Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
 *  Copyright (C) 2010 Lawrence Livermore National Security, LLC.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 *  Solaris Porting Layer (SPL) Thread Specific Data Implementation.
 *
 *  Thread specific data has implemented using a hash table, this avoids
 *  the need to add a member to the task structure and allows maximum
 *  portability between kernels.  This implementation has been optimized
 *  to keep the tsd_set() and tsd_get() times as small as possible.
 *
 *  The majority of the entries in the hash table are for specific tsd
 *  entries.  These entries are hashed by the product of their key and
 *  pid because by design the key and pid are guaranteed to be unique.
 *  Their product also has the desirable properly that it will be uniformly
 *  distributed over the hash bins providing neither the pid nor key is zero.
 *  Under linux the zero pid is always the init process and thus won't be
 *  used, and this implementation is careful to never to assign a zero key.
 *  By default the hash table is sized to 512 bins which is expected to
 *  be sufficient for light to moderate usage of thread specific data.
 *
 *  The hash table contains two additional type of entries.  They first
 *  type is entry is called a 'key' entry and it is added to the hash during
 *  tsd_create().  It is used to store the address of the destructor function
 *  and it is used as an anchor point.  All tsd entries which use the same
 *  key will be linked to this entry.  This is used during tsd_destroy() to
 *  quickly call the destructor function for all tsd associated with the key.
 *  The 'key' entry may be looked up with tsd_hash_search() by passing the
 *  key you wish to lookup and DTOR_PID constant as the pid.
 *
 *  The second type of entry is called a 'pid' entry and it is added to the
 *  hash the first time a process set a key.  The 'pid' entry is also used
 *  as an anchor and all tsd for the process will be linked to it.  This
 *  list is using during tsd_exit() to ensure all registered destructors
 *  are run for the process.  The 'pid' entry may be looked up with
 *  tsd_hash_search() by passing the PID_KEY constant as the key, and
 *  the process pid.  Note that tsd_exit() is called by thread_exit()
 *  so if your using the Solaris thread API you should not need to call
 *  tsd_exit() directly.
 *
 */

#include <sys/kmem.h>
#include <sys/thread.h>
#include <sys/tsd.h>
#include <linux/hash.h>

typedef struct tsd_hash_bin {
	spinlock_t		hb_lock;
	struct hlist_head	hb_head;
} tsd_hash_bin_t;

typedef struct tsd_hash_table {
	spinlock_t		ht_lock;
	uint_t			ht_bits;
	uint_t			ht_key;
	tsd_hash_bin_t		*ht_bins;
} tsd_hash_table_t;

typedef struct tsd_hash_entry {
	uint_t			he_key;
	pid_t			he_pid;
	dtor_func_t		he_dtor;
	void			*he_value;
	struct hlist_node	he_list;
	struct list_head	he_key_list;
	struct list_head	he_pid_list;
} tsd_hash_entry_t;

static tsd_hash_table_t *tsd_hash_table = NULL;


/*
 * tsd_hash_search - searches hash table for tsd_hash_entry
 * @table: hash table
 * @key: search key
 * @pid: search pid
 */
static tsd_hash_entry_t *
tsd_hash_search(tsd_hash_table_t *table, uint_t key, pid_t pid)
{
	struct hlist_node *node = NULL;
	tsd_hash_entry_t *entry;
	tsd_hash_bin_t *bin;
	ulong_t hash;

	hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
	bin = &table->ht_bins[hash];
	spin_lock(&bin->hb_lock);
	hlist_for_each(node, &bin->hb_head) {
		entry = list_entry(node, tsd_hash_entry_t, he_list);
		if ((entry->he_key == key) && (entry->he_pid == pid)) {
			spin_unlock(&bin->hb_lock);
			return (entry);
		}
	}

	spin_unlock(&bin->hb_lock);
	return (NULL);
}

/*
 * tsd_hash_dtor - call the destructor and free all entries on the list
 * @work: list of hash entries
 *
 * For a list of entries which have all already been removed from the
 * hash call their registered destructor then free the associated memory.
 */
static void
tsd_hash_dtor(struct hlist_head *work)
{
	tsd_hash_entry_t *entry;

	while (!hlist_empty(work)) {
		entry = hlist_entry(work->first, tsd_hash_entry_t, he_list);
		hlist_del(&entry->he_list);

		if (entry->he_dtor && entry->he_pid != DTOR_PID)
			entry->he_dtor(entry->he_value);

		kmem_free(entry, sizeof (tsd_hash_entry_t));
	}
}

/*
 * tsd_hash_add - adds an entry to hash table
 * @table: hash table
 * @key: search key
 * @pid: search pid
 *
 * The caller is responsible for ensuring the unique key/pid do not
 * already exist in the hash table.  This possible because all entries
 * are thread specific thus a concurrent thread will never attempt to
 * add this key/pid.  Because multiple bins must be checked to add
 * links to the dtor and pid entries the entire table is locked.
 */
static int
tsd_hash_add(tsd_hash_table_t *table, uint_t key, pid_t pid, void *value)
{
	tsd_hash_entry_t *entry, *dtor_entry, *pid_entry;
	tsd_hash_bin_t *bin;
	ulong_t hash;
	int rc = 0;

	ASSERT3P(tsd_hash_search(table, key, pid), ==, NULL);

	/* New entry allocate structure, set value, and add to hash */
	entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
	if (entry == NULL)
		return (ENOMEM);

	entry->he_key = key;
	entry->he_pid = pid;
	entry->he_value = value;
	INIT_HLIST_NODE(&entry->he_list);
	INIT_LIST_HEAD(&entry->he_key_list);
	INIT_LIST_HEAD(&entry->he_pid_list);

	spin_lock(&table->ht_lock);

	/* Destructor entry must exist for all valid keys */
	dtor_entry = tsd_hash_search(table, entry->he_key, DTOR_PID);
	ASSERT3P(dtor_entry, !=, NULL);
	entry->he_dtor = dtor_entry->he_dtor;

	/* Process entry must exist for all valid processes */
	pid_entry = tsd_hash_search(table, PID_KEY, entry->he_pid);
	ASSERT3P(pid_entry, !=, NULL);

	hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
	bin = &table->ht_bins[hash];
	spin_lock(&bin->hb_lock);

	/* Add to the hash, key, and pid lists */
	hlist_add_head(&entry->he_list, &bin->hb_head);
	list_add(&entry->he_key_list, &dtor_entry->he_key_list);
	list_add(&entry->he_pid_list, &pid_entry->he_pid_list);

	spin_unlock(&bin->hb_lock);
	spin_unlock(&table->ht_lock);

	return (rc);
}

/*
 * tsd_hash_add_key - adds a destructor entry to the hash table
 * @table: hash table
 * @keyp: search key
 * @dtor: key destructor
 *
 * For every unique key there is a single entry in the hash which is used
 * as anchor.  All other thread specific entries for this key are linked
 * to this anchor via the 'he_key_list' list head.  On return they keyp
 * will be set to the next available key for the hash table.
 */
static int
tsd_hash_add_key(tsd_hash_table_t *table, uint_t *keyp, dtor_func_t dtor)
{
	tsd_hash_entry_t *tmp_entry, *entry;
	tsd_hash_bin_t *bin;
	ulong_t hash;
	int keys_checked = 0;

	ASSERT3P(table, !=, NULL);

	/* Allocate entry to be used as a destructor for this key */
	entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
	if (entry == NULL)
		return (ENOMEM);

	/* Determine next available key value */
	spin_lock(&table->ht_lock);
	do {
		/* Limited to TSD_KEYS_MAX concurrent unique keys */
		if (table->ht_key++ > TSD_KEYS_MAX)
			table->ht_key = 1;

		/* Ensure failure when all TSD_KEYS_MAX keys are in use */
		if (keys_checked++ >= TSD_KEYS_MAX) {
			spin_unlock(&table->ht_lock);
			return (ENOENT);
		}

		tmp_entry = tsd_hash_search(table, table->ht_key, DTOR_PID);
	} while (tmp_entry);

	/* Add destructor entry in to hash table */
	entry->he_key = *keyp = table->ht_key;
	entry->he_pid = DTOR_PID;
	entry->he_dtor = dtor;
	entry->he_value = NULL;
	INIT_HLIST_NODE(&entry->he_list);
	INIT_LIST_HEAD(&entry->he_key_list);
	INIT_LIST_HEAD(&entry->he_pid_list);

	hash = hash_long((ulong_t)*keyp * (ulong_t)DTOR_PID, table->ht_bits);
	bin = &table->ht_bins[hash];
	spin_lock(&bin->hb_lock);

	hlist_add_head(&entry->he_list, &bin->hb_head);

	spin_unlock(&bin->hb_lock);
	spin_unlock(&table->ht_lock);

	return (0);
}

/*
 * tsd_hash_add_pid - adds a process entry to the hash table
 * @table: hash table
 * @pid: search pid
 *
 * For every process there is a single entry in the hash which is used
 * as anchor.  All other thread specific entries for this process are
 * linked to this anchor via the 'he_pid_list' list head.
 */
static int
tsd_hash_add_pid(tsd_hash_table_t *table, pid_t pid)
{
	tsd_hash_entry_t *entry;
	tsd_hash_bin_t *bin;
	ulong_t hash;

	/* Allocate entry to be used as the process reference */
	entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
	if (entry == NULL)
		return (ENOMEM);

	spin_lock(&table->ht_lock);
	entry->he_key = PID_KEY;
	entry->he_pid = pid;
	entry->he_dtor = NULL;
	entry->he_value = NULL;
	INIT_HLIST_NODE(&entry->he_list);
	INIT_LIST_HEAD(&entry->he_key_list);
	INIT_LIST_HEAD(&entry->he_pid_list);

	hash = hash_long((ulong_t)PID_KEY * (ulong_t)pid, table->ht_bits);
	bin = &table->ht_bins[hash];
	spin_lock(&bin->hb_lock);

	hlist_add_head(&entry->he_list, &bin->hb_head);

	spin_unlock(&bin->hb_lock);
	spin_unlock(&table->ht_lock);

	return (0);
}

/*
 * tsd_hash_del - delete an entry from hash table, key, and pid lists
 * @table: hash table
 * @key: search key
 * @pid: search pid
 */
static void
tsd_hash_del(tsd_hash_table_t *table, tsd_hash_entry_t *entry)
{
	hlist_del(&entry->he_list);
	list_del_init(&entry->he_key_list);
	list_del_init(&entry->he_pid_list);
}

/*
 * tsd_hash_table_init - allocate a hash table
 * @bits: hash table size
 *
 * A hash table with 2^bits bins will be created, it may not be resized
 * after the fact and must be free'd with tsd_hash_table_fini().
 */
static tsd_hash_table_t *
tsd_hash_table_init(uint_t bits)
{
	tsd_hash_table_t *table;
	int hash, size = (1 << bits);

	table = kmem_zalloc(sizeof (tsd_hash_table_t), KM_SLEEP);
	if (table == NULL)
		return (NULL);

	table->ht_bins = kmem_zalloc(sizeof (tsd_hash_bin_t) * size, KM_SLEEP);
	if (table->ht_bins == NULL) {
		kmem_free(table, sizeof (tsd_hash_table_t));
		return (NULL);
	}

	for (hash = 0; hash < size; hash++) {
		spin_lock_init(&table->ht_bins[hash].hb_lock);
		INIT_HLIST_HEAD(&table->ht_bins[hash].hb_head);
	}

	spin_lock_init(&table->ht_lock);
	table->ht_bits = bits;
	table->ht_key = 1;

	return (table);
}

/*
 * tsd_hash_table_fini - free a hash table
 * @table: hash table
 *
 * Free a hash table allocated by tsd_hash_table_init().  If the hash
 * table is not empty this function will call the proper destructor for
 * all remaining entries before freeing the memory used by those entries.
 */
static void
tsd_hash_table_fini(tsd_hash_table_t *table)
{
	HLIST_HEAD(work);
	tsd_hash_bin_t *bin;
	tsd_hash_entry_t *entry;
	int size, i;

	ASSERT3P(table, !=, NULL);
	spin_lock(&table->ht_lock);
	for (i = 0, size = (1 << table->ht_bits); i < size; i++) {
		bin = &table->ht_bins[i];
		spin_lock(&bin->hb_lock);
		while (!hlist_empty(&bin->hb_head)) {
			entry = hlist_entry(bin->hb_head.first,
			    tsd_hash_entry_t, he_list);
			tsd_hash_del(table, entry);
			hlist_add_head(&entry->he_list, &work);
		}
		spin_unlock(&bin->hb_lock);
	}
	spin_unlock(&table->ht_lock);

	tsd_hash_dtor(&work);
	kmem_free(table->ht_bins, sizeof (tsd_hash_bin_t)*(1<<table->ht_bits));
	kmem_free(table, sizeof (tsd_hash_table_t));
}

/*
 * tsd_remove_entry - remove a tsd entry for this thread
 * @entry: entry to remove
 *
 * Remove the thread specific data @entry for this thread.
 * If this is the last entry for this thread, also remove the PID entry.
 */
static void
tsd_remove_entry(tsd_hash_entry_t *entry)
{
	HLIST_HEAD(work);
	tsd_hash_table_t *table;
	tsd_hash_entry_t *pid_entry;
	tsd_hash_bin_t *pid_entry_bin, *entry_bin;
	ulong_t hash;

	table = tsd_hash_table;
	ASSERT3P(table, !=, NULL);
	ASSERT3P(entry, !=, NULL);

	spin_lock(&table->ht_lock);

	hash = hash_long((ulong_t)entry->he_key *
	    (ulong_t)entry->he_pid, table->ht_bits);
	entry_bin = &table->ht_bins[hash];

	/* save the possible pid_entry */
	pid_entry = list_entry(entry->he_pid_list.next, tsd_hash_entry_t,
	    he_pid_list);

	/* remove entry */
	spin_lock(&entry_bin->hb_lock);
	tsd_hash_del(table, entry);
	hlist_add_head(&entry->he_list, &work);
	spin_unlock(&entry_bin->hb_lock);

	/* if pid_entry is indeed pid_entry, then remove it if it's empty */
	if (pid_entry->he_key == PID_KEY &&
	    list_empty(&pid_entry->he_pid_list)) {
		hash = hash_long((ulong_t)pid_entry->he_key *
		    (ulong_t)pid_entry->he_pid, table->ht_bits);
		pid_entry_bin = &table->ht_bins[hash];

		spin_lock(&pid_entry_bin->hb_lock);
		tsd_hash_del(table, pid_entry);
		hlist_add_head(&pid_entry->he_list, &work);
		spin_unlock(&pid_entry_bin->hb_lock);
	}

	spin_unlock(&table->ht_lock);

	tsd_hash_dtor(&work);
}

/*
 * tsd_set - set thread specific data
 * @key: lookup key
 * @value: value to set
 *
 * Caller must prevent racing tsd_create() or tsd_destroy(), protected
 * from racing tsd_get() or tsd_set() because it is thread specific.
 * This function has been optimized to be fast for the update case.
 * When setting the tsd initially it will be slower due to additional
 * required locking and potential memory allocations.
 */
int
tsd_set(uint_t key, void *value)
{
	tsd_hash_table_t *table;
	tsd_hash_entry_t *entry;
	pid_t pid;
	int rc;
	/* mark remove if value is NULL */
	boolean_t remove = (value == NULL);

	table = tsd_hash_table;
	pid = curthread->pid;
	ASSERT3P(table, !=, NULL);

	if ((key == 0) || (key > TSD_KEYS_MAX))
		return (EINVAL);

	/* Entry already exists in hash table update value */
	entry = tsd_hash_search(table, key, pid);
	if (entry) {
		entry->he_value = value;
		/* remove the entry */
		if (remove)
			tsd_remove_entry(entry);
		return (0);
	}

	/* don't create entry if value is NULL */
	if (remove)
		return (0);

	/* Add a process entry to the hash if not yet exists */
	entry = tsd_hash_search(table, PID_KEY, pid);
	if (entry == NULL) {
		rc = tsd_hash_add_pid(table, pid);
		if (rc)
			return (rc);
	}

	rc = tsd_hash_add(table, key, pid, value);
	return (rc);
}
EXPORT_SYMBOL(tsd_set);

/*
 * tsd_get - get thread specific data
 * @key: lookup key
 *
 * Caller must prevent racing tsd_create() or tsd_destroy().  This
 * implementation is designed to be fast and scalable, it does not
 * lock the entire table only a single hash bin.
 */
void *
tsd_get(uint_t key)
{
	tsd_hash_entry_t *entry;

	ASSERT3P(tsd_hash_table, !=, NULL);

	if ((key == 0) || (key > TSD_KEYS_MAX))
		return (NULL);

	entry = tsd_hash_search(tsd_hash_table, key, curthread->pid);
	if (entry == NULL)
		return (NULL);

	return (entry->he_value);
}
EXPORT_SYMBOL(tsd_get);

/*
 * tsd_get_by_thread - get thread specific data for specified thread
 * @key: lookup key
 * @thread: thread to lookup
 *
 * Caller must prevent racing tsd_create() or tsd_destroy().  This
 * implementation is designed to be fast and scalable, it does not
 * lock the entire table only a single hash bin.
 */
void *
tsd_get_by_thread(uint_t key, kthread_t *thread)
{
	tsd_hash_entry_t *entry;

	ASSERT3P(tsd_hash_table, !=, NULL);

	if ((key == 0) || (key > TSD_KEYS_MAX))
		return (NULL);

	entry = tsd_hash_search(tsd_hash_table, key, thread->pid);
	if (entry == NULL)
		return (NULL);

	return (entry->he_value);
}
EXPORT_SYMBOL(tsd_get_by_thread);

/*
 * tsd_create - create thread specific data key
 * @keyp: lookup key address
 * @dtor: destructor called during tsd_destroy() or tsd_exit()
 *
 * Provided key must be set to 0 or it assumed to be already in use.
 * The dtor is allowed to be NULL in which case no additional cleanup
 * for the data is performed during tsd_destroy() or tsd_exit().
 *
 * Caller must prevent racing tsd_set() or tsd_get(), this function is
 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
 */
void
tsd_create(uint_t *keyp, dtor_func_t dtor)
{
	ASSERT3P(keyp, !=, NULL);
	if (*keyp)
		return;

	(void) tsd_hash_add_key(tsd_hash_table, keyp, dtor);
}
EXPORT_SYMBOL(tsd_create);

/*
 * tsd_destroy - destroy thread specific data
 * @keyp: lookup key address
 *
 * Destroys the thread specific data on all threads which use this key.
 *
 * Caller must prevent racing tsd_set() or tsd_get(), this function is
 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
 */
void
tsd_destroy(uint_t *keyp)
{
	HLIST_HEAD(work);
	tsd_hash_table_t *table;
	tsd_hash_entry_t *dtor_entry, *entry;
	tsd_hash_bin_t *dtor_entry_bin, *entry_bin;
	ulong_t hash;

	table = tsd_hash_table;
	ASSERT3P(table, !=, NULL);

	spin_lock(&table->ht_lock);
	dtor_entry = tsd_hash_search(table, *keyp, DTOR_PID);
	if (dtor_entry == NULL) {
		spin_unlock(&table->ht_lock);
		return;
	}

	/*
	 * All threads which use this key must be linked off of the
	 * DTOR_PID entry.  They are removed from the hash table and
	 * linked in to a private working list to be destroyed.
	 */
	while (!list_empty(&dtor_entry->he_key_list)) {
		entry = list_entry(dtor_entry->he_key_list.next,
		    tsd_hash_entry_t, he_key_list);
		ASSERT3U(dtor_entry->he_key, ==, entry->he_key);
		ASSERT3P(dtor_entry->he_dtor, ==, entry->he_dtor);

		hash = hash_long((ulong_t)entry->he_key *
		    (ulong_t)entry->he_pid, table->ht_bits);
		entry_bin = &table->ht_bins[hash];

		spin_lock(&entry_bin->hb_lock);
		tsd_hash_del(table, entry);
		hlist_add_head(&entry->he_list, &work);
		spin_unlock(&entry_bin->hb_lock);
	}

	hash = hash_long((ulong_t)dtor_entry->he_key *
	    (ulong_t)dtor_entry->he_pid, table->ht_bits);
	dtor_entry_bin = &table->ht_bins[hash];

	spin_lock(&dtor_entry_bin->hb_lock);
	tsd_hash_del(table, dtor_entry);
	hlist_add_head(&dtor_entry->he_list, &work);
	spin_unlock(&dtor_entry_bin->hb_lock);
	spin_unlock(&table->ht_lock);

	tsd_hash_dtor(&work);
	*keyp = 0;
}
EXPORT_SYMBOL(tsd_destroy);

/*
 * tsd_exit - destroys all thread specific data for this thread
 *
 * Destroys all the thread specific data for this thread.
 *
 * Caller must prevent racing tsd_set() or tsd_get(), this function is
 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
 */
void
tsd_exit(void)
{
	HLIST_HEAD(work);
	tsd_hash_table_t *table;
	tsd_hash_entry_t *pid_entry, *entry;
	tsd_hash_bin_t *pid_entry_bin, *entry_bin;
	ulong_t hash;

	table = tsd_hash_table;
	ASSERT3P(table, !=, NULL);

	spin_lock(&table->ht_lock);
	pid_entry = tsd_hash_search(table, PID_KEY, curthread->pid);
	if (pid_entry == NULL) {
		spin_unlock(&table->ht_lock);
		return;
	}

	/*
	 * All keys associated with this pid must be linked off of the
	 * PID_KEY entry.  They are removed from the hash table and
	 * linked in to a private working list to be destroyed.
	 */

	while (!list_empty(&pid_entry->he_pid_list)) {
		entry = list_entry(pid_entry->he_pid_list.next,
		    tsd_hash_entry_t, he_pid_list);
		ASSERT3U(pid_entry->he_pid, ==, entry->he_pid);

		hash = hash_long((ulong_t)entry->he_key *
		    (ulong_t)entry->he_pid, table->ht_bits);
		entry_bin = &table->ht_bins[hash];

		spin_lock(&entry_bin->hb_lock);
		tsd_hash_del(table, entry);
		hlist_add_head(&entry->he_list, &work);
		spin_unlock(&entry_bin->hb_lock);
	}

	hash = hash_long((ulong_t)pid_entry->he_key *
	    (ulong_t)pid_entry->he_pid, table->ht_bits);
	pid_entry_bin = &table->ht_bins[hash];

	spin_lock(&pid_entry_bin->hb_lock);
	tsd_hash_del(table, pid_entry);
	hlist_add_head(&pid_entry->he_list, &work);
	spin_unlock(&pid_entry_bin->hb_lock);
	spin_unlock(&table->ht_lock);

	tsd_hash_dtor(&work);
}
EXPORT_SYMBOL(tsd_exit);

int
spl_tsd_init(void)
{
	tsd_hash_table = tsd_hash_table_init(TSD_HASH_TABLE_BITS_DEFAULT);
	if (tsd_hash_table == NULL)
		return (1);

	return (0);
}

void
spl_tsd_fini(void)
{
	tsd_hash_table_fini(tsd_hash_table);
	tsd_hash_table = NULL;
}