Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/



#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-compactflash.h"


#ifndef MAX
#define	MAX(a,b) (((a)>(b))?(a):(b))
#endif
#define FLASH_RoundUP(_Dividend, _Divisor) (((_Dividend)+(_Divisor-1))/(_Divisor))
/**
 * Convert nanosecond based time to setting used in the
 * boot bus timing register, based on timing multiple
 *
 *
 */
static uint32_t ns_to_tim_reg(int tim_mult, uint32_t nsecs)
{
	uint32_t val;

	/* Compute # of eclock periods to get desired duration in nanoseconds */
	val = FLASH_RoundUP(nsecs * (cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000), 1000);

	/* Factor in timing multiple, if not 1 */
	if (tim_mult != 1)
		val = FLASH_RoundUP(val, tim_mult);

	return (val);
}

uint64_t cvmx_compactflash_generate_dma_tim(int tim_mult, uint16_t *ident_data, int *mwdma_mode_ptr)
{

	cvmx_mio_boot_dma_timx_t dma_tim;
	int oe_a;
	int oe_n;
	int dma_acks;
	int dma_ackh;
	int dma_arq;
	int pause;
	int To,Tkr,Td;
	int mwdma_mode = -1;
        uint16_t word53_field_valid;
        uint16_t word63_mwdma;
        uint16_t word163_adv_timing_info;

        if (!ident_data)
            return 0;

        word53_field_valid = ident_data[53];
        word63_mwdma = ident_data[63];
        word163_adv_timing_info = ident_data[163];

	dma_tim.u64 = 0;

	/* Check for basic MWDMA modes */
	if (word53_field_valid & 0x2)
	{
		if (word63_mwdma & 0x4)
			mwdma_mode = 2;
		else if (word63_mwdma & 0x2)
			mwdma_mode = 1;
		else if (word63_mwdma & 0x1)
			mwdma_mode = 0;
	}

	/* Check for advanced MWDMA modes */
	switch ((word163_adv_timing_info >> 3) & 0x7)
	{
		case 1:
			mwdma_mode = 3;
			break;
		case 2:
			mwdma_mode = 4;
			break;
		default:
			break;

	}
	/* DMA is not supported by this card */
	if (mwdma_mode < 0)
            return 0;

	/* Now set up the DMA timing */
	switch (tim_mult)
	{
		case 1:
		    dma_tim.s.tim_mult = 1;
		    break;
		case 2:
		    dma_tim.s.tim_mult = 2;
		    break;
		case 4:
		    dma_tim.s.tim_mult = 0;
		    break;
		case 8:
		    dma_tim.s.tim_mult = 3;
		    break;
		default:
		    cvmx_dprintf("ERROR: invalid boot bus dma tim_mult setting\n");
		    break;
	}


	switch (mwdma_mode)
	{
		case 4:
			To = 80;
			Td = 55;
			Tkr = 20;

			oe_a = Td + 20;  // Td (Seem to need more margin here....
			oe_n = MAX(To - oe_a, Tkr);  // Tkr from cf spec, lengthened to meet To

			// oe_n + oe_h must be >= To (cycle time)
			dma_acks = 0; //Ti
			dma_ackh = 5; // Tj

			dma_arq = 8;  // not spec'ed, value in eclocks, not affected by tim_mult
			pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
			break;
		case 3:
			To = 100;
			Td = 65;
			Tkr = 20;

			oe_a = Td + 20;  // Td (Seem to need more margin here....
			oe_n = MAX(To - oe_a, Tkr);  // Tkr from cf spec, lengthened to meet To

			// oe_n + oe_h must be >= To (cycle time)
			dma_acks = 0; //Ti
			dma_ackh = 5; // Tj

			dma_arq = 8;  // not spec'ed, value in eclocks, not affected by tim_mult
			pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
			break;
		case 2:
			// +20 works
			// +10 works
			// + 10 + 0 fails
			// n=40, a=80 works
			To = 120;
			Td = 70;
			Tkr = 25;

                        // oe_a 0 fudge doesn't work; 10 seems to
			oe_a = Td + 20 + 10;  // Td (Seem to need more margin here....
			oe_n = MAX(To - oe_a, Tkr) + 10;  // Tkr from cf spec, lengthened to meet To
                        // oe_n 0 fudge fails;;; 10 boots

                        // 20 ns fudge needed on dma_acks
			// oe_n + oe_h must be >= To (cycle time)
			dma_acks = 0 + 20; //Ti
			dma_ackh = 5; // Tj

			dma_arq = 8;  // not spec'ed, value in eclocks, not affected by tim_mult
			pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
                        // no fudge needed on pause

			break;
		case 1:
		case 0:
		default:
			cvmx_dprintf("ERROR: Unsupported DMA mode: %d\n", mwdma_mode);
			return(-1);
			break;
	}

        if (mwdma_mode_ptr)
            *mwdma_mode_ptr = mwdma_mode;

	dma_tim.s.dmack_pi = 1;

	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);

	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, dma_acks);
	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);

	dma_tim.s.dmarq = dma_arq;
	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);

	dma_tim.s.rd_dly = 0; /* Sample right on edge */

	/*  writes only */
	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);

#if 0
	cvmx_dprintf("ns to ticks (mult %d) of %d is: %d\n", TIM_MULT, 60, ns_to_tim_reg(60));
	cvmx_dprintf("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
	   dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
#endif

	return(dma_tim.u64);


}


/**
 * Setup timing and region config to support a specific IDE PIO
 * mode over the bootbus.
 *
 * @param cs0      Bootbus region number connected to CS0 on the IDE device
 * @param cs1      Bootbus region number connected to CS1 on the IDE device
 * @param pio_mode PIO mode to set (0-6)
 */
void cvmx_compactflash_set_piomode(int cs0, int cs1, int pio_mode)
{
    cvmx_mio_boot_reg_cfgx_t mio_boot_reg_cfg;
    cvmx_mio_boot_reg_timx_t mio_boot_reg_tim;
    int cs;
    int clocks_us;                      /* Number of clock cycles per microsec */
    int tim_mult;
    int use_iordy;                      /* Set for PIO0-4, not set for PIO5-6 */
    int t1;                             /* These t names are timing parameters from the ATA spec */
    int t2;
    int t2i;
    int t4;
    int t6;
    int t6z;
    int t9;

    /* PIO modes 0-4 all allow the device to deassert IORDY to slow down
        the host */
    use_iordy = 1;

    /* Use the PIO mode to determine timing parameters */
    switch(pio_mode) {
        case 6:
            /* CF spec say IORDY should be ignore in PIO 5 */
            use_iordy = 0;
            t1 = 10;
            t2 = 55;
            t2i = 20;
            t4 = 5;
            t6 = 5;
            t6z = 20;
            t9 = 10;
            break;
        case 5:
            /* CF spec say IORDY should be ignore in PIO 6 */
            use_iordy = 0;
            t1 = 15;
            t2 = 65;
            t2i = 25;
            t4 = 5;
            t6 = 5;
            t6z = 20;
            t9 = 10;
            break;
        case 4:
            t1 = 25;
            t2 = 70;
            t2i = 25;
            t4 = 10;
            t6 = 5;
            t6z = 30;
            t9 = 10;
            break;
        case 3:
            t1 = 30;
            t2 = 80;
            t2i = 70;
            t4 = 10;
            t6 = 5;
            t6z = 30;
            t9 = 10;
            break;
        case 2:
            t1 = 30;
            t2 = 100;
            t2i = 0;
            t4 = 15;
            t6 = 5;
            t6z = 30;
            t9 = 10;
            break;
        case 1:
            t1 = 50;
            t2 = 125;
            t2i = 0;
            t4 = 20;
            t6 = 5;
            t6z = 30;
            t9 = 15;
            break;
        default:
            t1 = 70;
            t2 = 165;
            t2i = 0;
            t4 = 30;
            t6 = 5;
            t6z = 30;
            t9 = 20;
            break;
    }
    /* Convert times in ns to clock cycles, rounding up */
    clocks_us = FLASH_RoundUP(cvmx_clock_get_rate(CVMX_CLOCK_SCLK), 1000000);

    /* Convert times in clock cycles, rounding up. Octeon parameters are in
        minus one notation, so take off one after the conversion */
    t1 = FLASH_RoundUP(t1 * clocks_us, 1000);
    if (t1)
        t1--;
    t2 = FLASH_RoundUP(t2 * clocks_us, 1000);
    if (t2)
        t2--;
    t2i = FLASH_RoundUP(t2i * clocks_us, 1000);
    if (t2i)
        t2i--;
    t4 = FLASH_RoundUP(t4 * clocks_us, 1000);
    if (t4)
        t4--;
    t6 = FLASH_RoundUP(t6 * clocks_us, 1000);
    if (t6)
        t6--;
    t6z = FLASH_RoundUP(t6z * clocks_us, 1000);
    if (t6z)
        t6z--;
    t9 = FLASH_RoundUP(t9 * clocks_us, 1000);
    if (t9)
        t9--;

    /* Start using a scale factor of one cycle. Keep doubling it until
        the parameters fit in their fields. Since t2 is the largest number,
        we only need to check it */
    tim_mult = 1;
    while (t2 >= 1<<6)
    {
        t1 = FLASH_RoundUP(t1, 2);
        t2 = FLASH_RoundUP(t2, 2);
        t2i = FLASH_RoundUP(t2i, 2);
        t4 = FLASH_RoundUP(t4, 2);
        t6 = FLASH_RoundUP(t6, 2);
        t6z = FLASH_RoundUP(t6z, 2);
        t9 = FLASH_RoundUP(t9, 2);
        tim_mult *= 2;
    }

    cs = cs0;
    do {
        mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
        mio_boot_reg_cfg.s.dmack = 0;   /* Don't assert DMACK on access */
        switch(tim_mult) {
            case 1:
                mio_boot_reg_cfg.s.tim_mult = 1;
                break;
            case 2:
                mio_boot_reg_cfg.s.tim_mult = 2;
                break;
            case 4:
                mio_boot_reg_cfg.s.tim_mult = 0;
                break;
            case 8:
            default:
                mio_boot_reg_cfg.s.tim_mult = 3;
                break;
        }
        mio_boot_reg_cfg.s.rd_dly = 0;  /* Sample on falling edge of BOOT_OE */
        mio_boot_reg_cfg.s.sam = 0;     /* Don't combine write and output enable */
        mio_boot_reg_cfg.s.we_ext = 0;  /* No write enable extension */
        mio_boot_reg_cfg.s.oe_ext = 0;  /* No read enable extension */
        mio_boot_reg_cfg.s.en = 1;      /* Enable this region */
        mio_boot_reg_cfg.s.orbit = 0;   /* Don't combine with previos region */
        mio_boot_reg_cfg.s.width = 1;   /* 16 bits wide */
        cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), mio_boot_reg_cfg.u64);
        if(cs == cs0)
            cs = cs1;
        else
            cs = cs0;
    } while(cs != cs0);

    mio_boot_reg_tim.u64 = 0;
    mio_boot_reg_tim.s.pagem = 0;       /* Disable page mode */
    mio_boot_reg_tim.s.waitm = use_iordy;    /* Enable dynamic timing */
    mio_boot_reg_tim.s.pages = 0;       /* Pages are disabled */
    mio_boot_reg_tim.s.ale = 8;         /* If someone uses ALE, this seems to work */
    mio_boot_reg_tim.s.page = 0;        /* Not used */
    mio_boot_reg_tim.s.wait = 0;        /* Time after IORDY to coninue to assert the data */
    mio_boot_reg_tim.s.pause = 0;       /* Time after CE that signals stay valid */
    mio_boot_reg_tim.s.wr_hld = t9;     /* How long to hold after a write */
    mio_boot_reg_tim.s.rd_hld = t9;     /* How long to wait after a read for device to tristate */
    mio_boot_reg_tim.s.we = t2;         /* How long write enable is asserted */
    mio_boot_reg_tim.s.oe = t2;         /* How long read enable is asserted */
    mio_boot_reg_tim.s.ce = t1;         /* Time after CE that read/write starts */
    mio_boot_reg_tim.s.adr = 1;         /* Time before CE that address is valid */

    /* Program the bootbus region timing for both chip selects */
    cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs0), mio_boot_reg_tim.u64);
    cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs1), mio_boot_reg_tim.u64);
}