Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/*
 * Driver for NXP real-time clock/calendar chips:
 *  - PCF8563 = low power, countdown timer
 *  - PCA8565 = like PCF8563, automotive temperature range
 *  - PCF8523 = low power, countdown timer, oscillator freq tuning, 2 timers
 *  - PCF2127 = like PCF8523, industrial, tcxo, tamper/ts, i2c & spi, 512B ram
 *  - PCA2129 = like PCF8523, automotive, tcxo, tamper/ts, i2c & spi, (note 1)
 *  - PCF2129 = like PCF8523, industrial, tcxo, tamper/ts, i2c & spi, (note 1)
 *
 *  Most chips have a countdown timer, ostensibly intended to generate periodic
 *  interrupt signals on an output pin.  The timer is driven from the same
 *  divider chain that clocks the time of day registers, and they start counting
 *  in sync when the STOP bit is cleared after the time and timer registers are
 *  set.  The timer register can also be read on the fly, so we use it to count
 *  fractional seconds and get a resolution of ~15ms.
 *
 *  [1] Note that the datasheets for the PCx2129 chips state that they have only
 *  a watchdog timer, not a countdown timer.  Empirical testing shows that the
 *  countdown timer is actually there and it works fine, except that it can't
 *  trigger an interrupt or toggle an output pin like it can on other chips.  We
 *  don't care about interrupts and output pins, we just read the timer register
 *  to get better resolution.
 */

#include "opt_platform.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/module.h>
#include <sys/sysctl.h>

#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif

#include "clock_if.h"
#include "iicbus_if.h"

/*
 * I2C address 1010 001x : PCA2129 PCF2127 PCF2129 PCF8563 PCF8565
 * I2C address 1101 000x : PCF8523
 */
#define	PCF8563_ADDR		0xa2
#define	PCF8523_ADDR		0xd0

/*
 * Registers, bits within them, and masks that are common to all chip types.
 */
#define	PCF85xx_R_CS1		0x00	/* CS1 and CS2 control regs are in */
#define	PCF85xx_R_CS2		0x01	/* the same location on all chips. */

#define	PCF85xx_B_CS1_STOP	0x20	/* Stop time incrementing bit */
#define	PCF85xx_B_SECOND_OS	0x80	/* Oscillator Stopped bit */

#define	PCF85xx_M_SECOND	0x7f	/* Masks for all BCD time regs... */
#define	PCF85xx_M_MINUTE	0x7f
#define	PCF85xx_M_12HOUR	0x1f
#define	PCF85xx_M_24HOUR	0x3f
#define	PCF85xx_M_DAY		0x3f
#define	PCF85xx_M_MONTH		0x1f
#define	PCF85xx_M_YEAR		0xff

/*
 * PCF2127-specific registers, bits, and masks.
 */
#define	PCF2127_R_TMR_CTL	0x10	/* Timer/watchdog control */

#define	PCF2127_M_TMR_CTRL	0xe3	/* Mask off undef bits */

#define	PCF2127_B_TMR_CD	0x40	/* Run in countdown mode */
#define	PCF2127_B_TMR_64HZ	0x01	/* Timer frequency 64Hz */

#define	PCF2127_R_TS_CTL	0x12	/* Timestamp control */
#define	PCF2127_B_TSOFF		0x40	/* Turn off timestamp function */

#define	PCF2127_R_AGING_OFFSET	0x19	/* Frequency aging offset in PPM */

/*
 * PCA/PCF2129-specific registers, bits, and masks.
 */
#define	PCF2129_B_CS1_12HR	0x04	/* Use 12-hour (AM/PM) mode bit */
#define	PCF2129_B_CLKOUT_OTPR	0x20	/* OTP refresh command */
#define	PCF2129_B_CLKOUT_HIGHZ	0x07	/* Clock Out Freq = disable */

/*
 * PCF8523-specific registers, bits, and masks.
 */
#define	PCF8523_R_CS3		0x02	/* Control and status reg 3 */
#define	PCF8523_R_SECOND	0x03	/* Seconds */
#define	PCF8523_R_TMR_CLKOUT	0x0F	/* Timer and clockout control */
#define	PCF8523_R_TMR_A_FREQ	0x10	/* Timer A frequency control */
#define	PCF8523_R_TMR_A_COUNT	0x11	/* Timer A count */

#define	PCF8523_M_TMR_A_FREQ	0x07	/* Mask off undef bits */

#define	PCF8523_B_HOUR_PM	0x20	/* PM bit */
#define	PCF8523_B_CS1_SOFTRESET	0x58	/* Initiate Soft Reset bits */
#define	PCF8523_B_CS1_12HR	0x08	/* Use 12-hour (AM/PM) mode bit */
#define	PCF8523_B_CLKOUT_TACD	0x02	/* TimerA runs in CountDown mode */
#define	PCF8523_B_CLKOUT_HIGHZ	0x38	/* Clock Out Freq = disable */
#define	PCF8523_B_TMR_A_64HZ	0x01	/* Timer A freq 64Hz */

#define	PCF8523_M_CS3_PM	0xE0	/* Power mode mask */
#define	PCF8523_B_CS3_PM_NOBAT	0xE0	/* PM bits: no battery usage */
#define	PCF8523_B_CS3_PM_STD	0x00	/* PM bits: standard */
#define	PCF8523_B_CS3_PM_DSNBM	0xa0	/* PM bits: direct switch, no bat mon */
#define	PCF8523_B_CS3_BLF	0x04	/* Battery Low Flag bit */

/*
 * PCF8563-specific registers, bits, and masks.
 */
#define	PCF8563_R_SECOND	0x02	/* Seconds */

#define	PCF8563_R_CLKOUT	0x0d	/* Clock output control */

#define	PCF8563_R_TMR_CTRL	0x0e	/* Timer control */
#define	PCF8563_R_TMR_COUNT	0x0f	/* Timer count */

#define	PCF8563_M_TMR_CTRL	0x93	/* Mask off undef bits */

#define	PCF8563_B_TMR_ENABLE	0x80	/* Enable countdown timer */
#define	PCF8563_B_TMR_64HZ	0x01	/* Timer frequency 64Hz */

#define	PCF8563_B_MONTH_C	0x80	/* Century bit */

/*
 * We use the countdown timer for fractional seconds.  We program it for 64 Hz,
 * the fastest available rate that doesn't roll over in less than a second.
 */
#define	TMR_TICKS_SEC		64
#define	TMR_TICKS_HALFSEC	32

/*
 * The chip types we support.
 */
enum {
	TYPE_NONE,
	TYPE_PCA2129,
	TYPE_PCA8565,
	TYPE_PCF2127,
	TYPE_PCF2129,
	TYPE_PCF8523,
	TYPE_PCF8563,

	TYPE_COUNT
};
static const char *desc_strings[] = {
	"",
	"NXP PCA2129 RTC",
	"NXP PCA8565 RTC",
	"NXP PCF2127 RTC",
	"NXP PCF2129 RTC",
	"NXP PCF8523 RTC",
	"NXP PCF8563 RTC",
};
CTASSERT(nitems(desc_strings) == TYPE_COUNT);

/*
 * The time registers in the order they are laid out in hardware.
 */
struct time_regs {
	uint8_t sec, min, hour, day, wday, month, year;
};

struct nxprtc_softc {
	device_t	dev;
	device_t	busdev;
	struct intr_config_hook
			config_hook;
	u_int		flags;		/* SC_F_* flags */
	u_int		chiptype;	/* Type of PCF85xx chip */
	time_t		bat_time;	/* Next time to check battery */
	int		freqadj;	/* Current freq adj in PPM */
	uint8_t		secaddr;	/* Address of seconds register */
	uint8_t		tmcaddr;	/* Address of timer count register */
	bool		use_timer;	/* Use timer for fractional sec */
	bool		use_ampm;	/* Chip is set to use am/pm mode */
	bool		is212x;		/* Chip type is 2127 or 2129 */
};

#define	SC_F_CPOL	(1 << 0)	/* Century bit means 19xx */

/*
 * When doing i2c IO, indicate that we need to wait for exclusive bus ownership,
 * but that we should not wait if we already own the bus.  This lets us put
 * iicbus_acquire_bus() calls with a non-recursive wait at the entry of our API
 * functions to ensure that only one client at a time accesses the hardware for
 * the entire series of operations it takes to read or write the clock.
 */
#define	WAITFLAGS	(IIC_WAIT | IIC_RECURSIVE)

/*
 * We use the compat_data table to look up hint strings in the non-FDT case, so
 * define the struct locally when we don't get it from ofw_bus_subr.h.
 */
#ifdef FDT
typedef struct ofw_compat_data nxprtc_compat_data;
#else
typedef struct {
	const char *ocd_str;
	uintptr_t  ocd_data;
} nxprtc_compat_data;
#endif

static nxprtc_compat_data compat_data[] = {
	{"nxp,pca2129",     TYPE_PCA2129},
	{"nxp,pca8565",     TYPE_PCA8565},
	{"nxp,pcf2127",     TYPE_PCF2127},
	{"nxp,pcf2129",     TYPE_PCF2129},
	{"nxp,pcf8523",     TYPE_PCF8523},
	{"nxp,pcf8563",     TYPE_PCF8563},

	/* Undocumented compat strings known to exist in the wild... */
	{"pcf8563",         TYPE_PCF8563},
	{"phg,pcf8563",     TYPE_PCF8563},
	{"philips,pcf8563", TYPE_PCF8563},

	{NULL,              TYPE_NONE},
};

static int
nxprtc_readfrom(device_t slavedev, uint8_t regaddr, void *buffer,
    uint16_t buflen, int waithow)
{
	struct iic_msg msg;
	int err;
	uint8_t slaveaddr;

	/*
	 * Two transfers back to back with a stop and start between them; first we
	 * write the address-within-device, then we read from the device.  This
	 * is used instead of the standard iicdev_readfrom() because some of the
	 * chips we service don't support i2c repeat-start operations (grrrrr)
	 * so we do two completely separate transfers with a full stop between.
	 */
	slaveaddr = iicbus_get_addr(slavedev);

	msg.slave = slaveaddr;
	msg.flags = IIC_M_WR;
	msg.len   = 1;
	msg.buf   = &regaddr;

	if ((err = iicbus_transfer_excl(slavedev, &msg, 1, waithow)) != 0)
		return (err);

	msg.slave = slaveaddr;
	msg.flags = IIC_M_RD;
	msg.len   = buflen;
	msg.buf   = buffer;

	return (iicbus_transfer_excl(slavedev, &msg, 1, waithow));
}

static int
read_reg(struct nxprtc_softc *sc, uint8_t reg, uint8_t *val)
{

	return (nxprtc_readfrom(sc->dev, reg, val, sizeof(*val), WAITFLAGS));
}

static int
write_reg(struct nxprtc_softc *sc, uint8_t reg, uint8_t val)
{

	return (iicdev_writeto(sc->dev, reg, &val, sizeof(val), WAITFLAGS));
}

static int
read_timeregs(struct nxprtc_softc *sc, struct time_regs *tregs, uint8_t *tmr)
{
	int err;
	uint8_t sec, tmr1, tmr2;

	/*
	 * The datasheet says loop to read the same timer value twice because it
	 * does not freeze while reading.  To that we add our own logic that
	 * the seconds register must be the same before and after reading the
	 * timer, ensuring the fractional part is from the same second as tregs.
	 */
	do {
		if (sc->use_timer) {
			if ((err = read_reg(sc, sc->secaddr, &sec)) != 0)
				break;
			if ((err = read_reg(sc, sc->tmcaddr, &tmr1)) != 0)
				break;
			if ((err = read_reg(sc, sc->tmcaddr, &tmr2)) != 0)
				break;
			if (tmr1 != tmr2)
				continue;
		}
		if ((err = nxprtc_readfrom(sc->dev, sc->secaddr, tregs,
		    sizeof(*tregs), WAITFLAGS)) != 0)
			break;
	} while (sc->use_timer && tregs->sec != sec);

	/*
	 * If the timer value is greater than our hz rate (or is zero),
	 * something is wrong.  Maybe some other OS used the timer differently?
	 * Just set it to zero.  Likewise if we're not using the timer.  After
	 * the offset calc below, the zero turns into 32, the mid-second point,
	 * which in effect performs 4/5 rounding, which is just the right thing
	 * to do if we don't have fine-grained time.
	 */
	if (!sc->use_timer || tmr1 > TMR_TICKS_SEC)
		tmr1 = 0;

	/*
	 * Turn the downcounter into an upcounter.  The timer starts counting at
	 * and rolls over at mid-second, so add half a second worth of ticks to
	 * get its zero point back in sync with the tregs.sec rollover.
	 */
	*tmr = (TMR_TICKS_SEC - tmr1 + TMR_TICKS_HALFSEC) % TMR_TICKS_SEC;

	return (err);
}

static int
write_timeregs(struct nxprtc_softc *sc, struct time_regs *tregs)
{

	return (iicdev_writeto(sc->dev, sc->secaddr, tregs,
	    sizeof(*tregs), WAITFLAGS));
}

static int
freqadj_sysctl(SYSCTL_HANDLER_ARGS)
{
	struct nxprtc_softc *sc;
	int err, freqppm, newppm;

	sc = arg1;

	/* PPM range [-7,8] maps to reg value range [0,15] */
	freqppm = newppm = 8 - sc->freqadj;

	err = sysctl_handle_int(oidp, &newppm, 0, req);
	if (err != 0 || req->newptr == NULL)
		return (err);
	if (freqppm != newppm) {
		if (newppm < -7 || newppm > 8)
			return (EINVAL);
		sc->freqadj = 8 - newppm;
		err = write_reg(sc, PCF2127_R_AGING_OFFSET, sc->freqadj);
	}

	return (err);
}

static int
pcf8523_battery_check(struct nxprtc_softc *sc)
{
	struct timespec ts;
	int err;
	uint8_t cs3;

	/* We check the battery when starting up, and then only once a day. */
	getnanouptime(&ts);
	if (ts.tv_sec < sc->bat_time)
		return (0);
	sc->bat_time = ts.tv_sec + (60 * 60 * 24);

	/*
	 * The 8523, 2127, and 2129 chips have a "power manager" which includes
	 * an optional battery voltage monitor and several choices for power
	 * switching modes.  The battery monitor uses a lot of current and it
	 * remains active when running from battery, making it the "drain my
	 * battery twice as fast" mode.  So, we run the chip in direct-switching
	 * mode with the battery monitor disabled, reducing the current draw
	 * when running on battery from 1930nA to 880nA.  While it's not clear
	 * from the datasheets, empirical testing shows that both disabling the
	 * battery monitor and using direct-switch mode are required to get the
	 * full power savings.
	 *
	 * There isn't any need to continuously monitor the battery voltage, so
	 * this function is used to periodically enable the monitor, check the
	 * voltage, then return to the low-power monitor-disabled mode.
	 */
	err = write_reg(sc, PCF8523_R_CS3, PCF8523_B_CS3_PM_STD);
	if (err != 0) {
		device_printf(sc->dev, "cannot write CS3 reg\n");
		return (err);
	}
	pause_sbt("nxpbat", mstosbt(10), 0, 0);
	if ((err = read_reg(sc, PCF8523_R_CS3, &cs3)) != 0) {
		device_printf(sc->dev, "cannot read CS3 reg\n");
		return (err);
	}
	err = write_reg(sc, PCF8523_R_CS3, PCF8523_B_CS3_PM_DSNBM);
	if (err != 0) {
		device_printf(sc->dev, "cannot write CS3 reg\n");
		return (err);
	}

	if (cs3 & PCF8523_B_CS3_BLF)
		device_printf(sc->dev, "WARNING: RTC battery is low\n");

	return (0);
}

static int
pcf8523_start(struct nxprtc_softc *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid_list *tree;
	struct csr {
		uint8_t	cs1;
		uint8_t	cs2;
		uint8_t cs3;
		uint8_t sec;
	} csr;
	int err;
	uint8_t clkout, freqadj;

	/* Read the control and status registers. */
	if ((err = nxprtc_readfrom(sc->dev, PCF85xx_R_CS1, &csr,
	    sizeof(csr), WAITFLAGS)) != 0){
		device_printf(sc->dev, "cannot read RTC control regs\n");
		return (err);
	}

	/*
	 * Do a full init if...
	 *  - The chip power manager is in battery-disable mode.
	 *  - The OS (oscillator stopped) bit is set (all power was lost).
	 *  - The clock-increment STOP flag is set (this is just insane).
	 */
	if ((csr.cs3 & PCF8523_M_CS3_PM) == PCF8523_B_CS3_PM_NOBAT ||
	    (csr.cs1 & PCF85xx_B_CS1_STOP) || (csr.sec & PCF85xx_B_SECOND_OS)) {
		device_printf(sc->dev, 
		    "WARNING: RTC battery failed; time is invalid\n");

		/*
		 * For 212x series...
		 * - Turn off the POR-Override bit (used for mfg test only), 
		 *   by writing zero to cs 1 (all other bits power on as zero). 
		 * - Turn off the timestamp option to save the power used to
		 *   monitor that input pin.
		 * - Trigger OTP refresh by forcing the OTPR bit to zero then
		 *   back to 1, then wait 100ms for the refresh.
		 */
		if (sc->is212x) {
			err = write_reg(sc, PCF85xx_R_CS1, 0);
			if (err != 0) {
				device_printf(sc->dev,
				    "cannot write CS1 reg\n");
				return (err);
			}

			err = write_reg(sc, PCF2127_R_TS_CTL, PCF2127_B_TSOFF);
			if (err != 0) {
				device_printf(sc->dev,
				    "cannot write timestamp control\n");
				return (err);
			}

			clkout = PCF2129_B_CLKOUT_HIGHZ;
			err = write_reg(sc, PCF8523_R_TMR_CLKOUT, clkout);
			if (err == 0)
				err = write_reg(sc, PCF8523_R_TMR_CLKOUT,
				    clkout | PCF2129_B_CLKOUT_OTPR);
			if (err != 0) {
				device_printf(sc->dev,
				    "cannot write CLKOUT control\n");
				return (err);
			}
			pause_sbt("nxpotp", mstosbt(100), mstosbt(10), 0);
		} else
			clkout = PCF8523_B_CLKOUT_HIGHZ;

		/* All chips: set clock output pin to high-z to save power */
		if ((err = write_reg(sc, PCF8523_R_TMR_CLKOUT, clkout)) != 0) {
			device_printf(sc->dev, "cannot write CLKOUT control\n");
			return (err);
		}
	}

	/*
	 * Check the battery voltage and report if it's low.  This also has the
	 * side effect of (re-)initializing the power manager to low-power mode
	 * when we come up after a power fail.
	 */
	pcf8523_battery_check(sc);

	/*
	 * Remember whether we're running in AM/PM mode.  The chip default is
	 * 24-hour mode, but if we're co-existing with some other OS that
	 * prefers AM/PM we can run that way too.
	 *
	 * Also, for 212x chips, retrieve the current frequency aging offset,
	 * and set up the sysctl handler for reading/setting it.
	 */
	if (sc->is212x) {
		if (csr.cs1 & PCF2129_B_CS1_12HR)
			sc->use_ampm = true;

		err = read_reg(sc, PCF2127_R_AGING_OFFSET, &freqadj);
		if (err != 0) {
			device_printf(sc->dev,
			    "cannot read AGINGOFFSET register\n");
			return (err);
		}
		sc->freqadj = (int8_t)freqadj;

		ctx = device_get_sysctl_ctx(sc->dev);
		tree = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));

		SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "freqadj",
		    CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, sc, 0,
		    freqadj_sysctl, "I", "Frequency adjust in PPM, range [-7,+8]");
	} else {
		if (csr.cs1 & PCF8523_B_CS1_12HR)
			sc->use_ampm = true;
	}

	return (0);
}
static int
pcf8523_start_timer(struct nxprtc_softc *sc)
{
	int err;
	uint8_t clkout, stdclk, stdfreq, tmrfreq;

	/*
	 * Read the timer control and frequency regs.  If they don't have the
	 * values we normally program into them then the timer count doesn't
	 * contain a valid fractional second, so zero it to prevent using a bad
	 * value.  Then program the normal timer values so that on the first
	 * settime call we'll begin to use fractional time.
	 */
	if ((err = read_reg(sc, PCF8523_R_TMR_A_FREQ, &tmrfreq)) != 0)
		return (err);
	if ((err = read_reg(sc, PCF8523_R_TMR_CLKOUT, &clkout)) != 0)
		return (err);

	stdfreq = PCF8523_B_TMR_A_64HZ;
	stdclk = PCF8523_B_CLKOUT_TACD | PCF8523_B_CLKOUT_HIGHZ;

	if (clkout != stdclk || (tmrfreq & PCF8523_M_TMR_A_FREQ) != stdfreq) {
		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
			return (err);
		if ((err = write_reg(sc, PCF8523_R_TMR_A_FREQ, stdfreq)) != 0)
			return (err);
		if ((err = write_reg(sc, PCF8523_R_TMR_CLKOUT, stdclk)) != 0)
			return (err);
	}
	return (0);
}

static int
pcf2127_start_timer(struct nxprtc_softc *sc)
{
	int err;
	uint8_t stdctl, tmrctl;

	/*
	 * Set up timer if it's not already in the mode we normally run it.  See
	 * the comment in pcf8523_start_timer() for more details.
	 *
	 * Note that the PCF2129 datasheet says it has no countdown timer, but
	 * empirical testing shows that it works just fine for our purposes.
	 */
	if ((err = read_reg(sc, PCF2127_R_TMR_CTL, &tmrctl)) != 0)
		return (err);

	stdctl = PCF2127_B_TMR_CD | PCF8523_B_TMR_A_64HZ;

	if ((tmrctl & PCF2127_M_TMR_CTRL) != stdctl) {
		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
			return (err);
		if ((err = write_reg(sc, PCF2127_R_TMR_CTL, stdctl)) != 0)
			return (err);
	}
	return (0);
}

static int
pcf8563_start(struct nxprtc_softc *sc)
{
	struct csr {
		uint8_t	cs1;
		uint8_t	cs2;
		uint8_t sec;
	} csr;
	int err;

	/* Read the control and status registers. */
	if ((err = nxprtc_readfrom(sc->dev, PCF85xx_R_CS1, &csr,
	    sizeof(csr), WAITFLAGS)) != 0){
		device_printf(sc->dev, "cannot read RTC control regs\n");
		return (err);
	}

	/*
	 * Do a full init if...
	 *  - The OS (oscillator stopped) bit is set (all power was lost).  This
	 *    bit is called VL (Voltage Low) in the 8563 datasheet.
	 *  - The clock-increment STOP flag is set (this is just insane).
	 */
	if ((csr.cs1 & PCF85xx_B_CS1_STOP) || (csr.sec & PCF85xx_B_SECOND_OS)) {
		device_printf(sc->dev, 
		    "WARNING: RTC battery failed; time is invalid\n");
		/*
		 * - Turn off the POR-Override bit (used for mfg test only), by
		 *   writing zero to cs 1 (all other bits power on as zero).
		 * - Turn off the clock output pin (to save battery power), by
		 *   writing zero to the clkout control reg.
		 */
		if ((err = write_reg(sc, PCF85xx_R_CS1, 0)) != 0) {
			device_printf(sc->dev, "cannot write CS1 reg\n");
			return (err);
		}

		if ((err = write_reg(sc, PCF8563_R_CLKOUT, 0)) != 0) {
			device_printf(sc->dev, "cannot write CS1 reg\n");
			return (err);
		}
	}

	return (0);
}

static int
pcf8563_start_timer(struct nxprtc_softc *sc)
{
	int err;
	uint8_t stdctl, tmrctl;

	/* See comment in pcf8523_start_timer().  */
	if ((err = read_reg(sc, PCF8563_R_TMR_CTRL, &tmrctl)) != 0)
		return (err);

	stdctl = PCF8563_B_TMR_ENABLE | PCF8563_B_TMR_64HZ;

	if ((tmrctl & PCF8563_M_TMR_CTRL) != stdctl) {
		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
			return (err);
		if ((err = write_reg(sc, PCF8563_R_TMR_CTRL, stdctl)) != 0)
			return (err);
	}
	return (0);
}

static void
nxprtc_start(void *dev)
{
	struct nxprtc_softc *sc;
	int clockflags, resolution;

	sc = device_get_softc((device_t)dev);
	config_intrhook_disestablish(&sc->config_hook);

	/* First do chip-specific inits. */
	switch (sc->chiptype) {
	case TYPE_PCA2129:
	case TYPE_PCF2129:
	case TYPE_PCF2127:
		sc->is212x = true;
		if (pcf8523_start(sc) != 0)
			return;
		if (pcf2127_start_timer(sc) != 0) {
			device_printf(sc->dev, "cannot set up timer\n");
			return;
		}
		break;
	case TYPE_PCF8523:
		if (pcf8523_start(sc) != 0)
			return;
		if (pcf8523_start_timer(sc) != 0) {
			device_printf(sc->dev, "cannot set up timer\n");
			return;
		}
		break;
	case TYPE_PCA8565:
	case TYPE_PCF8563:
		if (pcf8563_start(sc) != 0)
			return;
		if (pcf8563_start_timer(sc) != 0) {
			device_printf(sc->dev, "cannot set up timer\n");
			return;
		}
		break;
	default:
		device_printf(sc->dev, "missing init code for this chiptype\n");
		return;
	}

	/*
	 * Everything looks good if we make it to here; register as an RTC.  If
	 * we're using the timer to count fractional seconds, our resolution is
	 * 1e6/64, about 15.6ms.  Without the timer we still align the RTC clock
	 * when setting it so our error is an average .5s when reading it.
	 * Schedule our clock_settime() method to be called at a .495ms offset
	 * into the second, because the clock hardware resets the divider chain
	 * to the mid-second point when you set the time and it takes about 5ms
	 * of i2c bus activity to set the clock.
	 */
	resolution = sc->use_timer ? 1000000 / TMR_TICKS_SEC : 1000000 / 2;
	clockflags = CLOCKF_GETTIME_NO_ADJ | CLOCKF_SETTIME_NO_TS;
	clock_register_flags(sc->dev, resolution, clockflags);
	clock_schedule(sc->dev, 495000000);
}

static int
nxprtc_gettime(device_t dev, struct timespec *ts)
{
	struct bcd_clocktime bct;
	struct time_regs tregs;
	struct nxprtc_softc *sc;
	int err;
	uint8_t cs1, hourmask, tmrcount;

	sc = device_get_softc(dev);

	/*
	 * Read the time, but before using it, validate that the oscillator-
	 * stopped/power-fail bit is not set, and that the time-increment STOP
	 * bit is not set in the control reg.  The latter can happen if there
	 * was an error when setting the time.
	 */
	if ((err = iicbus_request_bus(sc->busdev, sc->dev, IIC_WAIT)) == 0) {
		if ((err = read_timeregs(sc, &tregs, &tmrcount)) == 0) {
			err = read_reg(sc, PCF85xx_R_CS1, &cs1);
		}
		iicbus_release_bus(sc->busdev, sc->dev);
	}
	if (err != 0)
		return (err);

	if ((tregs.sec & PCF85xx_B_SECOND_OS) || (cs1 & PCF85xx_B_CS1_STOP)) {
		device_printf(dev, "RTC clock not running\n");
		return (EINVAL); /* hardware is good, time is not. */
	}

	if (sc->use_ampm)
		hourmask = PCF85xx_M_12HOUR;
	else
		hourmask = PCF85xx_M_24HOUR;

	bct.nsec = ((uint64_t)tmrcount * 1000000000) / TMR_TICKS_SEC;
	bct.ispm = (tregs.hour & PCF8523_B_HOUR_PM) != 0;
	bct.sec  = tregs.sec   & PCF85xx_M_SECOND;
	bct.min  = tregs.min   & PCF85xx_M_MINUTE;
	bct.hour = tregs.hour  & hourmask;
	bct.day  = tregs.day   & PCF85xx_M_DAY;
	bct.mon  = tregs.month & PCF85xx_M_MONTH;
	bct.year = tregs.year  & PCF85xx_M_YEAR;

	/*
	 * Old PCF8563 datasheets recommended that the C bit be 1 for 19xx and 0
	 * for 20xx; newer datasheets don't recommend that.  We don't care,
	 * but we may co-exist with other OSes sharing the hardware. Determine
	 * existing polarity on a read so that we can preserve it on a write.
	 */
	if (sc->chiptype == TYPE_PCF8563) {
		if (tregs.month & PCF8563_B_MONTH_C) {
			if (bct.year < 0x70)
				sc->flags |= SC_F_CPOL;
		} else if (bct.year >= 0x70)
				sc->flags |= SC_F_CPOL;
	}

	clock_dbgprint_bcd(sc->dev, CLOCK_DBG_READ, &bct); 
	err = clock_bcd_to_ts(&bct, ts, sc->use_ampm);
	ts->tv_sec += utc_offset();

	return (err);
}

static int
nxprtc_settime(device_t dev, struct timespec *ts)
{
	struct bcd_clocktime bct;
	struct time_regs tregs;
	struct nxprtc_softc *sc;
	int err;
	uint8_t cflag, cs1;

	sc = device_get_softc(dev);

	/*
	 * We stop the clock, set the time, then restart the clock.  Half a
	 * second after restarting the clock it ticks over to the next second.
	 * So to align the RTC, we schedule this function to be called when
	 * system time is roughly halfway (.495) through the current second.
	 *
	 * Reserve use of the i2c bus and stop the RTC clock.  Note that if
	 * anything goes wrong from this point on, we leave the clock stopped,
	 * because we don't really know what state it's in.
	 */
	if ((err = iicbus_request_bus(sc->busdev, sc->dev, IIC_WAIT)) != 0)
		return (err);
	if ((err = read_reg(sc, PCF85xx_R_CS1, &cs1)) != 0)
		goto errout;
	cs1 |= PCF85xx_B_CS1_STOP;
	if ((err = write_reg(sc, PCF85xx_R_CS1, cs1)) != 0)
		goto errout;

	/* Grab a fresh post-sleep idea of what time it is. */
	getnanotime(ts);
	ts->tv_sec -= utc_offset();
	ts->tv_nsec = 0;
	clock_ts_to_bcd(ts, &bct, sc->use_ampm);
	clock_dbgprint_bcd(sc->dev, CLOCK_DBG_WRITE, &bct);

	/* On 8563 set the century based on the polarity seen when reading. */
	cflag = 0;
	if (sc->chiptype == TYPE_PCF8563) {
		if ((sc->flags & SC_F_CPOL) != 0) {
			if (bct.year >= 0x2000)
				cflag = PCF8563_B_MONTH_C;
		} else if (bct.year < 0x2000)
				cflag = PCF8563_B_MONTH_C;
	}

	tregs.sec   = bct.sec;
	tregs.min   = bct.min;
	tregs.hour  = bct.hour | (bct.ispm ? PCF8523_B_HOUR_PM : 0);
	tregs.day   = bct.day;
	tregs.month = bct.mon;
	tregs.year  = (bct.year & 0xff) | cflag;
	tregs.wday  = bct.dow;

	/*
	 * Set the time, reset the timer count register, then start the clocks.
	 */
	if ((err = write_timeregs(sc, &tregs)) != 0)
		goto errout;

	if ((err = write_reg(sc, sc->tmcaddr, TMR_TICKS_SEC)) != 0)
		return (err);

	cs1 &= ~PCF85xx_B_CS1_STOP;
	err = write_reg(sc, PCF85xx_R_CS1, cs1);

	/*
	 * Check for battery-low.  The actual check is throttled to only occur
	 * once a day, mostly to avoid spamming the user with frequent warnings.
	 */
	pcf8523_battery_check(sc);

errout:

	iicbus_release_bus(sc->busdev, sc->dev);

	if (err != 0)
		device_printf(dev, "cannot write RTC time\n");

	return (err);
}

static int
nxprtc_get_chiptype(device_t dev)
{
#ifdef FDT

	return (ofw_bus_search_compatible(dev, compat_data)->ocd_data);
#else
	nxprtc_compat_data *cdata;
	const char *htype;
	int chiptype;

	/*
	 * If given a chiptype hint string, loop through the ofw compat data
	 * comparing the hinted chip type to the compat strings.  The table end
	 * marker ocd_data is TYPE_NONE.
	 */
	if (resource_string_value(device_get_name(dev), 
	    device_get_unit(dev), "compatible", &htype) == 0) {
		for (cdata = compat_data; cdata->ocd_str != NULL; ++cdata) {
			if (strcmp(htype, cdata->ocd_str) == 0)
				break;
		}
		chiptype = cdata->ocd_data;
	} else
		chiptype = TYPE_NONE;

	/*
	 * On non-FDT systems the historical behavior of this driver was to
	 * assume a PCF8563; keep doing that for compatibility.
	 */
	if (chiptype == TYPE_NONE)
		return (TYPE_PCF8563);
	else
		return (chiptype);
#endif
}

static int
nxprtc_probe(device_t dev)
{
	int chiptype, rv;

#ifdef FDT
	if (!ofw_bus_status_okay(dev))
		return (ENXIO);
	rv = BUS_PROBE_GENERIC;
#else
	rv = BUS_PROBE_NOWILDCARD;
#endif
	if ((chiptype = nxprtc_get_chiptype(dev)) == TYPE_NONE)
		return (ENXIO);

	device_set_desc(dev, desc_strings[chiptype]);
	return (rv);
}

static int
nxprtc_attach(device_t dev)
{
	struct nxprtc_softc *sc;

	sc = device_get_softc(dev);
	sc->dev = dev;
	sc->busdev = device_get_parent(dev);

	/* We need to know what kind of chip we're driving. */
	sc->chiptype = nxprtc_get_chiptype(dev);

	/* The features and some register addresses vary by chip type. */
	switch (sc->chiptype) {
	case TYPE_PCA2129:
	case TYPE_PCF2129:
	case TYPE_PCF2127:
	case TYPE_PCF8523:
		sc->secaddr = PCF8523_R_SECOND;
		sc->tmcaddr = PCF8523_R_TMR_A_COUNT;
		sc->use_timer = true;
		break;
	case TYPE_PCA8565:
	case TYPE_PCF8563:
		sc->secaddr = PCF8563_R_SECOND;
		sc->tmcaddr = PCF8563_R_TMR_COUNT;
		sc->use_timer = true;
		break;
	default:
		device_printf(dev, "impossible: cannot determine chip type\n");
		return (ENXIO);
	}

	/*
	 * We have to wait until interrupts are enabled.  Sometimes I2C read
	 * and write only works when the interrupts are available.
	 */
	sc->config_hook.ich_func = nxprtc_start;
	sc->config_hook.ich_arg = dev;
	if (config_intrhook_establish(&sc->config_hook) != 0)
		return (ENOMEM);

	return (0);
}

static int
nxprtc_detach(device_t dev)
{

	clock_unregister(dev);
	return (0);
}

static device_method_t nxprtc_methods[] = {
	DEVMETHOD(device_probe,		nxprtc_probe),
	DEVMETHOD(device_attach,	nxprtc_attach),
	DEVMETHOD(device_detach,	nxprtc_detach),

	DEVMETHOD(clock_gettime,	nxprtc_gettime),
	DEVMETHOD(clock_settime,	nxprtc_settime),

	DEVMETHOD_END
};

static driver_t nxprtc_driver = {
	"nxprtc",
	nxprtc_methods,
	sizeof(struct nxprtc_softc),
};

static devclass_t nxprtc_devclass;

DRIVER_MODULE(nxprtc, iicbus, nxprtc_driver, nxprtc_devclass, NULL, NULL);
MODULE_VERSION(nxprtc, 1);
MODULE_DEPEND(nxprtc, iicbus, IICBUS_MINVER, IICBUS_PREFVER, IICBUS_MAXVER);
IICBUS_FDT_PNP_INFO(compat_data);