bcopy((char *)wrapstart, p, (wrapend - wrapstart));

	/* Insert the function address into the new wrapper instance. */

	calladdr = (uint64_t *)((char *)p + (wrapcall - wrapstart) + 2);
	*calladdr = (vm_offset_t)func;

	*wrap = p;

	return (0);
}

static struct fpu_cc_ent *
request_fpu_cc_ent(void)
{
	struct fpu_cc_ent *ent;

	mtx_lock(&fpu_free_mtx);
	if ((ent = LIST_FIRST(&fpu_free_head)) != NULL) {
		LIST_REMOVE(ent, entries);
		mtx_unlock(&fpu_free_mtx);
		mtx_lock(&fpu_busy_mtx);
		LIST_INSERT_HEAD(&fpu_busy_head, ent, entries);
		mtx_unlock(&fpu_busy_mtx);
		return (ent);
	}
	mtx_unlock(&fpu_free_mtx);

	if ((ent = malloc(sizeof(struct fpu_cc_ent), M_DEVBUF, M_NOWAIT |
	    M_ZERO)) != NULL) {
		ent->ctx = fpu_kern_alloc_ctx(FPU_KERN_NORMAL |
		    FPU_KERN_NOWAIT);
		if (ent->ctx != NULL) {
			mtx_lock(&fpu_busy_mtx);
			LIST_INSERT_HEAD(&fpu_busy_head, ent, entries);
			mtx_unlock(&fpu_busy_mtx);
		} else {
			free(ent, M_DEVBUF);
			ent = NULL;
		}
	}

	return (ent);
}

static void
release_fpu_cc_ent(struct fpu_cc_ent *ent)
{
	mtx_lock(&fpu_busy_mtx);
	LIST_REMOVE(ent, entries);
	mtx_unlock(&fpu_busy_mtx);
	mtx_lock(&fpu_free_mtx);
	LIST_INSERT_HEAD(&fpu_free_head, ent, entries);
	mtx_unlock(&fpu_free_mtx);
}

uint64_t
_x86_64_call1(void *fn, uint64_t a)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call1(fn, a);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}

uint64_t
_x86_64_call2(void *fn, uint64_t a, uint64_t b)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call2(fn, a, b);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}

uint64_t
_x86_64_call3(void *fn, uint64_t a, uint64_t b, uint64_t c)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call3(fn, a, b, c);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}

uint64_t
_x86_64_call4(void *fn, uint64_t a, uint64_t b, uint64_t c, uint64_t d)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call4(fn, a, b, c, d);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}

uint64_t
_x86_64_call5(void *fn, uint64_t a, uint64_t b, uint64_t c, uint64_t d,
    uint64_t e)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call5(fn, a, b, c, d, e);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}

uint64_t
_x86_64_call6(void *fn, uint64_t a, uint64_t b, uint64_t c, uint64_t d,
    uint64_t e, uint64_t f)
{
	struct fpu_cc_ent *ent;
	uint64_t ret;

	if ((ent = request_fpu_cc_ent()) == NULL)
		return (ENOMEM);
	fpu_kern_enter(curthread, ent->ctx, FPU_KERN_NORMAL);
	ret = x86_64_call6(fn, a, b, c, d, e, f);
	fpu_kern_leave(curthread, ent->ctx);
	release_fpu_cc_ent(ent);

	return (ret);
}
#endif /* __amd64__ */

#ifdef __i386__

struct x86desc {
	uint16_t		x_lolimit;
	uint16_t		x_base0;
	uint8_t			x_base1;
	uint8_t			x_flags;
	uint8_t			x_hilimit;
	uint8_t			x_base2;
};

struct gdt {
	uint16_t		limit;
	void			*base;
} __attribute__((__packed__));

extern uint16_t	x86_getfs(void);
extern void x86_setfs(uint16_t);
extern void *x86_gettid(void);
extern void x86_critical_enter(void);
extern void x86_critical_exit(void);
extern void x86_getldt(struct gdt *, uint16_t *);
extern void x86_setldt(struct gdt *, uint16_t);

#define SEL_LDT	4		/* local descriptor table */
#define SEL_TO_FS(x)		(((x) << 3))

/*
 * FreeBSD 6.0 and later has a special GDT segment reserved
 * specifically for us, so if GNDIS_SEL is defined, use that.
 * If not, use GTGATE_SEL, which is uninitialized and infrequently
 * used.
 */

#ifdef GNDIS_SEL
#define FREEBSD_EMPTYSEL	GNDIS_SEL
#else
#define FREEBSD_EMPTYSEL	GTGATE_SEL	/* slot 7 */
#endif

/*
 * The meanings of various bits in a descriptor vary a little
 * depending on whether the descriptor will be used as a
 * code, data or system descriptor. (And that in turn depends
 * on which segment register selects the descriptor.)
 * We're only trying to create a data segment, so the definitions
 * below are the ones that apply to a data descriptor.
 */

#define SEGFLAGLO_PRESENT	0x80	/* segment is present */
#define SEGFLAGLO_PRIVLVL	0x60	/* privlevel needed for this seg */
#define SEGFLAGLO_CD		0x10	/* 1 = code/data, 0 = system */
#define SEGFLAGLO_MBZ		0x08	/* must be zero */
#define SEGFLAGLO_EXPANDDOWN	0x04	/* limit expands down */
#define SEGFLAGLO_WRITEABLE	0x02	/* segment is writeable */
#define SEGGLAGLO_ACCESSED	0x01	/* segment has been accessed */

#define SEGFLAGHI_GRAN		0x80	/* granularity, 1 = byte, 0 = page */
#define SEGFLAGHI_BIG		0x40	/* 1 = 32 bit stack, 0 = 16 bit */

/*
 * Context switch from UNIX to Windows. Save the existing value
 * of %fs for this processor, then change it to point to our
 * fake TID. Note that it is also possible to pin ourselves
 * to our current CPU, though I'm not sure this is really
 * necessary. It depends on whether or not an interrupt might
 * preempt us while Windows code is running and we wind up
 * scheduled onto another CPU as a result. So far, it doesn't
 * seem like this is what happens.
 */

void
ctxsw_utow(void)
{
	struct tid		*t;

	t = &my_tids[curthread->td_oncpu];

	/*
	 * Ugly hack. During system bootstrap (cold == 1), only CPU 0
	 * is running. So if we were loaded at bootstrap, only CPU 0
	 * will have our special GDT entry. This is a problem for SMP
	 * systems, so to deal with this, we check here to make sure
	 * the TID for this processor has been initialized, and if it
	 * hasn't, we need to do it right now or else things will
	 * explode.
	 */

	if (t->tid_self != t)
		x86_newldt(NULL);

	x86_critical_enter();
	t->tid_oldfs = x86_getfs();
	t->tid_cpu = curthread->td_oncpu;
	sched_pin();
	x86_setfs(SEL_TO_FS(t->tid_selector));
	x86_critical_exit();

	/* Now entering Windows land, population: you. */
}

/*
 * Context switch from Windows back to UNIX. Restore %fs to
 * its previous value. This always occurs after a call to
 * ctxsw_utow().
 */

void
ctxsw_wtou(void)
{
	struct tid		*t;

	x86_critical_enter();
	t = x86_gettid();
	x86_setfs(t->tid_oldfs);
	sched_unpin();
	x86_critical_exit();

	/* Welcome back to UNIX land, we missed you. */

#ifdef EXTRA_SANITY
	if (t->tid_cpu != curthread->td_oncpu)
		panic("ctxsw GOT MOVED TO OTHER CPU!");
#endif
}

static int	windrv_wrap_stdcall(funcptr, funcptr *, int);
static int	windrv_wrap_fastcall(funcptr, funcptr *, int);
static int	windrv_wrap_regparm(funcptr, funcptr *);

extern void	x86_fastcall_wrap(void);
extern void	x86_fastcall_wrap_call(void);
extern void	x86_fastcall_wrap_arg(void);
extern void	x86_fastcall_wrap_end(void);

static int
windrv_wrap_fastcall(func, wrap, argcnt)
	funcptr			func;
	funcptr			*wrap;
	int8_t			argcnt;
{
	funcptr			p;
	vm_offset_t		*calladdr;
	uint8_t			*argaddr;
	vm_offset_t		wrapstart, wrapend, wrapcall, wraparg;

	wrapstart = (vm_offset_t)&x86_fastcall_wrap;
	wrapend = (vm_offset_t)&x86_fastcall_wrap_end;
	wrapcall = (vm_offset_t)&x86_fastcall_wrap_call;
	wraparg = (vm_offset_t)&x86_fastcall_wrap_arg;

	/* Allocate a new wrapper instance. */

	p = malloc((wrapend - wrapstart), M_DEVBUF, M_NOWAIT);
	if (p == NULL)
		return (ENOMEM);

	/* Copy over the code. */

	bcopy((char *)wrapstart, p, (wrapend - wrapstart));

	/* Insert the function address into the new wrapper instance. */

	calladdr = (vm_offset_t *)((char *)p + ((wrapcall - wrapstart) + 1));
	*calladdr = (vm_offset_t)func;

	argcnt -= 2;
	if (argcnt < 1)
		argcnt = 0;

	argaddr = (u_int8_t *)((char *)p + ((wraparg - wrapstart) + 1));
	*argaddr = argcnt * sizeof(uint32_t);

	*wrap = p;

	return (0);
}

extern void	x86_stdcall_wrap(void);
extern void	x86_stdcall_wrap_call(void);
extern void	x86_stdcall_wrap_arg(void);
extern void	x86_stdcall_wrap_end(void);

static int
windrv_wrap_stdcall(func, wrap, argcnt)
	funcptr			func;
	funcptr			*wrap;
	uint8_t			argcnt;
{
	funcptr			p;
	vm_offset_t		*calladdr;
	uint8_t			*argaddr;
	vm_offset_t		wrapstart, wrapend, wrapcall, wraparg;

	wrapstart = (vm_offset_t)&x86_stdcall_wrap;
	wrapend = (vm_offset_t)&x86_stdcall_wrap_end;
	wrapcall = (vm_offset_t)&x86_stdcall_wrap_call;
	wraparg = (vm_offset_t)&x86_stdcall_wrap_arg;

	/* Allocate a new wrapper instance. */

	p = malloc((wrapend - wrapstart), M_DEVBUF, M_NOWAIT);
	if (p == NULL)
		return (ENOMEM);

	/* Copy over the code. */

	bcopy((char *)wrapstart, p, (wrapend - wrapstart));

	/* Insert the function address into the new wrapper instance. */

	calladdr = (vm_offset_t *)((char *)p + ((wrapcall - wrapstart) + 1));
	*calladdr = (vm_offset_t)func;

	argaddr = (u_int8_t *)((char *)p + ((wraparg - wrapstart) + 1));
	*argaddr = argcnt * sizeof(uint32_t);

	*wrap = p;

	return (0);
}

extern void	x86_regparm_wrap(void);
extern void	x86_regparm_wrap_call(void);
extern void	x86_regparm_wrap_end(void);

static int
windrv_wrap_regparm(func, wrap)
	funcptr			func;
	funcptr			*wrap;
{
	funcptr			p;
	vm_offset_t		*calladdr;
	vm_offset_t		wrapstart, wrapend, wrapcall;

	wrapstart = (vm_offset_t)&x86_regparm_wrap;
	wrapend = (vm_offset_t)&x86_regparm_wrap_end;
	wrapcall = (vm_offset_t)&x86_regparm_wrap_call;

	/* Allocate a new wrapper instance. */

	p = malloc((wrapend - wrapstart), M_DEVBUF, M_NOWAIT);
	if (p == NULL)
		return (ENOMEM);

	/* Copy over the code. */

	bcopy(x86_regparm_wrap, p, (wrapend - wrapstart));

	/* Insert the function address into the new wrapper instance. */

	calladdr = (vm_offset_t *)((char *)p + ((wrapcall - wrapstart) + 1));
	*calladdr = (vm_offset_t)func;

	*wrap = p;

	return (0);
}

int
windrv_wrap(func, wrap, argcnt, ftype)
	funcptr			func;
	funcptr			*wrap;
	int			argcnt;
	int			ftype;
{
	switch(ftype) {
	case WINDRV_WRAP_FASTCALL:
		return (windrv_wrap_fastcall(func, wrap, argcnt));
	case WINDRV_WRAP_STDCALL:
		return (windrv_wrap_stdcall(func, wrap, argcnt));
	case WINDRV_WRAP_REGPARM:
		return (windrv_wrap_regparm(func, wrap));
	case WINDRV_WRAP_CDECL:
		return (windrv_wrap_stdcall(func, wrap, 0));
	default:
		break;
	}

	return (EINVAL);
}

static void
x86_oldldt(dummy)
	void			*dummy;
{
	struct x86desc		*gdt;
	struct gdt		gtable;
	uint16_t		ltable;

	mtx_lock_spin(&dt_lock);

	/* Grab location of existing GDT. */

	x86_getldt(&gtable, &ltable);

	/* Find the slot we updated. */

	gdt = gtable.base;
	gdt += FREEBSD_EMPTYSEL;

	/* Empty it out. */

	bzero((char *)gdt, sizeof(struct x86desc));

	/* Restore GDT. */

	x86_setldt(&gtable, ltable);

	mtx_unlock_spin(&dt_lock);
}

static void
x86_newldt(dummy)
	void			*dummy;
{
	struct gdt		gtable;
	uint16_t		ltable;
	struct x86desc		*l;
	struct thread		*t;

	t = curthread;

	mtx_lock_spin(&dt_lock);

	/* Grab location of existing GDT. */

	x86_getldt(&gtable, &ltable);

	/* Get pointer to the GDT table. */

	l = gtable.base;

	/* Get pointer to empty slot */

	l += FREEBSD_EMPTYSEL;

	/* Initialize TID for this CPU. */

	my_tids[t->td_oncpu].tid_selector = FREEBSD_EMPTYSEL;
	my_tids[t->td_oncpu].tid_self = &my_tids[t->td_oncpu];

	/* Set up new GDT entry. */

	l->x_lolimit = sizeof(struct tid);
	l->x_hilimit = SEGFLAGHI_GRAN|SEGFLAGHI_BIG;
	l->x_base0 = (vm_offset_t)(&my_tids[t->td_oncpu]) & 0xFFFF;
	l->x_base1 = ((vm_offset_t)(&my_tids[t->td_oncpu]) >> 16) & 0xFF;
	l->x_base2 = ((vm_offset_t)(&my_tids[t->td_oncpu]) >> 24) & 0xFF;
	l->x_flags = SEGFLAGLO_PRESENT|SEGFLAGLO_CD|SEGFLAGLO_WRITEABLE;

	/* Update the GDT. */

	x86_setldt(&gtable, ltable);

	mtx_unlock_spin(&dt_lock);

	/* Whew. */
}

#endif /* __i386__ */

int
windrv_unwrap(func)
	funcptr			func;
{
	free(func, M_DEVBUF);

	return (0);
}