Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
 */
/*
 * Copyright 2013 Saso Kiselkov. All rights reserved.
 */

/*
 * Copyright (c) 2016 by Delphix. All rights reserved.
 */

/*
 * Fletcher Checksums
 * ------------------
 *
 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
 * recurrence relations:
 *
 *	a  = a    + f
 *	 i    i-1    i-1
 *
 *	b  = b    + a
 *	 i    i-1    i
 *
 *	c  = c    + b		(fletcher-4 only)
 *	 i    i-1    i
 *
 *	d  = d    + c		(fletcher-4 only)
 *	 i    i-1    i
 *
 * Where
 *	a_0 = b_0 = c_0 = d_0 = 0
 * and
 *	f_0 .. f_(n-1) are the input data.
 *
 * Using standard techniques, these translate into the following series:
 *
 *	     __n_			     __n_
 *	     \   |			     \   |
 *	a  =  >     f			b  =  >     i * f
 *	 n   /___|   n - i		 n   /___|	 n - i
 *	     i = 1			     i = 1
 *
 *
 *	     __n_			     __n_
 *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
 *	c  =  >     ------- f		d  =  >     ------------- f
 *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
 *	     i = 1			     i = 1
 *
 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
 * Since the additions are done mod (2^64), errors in the high bits may not
 * be noticed.  For this reason, fletcher-2 is deprecated.
 *
 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
 * A conservative estimate of how big the buffer can get before we overflow
 * can be estimated using f_i = 0xffffffff for all i:
 *
 * % bc
 *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
 * 2264
 *  quit
 * %
 *
 * So blocks of up to 2k will not overflow.  Our largest block size is
 * 128k, which has 32k 4-byte words, so we can compute the largest possible
 * accumulators, then divide by 2^64 to figure the max amount of overflow:
 *
 * % bc
 *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
 *  a/2^64;b/2^64;c/2^64;d/2^64
 * 0
 * 0
 * 1365
 * 11186858
 *  quit
 * %
 *
 * So a and b cannot overflow.  To make sure each bit of input has some
 * effect on the contents of c and d, we can look at what the factors of
 * the coefficients in the equations for c_n and d_n are.  The number of 2s
 * in the factors determines the lowest set bit in the multiplier.  Running
 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
 * even for 128k blocks.
 *
 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
 * we could do our calculations mod (2^32 - 1) by adding in the carries
 * periodically, and store the number of carries in the top 32-bits.
 *
 * --------------------
 * Checksum Performance
 * --------------------
 *
 * There are two interesting components to checksum performance: cached and
 * uncached performance.  With cached data, fletcher-2 is about four times
 * faster than fletcher-4.  With uncached data, the performance difference is
 * negligible, since the cost of a cache fill dominates the processing time.
 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
 * efficient pass over the data.
 *
 * In normal operation, the data which is being checksummed is in a buffer
 * which has been filled either by:
 *
 *	1. a compression step, which will be mostly cached, or
 *	2. a bcopy() or copyin(), which will be uncached (because the
 *	   copy is cache-bypassing).
 *
 * For both cached and uncached data, both fletcher checksums are much faster
 * than sha-256, and slower than 'off', which doesn't touch the data at all.
 */

#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/byteorder.h>
#include <sys/spa.h>
#include <sys/simd.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <zfs_fletcher.h>

#define	FLETCHER_MIN_SIMD_SIZE	64

static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
    const void *buf, uint64_t size);
static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
    const void *buf, uint64_t size);
static boolean_t fletcher_4_scalar_valid(void);

static const fletcher_4_ops_t fletcher_4_scalar_ops = {
	.init_native = fletcher_4_scalar_init,
	.fini_native = fletcher_4_scalar_fini,
	.compute_native = fletcher_4_scalar_native,
	.init_byteswap = fletcher_4_scalar_init,
	.fini_byteswap = fletcher_4_scalar_fini,
	.compute_byteswap = fletcher_4_scalar_byteswap,
	.valid = fletcher_4_scalar_valid,
	.name = "scalar"
};

static fletcher_4_ops_t fletcher_4_fastest_impl = {
	.name = "fastest",
	.valid = fletcher_4_scalar_valid
};

static const fletcher_4_ops_t *fletcher_4_impls[] = {
	&fletcher_4_scalar_ops,
	&fletcher_4_superscalar_ops,
	&fletcher_4_superscalar4_ops,
#if defined(HAVE_SSE2)
	&fletcher_4_sse2_ops,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
	&fletcher_4_ssse3_ops,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
	&fletcher_4_avx2_ops,
#endif
#if defined(__x86_64) && defined(HAVE_AVX512F)
	&fletcher_4_avx512f_ops,
#endif
#if defined(__x86_64) && defined(HAVE_AVX512BW)
	&fletcher_4_avx512bw_ops,
#endif
#if defined(__aarch64__) && !defined(__FreeBSD__)
	&fletcher_4_aarch64_neon_ops,
#endif
};

/* Hold all supported implementations */
static uint32_t fletcher_4_supp_impls_cnt = 0;
static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];

/* Select fletcher4 implementation */
#define	IMPL_FASTEST	(UINT32_MAX)
#define	IMPL_CYCLE	(UINT32_MAX - 1)
#define	IMPL_SCALAR	(0)

static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;

#define	IMPL_READ(i)	(*(volatile uint32_t *) &(i))

static struct fletcher_4_impl_selector {
	const char	*fis_name;
	uint32_t	fis_sel;
} fletcher_4_impl_selectors[] = {
	{ "cycle",	IMPL_CYCLE },
	{ "fastest",	IMPL_FASTEST },
	{ "scalar",	IMPL_SCALAR }
};

#if defined(_KERNEL)
static kstat_t *fletcher_4_kstat;

static struct fletcher_4_kstat {
	uint64_t native;
	uint64_t byteswap;
} fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
#endif

/* Indicate that benchmark has been completed */
static boolean_t fletcher_4_initialized = B_FALSE;

/*ARGSUSED*/
void
fletcher_init(zio_cksum_t *zcp)
{
	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}

int
fletcher_2_incremental_native(void *buf, size_t size, void *data)
{
	zio_cksum_t *zcp = data;

	const uint64_t *ip = buf;
	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
	uint64_t a0, b0, a1, b1;

	a0 = zcp->zc_word[0];
	a1 = zcp->zc_word[1];
	b0 = zcp->zc_word[2];
	b1 = zcp->zc_word[3];

	for (; ip < ipend; ip += 2) {
		a0 += ip[0];
		a1 += ip[1];
		b0 += a0;
		b1 += a1;
	}

	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
	return (0);
}

/*ARGSUSED*/
void
fletcher_2_native(const void *buf, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_init(zcp);
	(void) fletcher_2_incremental_native((void *) buf, size, zcp);
}

int
fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
{
	zio_cksum_t *zcp = data;

	const uint64_t *ip = buf;
	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
	uint64_t a0, b0, a1, b1;

	a0 = zcp->zc_word[0];
	a1 = zcp->zc_word[1];
	b0 = zcp->zc_word[2];
	b1 = zcp->zc_word[3];

	for (; ip < ipend; ip += 2) {
		a0 += BSWAP_64(ip[0]);
		a1 += BSWAP_64(ip[1]);
		b0 += a0;
		b1 += a1;
	}

	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
	return (0);
}

/*ARGSUSED*/
void
fletcher_2_byteswap(const void *buf, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_init(zcp);
	(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
}

static void
fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
{
	ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
}

static void
fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
	memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
}

static void
fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
    uint64_t size)
{
	const uint32_t *ip = buf;
	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
	uint64_t a, b, c, d;

	a = ctx->scalar.zc_word[0];
	b = ctx->scalar.zc_word[1];
	c = ctx->scalar.zc_word[2];
	d = ctx->scalar.zc_word[3];

	for (; ip < ipend; ip++) {
		a += ip[0];
		b += a;
		c += b;
		d += c;
	}

	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}

static void
fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
    uint64_t size)
{
	const uint32_t *ip = buf;
	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
	uint64_t a, b, c, d;

	a = ctx->scalar.zc_word[0];
	b = ctx->scalar.zc_word[1];
	c = ctx->scalar.zc_word[2];
	d = ctx->scalar.zc_word[3];

	for (; ip < ipend; ip++) {
		a += BSWAP_32(ip[0]);
		b += a;
		c += b;
		d += c;
	}

	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}

static boolean_t
fletcher_4_scalar_valid(void)
{
	return (B_TRUE);
}

int
fletcher_4_impl_set(const char *val)
{
	int err = -EINVAL;
	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
	size_t i, val_len;

	val_len = strlen(val);
	while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
		val_len--;

	/* check mandatory implementations */
	for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
		const char *name = fletcher_4_impl_selectors[i].fis_name;

		if (val_len == strlen(name) &&
		    strncmp(val, name, val_len) == 0) {
			impl = fletcher_4_impl_selectors[i].fis_sel;
			err = 0;
			break;
		}
	}

	if (err != 0 && fletcher_4_initialized) {
		/* check all supported implementations */
		for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
			const char *name = fletcher_4_supp_impls[i]->name;

			if (val_len == strlen(name) &&
			    strncmp(val, name, val_len) == 0) {
				impl = i;
				err = 0;
				break;
			}
		}
	}

	if (err == 0) {
		atomic_swap_32(&fletcher_4_impl_chosen, impl);
		membar_producer();
	}

	return (err);
}

/*
 * Returns the Fletcher 4 operations for checksums.   When a SIMD
 * implementation is not allowed in the current context, then fallback
 * to the fastest generic implementation.
 */
static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)
{
	if (!kfpu_allowed())
		return (&fletcher_4_superscalar4_ops);

	const fletcher_4_ops_t *ops = NULL;
	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);

	switch (impl) {
	case IMPL_FASTEST:
		ASSERT(fletcher_4_initialized);
		ops = &fletcher_4_fastest_impl;
		break;
	case IMPL_CYCLE:
		/* Cycle through supported implementations */
		ASSERT(fletcher_4_initialized);
		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
		static uint32_t cycle_count = 0;
		uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
		ops = fletcher_4_supp_impls[idx];
		break;
	default:
		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
		ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
		ops = fletcher_4_supp_impls[impl];
		break;
	}

	ASSERT3P(ops, !=, NULL);

	return (ops);
}

static inline void
fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
	fletcher_4_ctx_t ctx;
	const fletcher_4_ops_t *ops = fletcher_4_impl_get();

	ops->init_native(&ctx);
	ops->compute_native(&ctx, buf, size);
	ops->fini_native(&ctx, zcp);
}

/*ARGSUSED*/
void
fletcher_4_native(const void *buf, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);

	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));

	if (size == 0 || p2size == 0) {
		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);

		if (size > 0)
			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
			    buf, size);
	} else {
		fletcher_4_native_impl(buf, p2size, zcp);

		if (p2size < size)
			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
			    (char *)buf + p2size, size - p2size);
	}
}

void
fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
	fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
}

static inline void
fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
	fletcher_4_ctx_t ctx;
	const fletcher_4_ops_t *ops = fletcher_4_impl_get();

	ops->init_byteswap(&ctx);
	ops->compute_byteswap(&ctx, buf, size);
	ops->fini_byteswap(&ctx, zcp);
}

/*ARGSUSED*/
void
fletcher_4_byteswap(const void *buf, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);

	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));

	if (size == 0 || p2size == 0) {
		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);

		if (size > 0)
			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
			    buf, size);
	} else {
		fletcher_4_byteswap_impl(buf, p2size, zcp);

		if (p2size < size)
			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
			    (char *)buf + p2size, size - p2size);
	}
}

/* Incremental Fletcher 4 */

#define	ZFS_FLETCHER_4_INC_MAX_SIZE	(8ULL << 20)

static inline void
fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
    const zio_cksum_t *nzcp)
{
	const uint64_t c1 = size / sizeof (uint32_t);
	const uint64_t c2 = c1 * (c1 + 1) / 2;
	const uint64_t c3 = c2 * (c1 + 2) / 3;

	/*
	 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
	 * reason we split incremental fletcher4 computation of large buffers
	 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
	 */
	ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);

	zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
	    c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
	zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
	    c2 * zcp->zc_word[0];
	zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
	zcp->zc_word[0] += nzcp->zc_word[0];
}

static inline void
fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
    zio_cksum_t *zcp)
{
	while (size > 0) {
		zio_cksum_t nzc;
		uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);

		if (native)
			fletcher_4_native(buf, len, NULL, &nzc);
		else
			fletcher_4_byteswap(buf, len, NULL, &nzc);

		fletcher_4_incremental_combine(zcp, len, &nzc);

		size -= len;
		buf += len;
	}
}

int
fletcher_4_incremental_native(void *buf, size_t size, void *data)
{
	zio_cksum_t *zcp = data;
	/* Use scalar impl to directly update cksum of small blocks */
	if (size < SPA_MINBLOCKSIZE)
		fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
	else
		fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
	return (0);
}

int
fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
{
	zio_cksum_t *zcp = data;
	/* Use scalar impl to directly update cksum of small blocks */
	if (size < SPA_MINBLOCKSIZE)
		fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
	else
		fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
	return (0);
}

#if defined(_KERNEL)
/*
 * Fletcher 4 kstats
 */
static int
fletcher_4_kstat_headers(char *buf, size_t size)
{
	ssize_t off = 0;

	off += snprintf(buf + off, size, "%-17s", "implementation");
	off += snprintf(buf + off, size - off, "%-15s", "native");
	(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");

	return (0);
}

static int
fletcher_4_kstat_data(char *buf, size_t size, void *data)
{
	struct fletcher_4_kstat *fastest_stat =
	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
	struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
	ssize_t off = 0;

	if (curr_stat == fastest_stat) {
		off += snprintf(buf + off, size - off, "%-17s", "fastest");
		off += snprintf(buf + off, size - off, "%-15s",
		    fletcher_4_supp_impls[fastest_stat->native]->name);
		off += snprintf(buf + off, size - off, "%-15s\n",
		    fletcher_4_supp_impls[fastest_stat->byteswap]->name);
	} else {
		ptrdiff_t id = curr_stat - fletcher_4_stat_data;

		off += snprintf(buf + off, size - off, "%-17s",
		    fletcher_4_supp_impls[id]->name);
		off += snprintf(buf + off, size - off, "%-15llu",
		    (u_longlong_t)curr_stat->native);
		off += snprintf(buf + off, size - off, "%-15llu\n",
		    (u_longlong_t)curr_stat->byteswap);
	}

	return (0);
}

static void *
fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
{
	if (n <= fletcher_4_supp_impls_cnt)
		ksp->ks_private = (void *) (fletcher_4_stat_data + n);
	else
		ksp->ks_private = NULL;

	return (ksp->ks_private);
}
#endif

#define	FLETCHER_4_FASTEST_FN_COPY(type, src)				  \
{									  \
	fletcher_4_fastest_impl.init_ ## type = src->init_ ## type;	  \
	fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type;	  \
	fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
}

#define	FLETCHER_4_BENCH_NS	(MSEC2NSEC(50))		/* 50ms */

typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
					zio_cksum_t *);

#if defined(_KERNEL)
static void
fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
{

	struct fletcher_4_kstat *fastest_stat =
	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
	hrtime_t start;
	uint64_t run_bw, run_time_ns, best_run = 0;
	zio_cksum_t zc;
	uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);

	fletcher_checksum_func_t *fletcher_4_test = native ?
	    fletcher_4_native : fletcher_4_byteswap;

	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
		struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
		uint64_t run_count = 0;

		/* temporary set an implementation */
		fletcher_4_impl_chosen = i;

		kpreempt_disable();
		start = gethrtime();
		do {
			for (l = 0; l < 32; l++, run_count++)
				fletcher_4_test(data, data_size, NULL, &zc);

			run_time_ns = gethrtime() - start;
		} while (run_time_ns < FLETCHER_4_BENCH_NS);
		kpreempt_enable();

		run_bw = data_size * run_count * NANOSEC;
		run_bw /= run_time_ns;	/* B/s */

		if (native)
			stat->native = run_bw;
		else
			stat->byteswap = run_bw;

		if (run_bw > best_run) {
			best_run = run_bw;

			if (native) {
				fastest_stat->native = i;
				FLETCHER_4_FASTEST_FN_COPY(native,
				    fletcher_4_supp_impls[i]);
			} else {
				fastest_stat->byteswap = i;
				FLETCHER_4_FASTEST_FN_COPY(byteswap,
				    fletcher_4_supp_impls[i]);
			}
		}
	}

	/* restore original selection */
	atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
}
#endif /* _KERNEL */

/*
 * Initialize and benchmark all supported implementations.
 */
static void
fletcher_4_benchmark(void)
{
	fletcher_4_ops_t *curr_impl;
	int i, c;

	/* Move supported implementations into fletcher_4_supp_impls */
	for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
		curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];

		if (curr_impl->valid && curr_impl->valid())
			fletcher_4_supp_impls[c++] = curr_impl;
	}
	membar_producer();	/* complete fletcher_4_supp_impls[] init */
	fletcher_4_supp_impls_cnt = c;	/* number of supported impl */

#if defined(_KERNEL)
	static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
	char *databuf = vmem_alloc(data_size, KM_SLEEP);

	for (i = 0; i < data_size / sizeof (uint64_t); i++)
		((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */

	fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
	fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);

	vmem_free(databuf, data_size);
#else
	/*
	 * Skip the benchmark in user space to avoid impacting libzpool
	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
	 * is assumed to be the fastest and used by default.
	 */
	memcpy(&fletcher_4_fastest_impl,
	    fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
	    sizeof (fletcher_4_fastest_impl));
	fletcher_4_fastest_impl.name = "fastest";
	membar_producer();
#endif /* _KERNEL */
}

void
fletcher_4_init(void)
{
	/* Determine the fastest available implementation. */
	fletcher_4_benchmark();

#if defined(_KERNEL)
	/* Install kstats for all implementations */
	fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
	if (fletcher_4_kstat != NULL) {
		fletcher_4_kstat->ks_data = NULL;
		fletcher_4_kstat->ks_ndata = UINT32_MAX;
		kstat_set_raw_ops(fletcher_4_kstat,
		    fletcher_4_kstat_headers,
		    fletcher_4_kstat_data,
		    fletcher_4_kstat_addr);
		kstat_install(fletcher_4_kstat);
	}
#endif

	/* Finish initialization */
	fletcher_4_initialized = B_TRUE;
}

void
fletcher_4_fini(void)
{
#if defined(_KERNEL)
	if (fletcher_4_kstat != NULL) {
		kstat_delete(fletcher_4_kstat);
		fletcher_4_kstat = NULL;
	}
#endif
}

/* ABD adapters */

static void
abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
{
	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
	cdp->acd_private = (void *) ops;

	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
		ops->init_native(cdp->acd_ctx);
	else
		ops->init_byteswap(cdp->acd_ctx);
}

static void
abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
{
	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;

	ASSERT(ops);

	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
		ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
	else
		ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
}

static void
abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
    zio_abd_checksum_data_t *cdp)
{
	zio_cksum_t *zcp = cdp->acd_zcp;

	ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);

	abd_fletcher_4_fini(cdp);
	cdp->acd_private = (void *)&fletcher_4_scalar_ops;

	if (native)
		fletcher_4_incremental_native(data, size, zcp);
	else
		fletcher_4_incremental_byteswap(data, size, zcp);
}

static int
abd_fletcher_4_iter(void *data, size_t size, void *private)
{
	zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
	fletcher_4_ctx_t *ctx = cdp->acd_ctx;
	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
	boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
	uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);

	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));

	if (asize > 0) {
		if (native)
			ops->compute_native(ctx, data, asize);
		else
			ops->compute_byteswap(ctx, data, asize);

		size -= asize;
		data = (char *)data + asize;
	}

	if (size > 0) {
		ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
		/* At this point we have to switch to scalar impl */
		abd_fletcher_4_simd2scalar(native, data, size, cdp);
	}

	return (0);
}

zio_abd_checksum_func_t fletcher_4_abd_ops = {
	.acf_init = abd_fletcher_4_init,
	.acf_fini = abd_fletcher_4_fini,
	.acf_iter = abd_fletcher_4_iter
};


#if defined(_KERNEL) && defined(__linux__)

static int
fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
{
	const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
	char *fmt;
	int i, cnt = 0;

	/* list fastest */
	fmt = (impl == IMPL_FASTEST) ? "[%s] " : "%s ";
	cnt += sprintf(buffer + cnt, fmt, "fastest");

	/* list all supported implementations */
	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
		fmt = (i == impl) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt,
		    fletcher_4_supp_impls[i]->name);
	}

	return (cnt);
}

static int
fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
{
	return (fletcher_4_impl_set(val));
}

/*
 * Choose a fletcher 4 implementation in ZFS.
 * Users can choose "cycle" to exercise all implementations, but this is
 * for testing purpose therefore it can only be set in user space.
 */
module_param_call(zfs_fletcher_4_impl,
    fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 implementation.");

EXPORT_SYMBOL(fletcher_init);
EXPORT_SYMBOL(fletcher_2_incremental_native);
EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
EXPORT_SYMBOL(fletcher_4_init);
EXPORT_SYMBOL(fletcher_4_fini);
EXPORT_SYMBOL(fletcher_2_native);
EXPORT_SYMBOL(fletcher_2_byteswap);
EXPORT_SYMBOL(fletcher_4_native);
EXPORT_SYMBOL(fletcher_4_native_varsize);
EXPORT_SYMBOL(fletcher_4_byteswap);
EXPORT_SYMBOL(fletcher_4_incremental_native);
EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
EXPORT_SYMBOL(fletcher_4_abd_ops);
#endif