Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2020 Alstom Group.
 * Copyright (c) 2020 Semihalf.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/* eSDHC controller driver for NXP QorIQ Layerscape SoCs. */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>

#include <machine/bus.h>
#include <machine/resource.h>

#include <dev/extres/clk/clk.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/sdhci/sdhci.h>
#include <dev/sdhci/sdhci_fdt_gpio.h>

#include "mmcbr_if.h"
#include "sdhci_if.h"

#define	RD4	(sc->read)
#define	WR4	(sc->write)

#define	SDHCI_FSL_PRES_STATE		0x24
#define	SDHCI_FSL_PRES_SDSTB		(1 << 3)
#define	SDHCI_FSL_PRES_COMPAT_MASK	0x000f0f07

#define	SDHCI_FSL_PROT_CTRL		0x28
#define	SDHCI_FSL_PROT_CTRL_WIDTH_1BIT	(0 << 1)
#define	SDHCI_FSL_PROT_CTRL_WIDTH_4BIT	(1 << 1)
#define	SDHCI_FSL_PROT_CTRL_WIDTH_8BIT	(2 << 1)
#define	SDHCI_FSL_PROT_CTRL_WIDTH_MASK	(3 << 1)
#define	SDHCI_FSL_PROT_CTRL_BYTE_SWAP	(0 << 4)
#define	SDHCI_FSL_PROT_CTRL_BYTE_NATIVE	(2 << 4)
#define	SDHCI_FSL_PROT_CTRL_BYTE_MASK	(3 << 4)
#define	SDHCI_FSL_PROT_CTRL_DMA_MASK	(3 << 8)

#define	SDHCI_FSL_SYS_CTRL		0x2c
#define	SDHCI_FSL_CLK_IPGEN		(1 << 0)
#define	SDHCI_FSL_CLK_SDCLKEN		(1 << 3)
#define	SDHCI_FSL_CLK_DIVIDER_MASK	0x000000f0
#define	SDHCI_FSL_CLK_DIVIDER_SHIFT	4
#define	SDHCI_FSL_CLK_PRESCALE_MASK	0x0000ff00
#define	SDHCI_FSL_CLK_PRESCALE_SHIFT	8

#define	SDHCI_FSL_WTMK_LVL		0x44
#define	SDHCI_FSL_WTMK_RD_512B		(0 << 0)
#define	SDHCI_FSL_WTMK_WR_512B		(0 << 15)

#define	SDHCI_FSL_HOST_VERSION		0xfc
#define	SDHCI_FSL_CAPABILITIES2		0x114

#define	SDHCI_FSL_ESDHC_CTRL		0x40c
#define	SDHCI_FSL_ESDHC_CTRL_SNOOP	(1 << 6)
#define	SDHCI_FSL_ESDHC_CTRL_CLK_DIV2	(1 << 19)

struct sdhci_fsl_fdt_softc {
	device_t				dev;
	const struct sdhci_fsl_fdt_soc_data	*soc_data;
	struct resource				*mem_res;
	struct resource				*irq_res;
	void					*irq_cookie;
	uint32_t				baseclk_hz;
	struct sdhci_fdt_gpio			*gpio;
	struct sdhci_slot			slot;
	bool					slot_init_done;
	uint32_t				cmd_and_mode;
	uint16_t				sdclk_bits;

	uint32_t (* read)(struct sdhci_fsl_fdt_softc *, bus_size_t);
	void (* write)(struct sdhci_fsl_fdt_softc *, bus_size_t, uint32_t);
};

struct sdhci_fsl_fdt_soc_data {
	int quirks;
};

static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_ls1046a_soc_data = {
	.quirks = SDHCI_QUIRK_DONT_SET_HISPD_BIT | SDHCI_QUIRK_BROKEN_AUTO_STOP
};

static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_gen_data = {
	.quirks = 0,
};

static const struct ofw_compat_data sdhci_fsl_fdt_compat_data[] = {
	{"fsl,ls1046a-esdhc",	(uintptr_t)&sdhci_fsl_fdt_ls1046a_soc_data},
	{"fsl,esdhc",		(uintptr_t)&sdhci_fsl_fdt_gen_data},
	{NULL,			0}
};

static uint32_t
read_be(struct sdhci_fsl_fdt_softc *sc, bus_size_t off)
{

	return (be32toh(bus_read_4(sc->mem_res, off)));
}

static void
write_be(struct sdhci_fsl_fdt_softc *sc, bus_size_t off, uint32_t val)
{

	bus_write_4(sc->mem_res, off, htobe32(val));
}

static uint32_t
read_le(struct sdhci_fsl_fdt_softc *sc, bus_size_t off)
{

	return (bus_read_4(sc->mem_res, off));
}

static void
write_le(struct sdhci_fsl_fdt_softc *sc, bus_size_t off, uint32_t val)
{

	bus_write_4(sc->mem_res, off, val);
}


static uint16_t
sdhci_fsl_fdt_get_clock(struct sdhci_fsl_fdt_softc *sc)
{
	uint16_t val;

	val = sc->sdclk_bits | SDHCI_CLOCK_INT_EN;
	if (RD4(sc, SDHCI_FSL_PRES_STATE) & SDHCI_FSL_PRES_SDSTB)
		val |= SDHCI_CLOCK_INT_STABLE;
	if (RD4(sc, SDHCI_FSL_SYS_CTRL) & SDHCI_FSL_CLK_SDCLKEN)
		val |= SDHCI_CLOCK_CARD_EN;

	return (val);
}

static void
fsl_sdhc_fdt_set_clock(struct sdhci_fsl_fdt_softc *sc, uint16_t val)
{
	uint32_t div, freq, prescale, val32;

	sc->sdclk_bits = val & SDHCI_DIVIDERS_MASK;
	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);

	if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
		WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHCI_FSL_CLK_SDCLKEN);
		return;
	}

	div = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
	    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
	    SDHCI_DIVIDER_MASK_LEN;
	if (div == 0)
		freq = sc->baseclk_hz;
	else
		freq = sc->baseclk_hz / (2 * div);

	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16); )
		prescale <<= 1;
	for (div = 1; freq < sc->baseclk_hz / (prescale * div); )
		++div;

#ifdef DEBUG
	device_printf(sc->dev,
	    "Desired SD/MMC freq: %d, actual: %d; base %d prescale %d divisor %d\n",
	    freq, sc->baseclk_hz / (prescale * div),
	    sc->baseclk_hz, prescale, div);
#endif

	prescale >>= 1;
	div -= 1;

	val32 &= ~(SDHCI_FSL_CLK_DIVIDER_MASK | SDHCI_FSL_CLK_PRESCALE_MASK);
	val32 |= div << SDHCI_FSL_CLK_DIVIDER_SHIFT;
	val32 |= prescale << SDHCI_FSL_CLK_PRESCALE_SHIFT;
	val32 |= SDHCI_FSL_CLK_IPGEN | SDHCI_FSL_CLK_SDCLKEN;
	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
}

static uint8_t
sdhci_fsl_fdt_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t wrk32, val32;

	sc = device_get_softc(dev);

	switch (off) {
	case SDHCI_HOST_CONTROL:
		wrk32 = RD4(sc, SDHCI_FSL_PROT_CTRL);
		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
		    SDHCI_CTRL_FORCE_CARD);
		if (wrk32 & SDHCI_FSL_PROT_CTRL_WIDTH_4BIT)
			val32 |= SDHCI_CTRL_4BITBUS;
		else if (wrk32 & SDHCI_FSL_PROT_CTRL_WIDTH_8BIT)
			val32 |= SDHCI_CTRL_8BITBUS;
		return (val32);
	case SDHCI_POWER_CONTROL:
		return (SDHCI_POWER_ON | SDHCI_POWER_300);
	default:
		break;
	}

	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & UINT8_MAX);
}

static uint16_t
sdhci_fsl_fdt_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t val32;

	sc = device_get_softc(dev);

	switch (off) {
	case SDHCI_CLOCK_CONTROL:
		return (sdhci_fsl_fdt_get_clock(sc));
	case SDHCI_HOST_VERSION:
		return (RD4(sc, SDHCI_FSL_HOST_VERSION) & UINT16_MAX);
	case SDHCI_TRANSFER_MODE:
		return (sc->cmd_and_mode & UINT16_MAX);
	case SDHCI_COMMAND_FLAGS:
		return (sc->cmd_and_mode >> 16);
	case SDHCI_SLOT_INT_STATUS:
	/*
	 * eSDHC hardware manages only a single slot.
	 * Synthesize a slot interrupt status register for slot 1 below.
	 */
		val32 = RD4(sc, SDHCI_INT_STATUS);
		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
		return (!!val32);
	default:
		return ((RD4(sc, off & ~3) >> (off & 3) * 8) & UINT16_MAX);
	}
}

static uint32_t
sdhci_fsl_fdt_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t wrk32, val32;

	sc = device_get_softc(dev);

	if (off == SDHCI_BUFFER)
		return (bus_read_4(sc->mem_res, off));
	if (off == SDHCI_CAPABILITIES2)
		off = SDHCI_FSL_CAPABILITIES2;

	val32 = RD4(sc, off);

	switch (off) {
	case SDHCI_CAPABILITIES:
		val32 &= ~(SDHCI_CAN_DO_SUSPEND | SDHCI_CAN_VDD_180);
		break;
	case SDHCI_PRESENT_STATE:
		wrk32 = val32;
		val32 &= SDHCI_FSL_PRES_COMPAT_MASK;
		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
		val32 |= (wrk32 << 1) & SDHCI_STATE_CMD;
		break;
	default:
		break;
	}

	return (val32);
}

static void
sdhci_fsl_fdt_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
    uint32_t *data, bus_size_t count)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(dev);
	bus_read_multi_4(sc->mem_res, off, data, count);
}

static void
sdhci_fsl_fdt_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off,
    uint8_t val)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t val32;

	sc = device_get_softc(dev);

	switch (off) {
	case SDHCI_HOST_CONTROL:
		val32 = RD4(sc, SDHCI_FSL_PROT_CTRL);
		val32 &= ~SDHCI_FSL_PROT_CTRL_WIDTH_MASK;
		val32 |= (val & SDHCI_CTRL_LED);

		if (val & SDHCI_CTRL_8BITBUS)
			val32 |= SDHCI_FSL_PROT_CTRL_WIDTH_8BIT;
		else
			/* Bus width is 1-bit when this flag is not set. */
			val32 |= (val & SDHCI_CTRL_4BITBUS);
		/* Enable SDMA by masking out this field. */
		val32 &= ~SDHCI_FSL_PROT_CTRL_DMA_MASK;
		val32 &= ~(SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD);
		val32 |= (val & (SDHCI_CTRL_CARD_DET |
		    SDHCI_CTRL_FORCE_CARD));
		WR4(sc, SDHCI_FSL_PROT_CTRL, val32);
		return;
	case SDHCI_POWER_CONTROL:
		return;
	case SDHCI_SOFTWARE_RESET:
		val &= ~SDHCI_RESET_ALL;
	/* FALLTHROUGH. */
	default:
		val32 = RD4(sc, off & ~3);
		val32 &= ~(UINT8_MAX << (off & 3) * 8);
		val32 |= (val << (off & 3) * 8);
		WR4(sc, off & ~3, val32);
		return;
	}
}

static void
sdhci_fsl_fdt_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off,
    uint16_t val)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t val32;

	sc = device_get_softc(dev);

	switch (off) {
	case SDHCI_CLOCK_CONTROL:
		fsl_sdhc_fdt_set_clock(sc, val);
		return;
	/*
	 * eSDHC hardware combines command and mode into a single
	 * register. Cache it here, so that command isn't written
	 * until after mode.
	 */
	case SDHCI_TRANSFER_MODE:
		sc->cmd_and_mode = val;
		return;
	case SDHCI_COMMAND_FLAGS:
		sc->cmd_and_mode =
		    (sc->cmd_and_mode & UINT16_MAX) | (val << 16);
		WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
		sc->cmd_and_mode = 0;
		return;
	default:
		val32 = RD4(sc, off & ~3);
		val32 &= ~(UINT16_MAX << (off & 3) * 8);
		val32 |= ((val & UINT16_MAX) << (off & 3) * 8);
		WR4(sc, off & ~3, val32);
		return;
	}
}

static void
sdhci_fsl_fdt_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
    uint32_t val)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(dev);

	switch (off) {
	case SDHCI_BUFFER:
		bus_write_4(sc->mem_res, off, val);
		return;
	/*
	 * eSDHC hardware lacks support for the SDMA buffer boundary
	 * feature and instead generates SDHCI_INT_DMA_END interrupts
	 * after each completed DMA data transfer.
	 * Since this duplicates the SDHCI_INT_DATA_END functionality,
	 * mask out the unneeded SDHCI_INT_DMA_END interrupt.
	 */
	case SDHCI_INT_ENABLE:
	case SDHCI_SIGNAL_ENABLE:
		val &= ~SDHCI_INT_DMA_END;
	/* FALLTHROUGH. */
	default:
		WR4(sc, off, val);
		return;
	}
}

static void
sdhci_fsl_fdt_write_multi_4(device_t dev, struct sdhci_slot *slot,
    bus_size_t off, uint32_t *data, bus_size_t count)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(dev);
	bus_write_multi_4(sc->mem_res, off, data, count);
}

static void
sdhci_fsl_fdt_irq(void *arg)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = arg;
	sdhci_generic_intr(&sc->slot);
	return;
}

static int
sdhci_fsl_fdt_get_ro(device_t bus, device_t child)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(bus);
	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
}

static bool
sdhci_fsl_fdt_get_card_present(device_t dev, struct sdhci_slot *slot)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(dev);
	return (sdhci_fdt_gpio_get_present(sc->gpio));
}

static int
sdhci_fsl_fdt_attach(device_t dev)
{
	struct sdhci_fsl_fdt_softc *sc;
	uint32_t val, buf_order;
	uintptr_t ocd_data;
	uint64_t clk_hz;
	phandle_t node;
	int rid, ret;
	clk_t clk;

	node = ofw_bus_get_node(dev);
	sc = device_get_softc(dev);
	ocd_data = ofw_bus_search_compatible(dev,
	    sdhci_fsl_fdt_compat_data)->ocd_data;
	sc->soc_data = (struct sdhci_fsl_fdt_soc_data *)ocd_data;
	sc->dev = dev;
	sc->slot.quirks = sc->soc_data->quirks;

	rid = 0;
	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
	    RF_ACTIVE);
	if (sc->mem_res == NULL) {
		device_printf(dev,
		    "Could not allocate resources for controller\n");
		return (ENOMEM);
	}

	rid = 0;
	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
	    RF_ACTIVE);
	if (sc->irq_res == NULL) {
		device_printf(dev,
		    "Could not allocate irq resources for controller\n");
		ret = ENOMEM;
		goto err_free_mem;
	}

	ret = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
	    NULL, sdhci_fsl_fdt_irq, sc, &sc->irq_cookie);
	if (ret != 0) {
		device_printf(dev, "Could not setup IRQ handler\n");
		goto err_free_irq_res;
	}

	ret = clk_get_by_ofw_index(dev, node, 0, &clk);
	if (ret != 0) {
		device_printf(dev, "Parent clock not found\n");
		goto err_free_irq;
	}

	ret = clk_get_freq(clk, &clk_hz);
	if (ret != 0) {
		device_printf(dev,
		    "Could not get parent clock frequency\n");
		goto err_free_irq;
	}

	sc->baseclk_hz = clk_hz / 2;

	/* Figure out eSDHC block endianness before we touch any HW regs. */
	if (OF_hasprop(node, "little-endian")) {
		sc->read = read_le;
		sc->write = write_le;
		buf_order = SDHCI_FSL_PROT_CTRL_BYTE_NATIVE;
	} else {
		sc->read = read_be;
		sc->write = write_be;
		buf_order = SDHCI_FSL_PROT_CTRL_BYTE_SWAP;
	}

	/*
	 * Setting this register affects byte order in SDHCI_BUFFER only.
	 * If the eSDHC block is connected over a big-endian bus, the data
	 * read from/written to the buffer will be already byte swapped.
	 * In such a case, setting SDHCI_FSL_PROT_CTRL_BYTE_SWAP will convert
	 * the byte order again, resulting in a native byte order.
	 * The read/write callbacks accommodate for this behavior.
	 */
	val = RD4(sc, SDHCI_FSL_PROT_CTRL);
	val &= ~SDHCI_FSL_PROT_CTRL_BYTE_MASK;
	WR4(sc, SDHCI_FSL_PROT_CTRL, val | buf_order);

	/*
	 * Gate the SD clock and set its source to peripheral clock / 2.
	 * The frequency in baseclk_hz is set to match this.
	 */
	val = RD4(sc, SDHCI_CLOCK_CONTROL);
	WR4(sc, SDHCI_CLOCK_CONTROL, val & ~SDHCI_FSL_CLK_SDCLKEN);
	val = RD4(sc, SDHCI_FSL_ESDHC_CTRL);
	WR4(sc, SDHCI_FSL_ESDHC_CTRL, val | SDHCI_FSL_ESDHC_CTRL_CLK_DIV2);
	sc->slot.max_clk = sc->baseclk_hz;
	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);

	/*
	 * Set the buffer watermark level to 128 words (512 bytes) for both
	 * read and write. The hardware has a restriction that when the read or
	 * write ready status is asserted, that means you can read exactly the
	 * number of words set in the watermark register before you have to
	 * re-check the status and potentially wait for more data. The main
	 * sdhci driver provides no hook for doing status checking on less than
	 * a full block boundary, so we set the watermark level to be a full
	 * block. Reads and writes where the block size is less than the
	 * watermark size will work correctly too, no need to change the
	 * watermark for different size blocks. However, 128 is the maximum
	 * allowed for the watermark, so PIO is limitted to 512 byte blocks.
	 */
	WR4(sc, SDHCI_FSL_WTMK_LVL, SDHCI_FSL_WTMK_WR_512B |
	    SDHCI_FSL_WTMK_RD_512B);

	ret = sdhci_init_slot(dev, &sc->slot, 0);
	if (ret != 0)
		goto err_free_gpio;
	sc->slot_init_done = true;
	sdhci_start_slot(&sc->slot);

	return (bus_generic_attach(dev));

err_free_gpio:
	sdhci_fdt_gpio_teardown(sc->gpio);
err_free_irq:
	bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie);
err_free_irq_res:
	bus_free_resource(dev, SYS_RES_IRQ, sc->irq_res);
err_free_mem:
	bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
	return (ret);
}

static int
sdhci_fsl_fdt_detach(device_t dev)
{
	struct sdhci_fsl_fdt_softc *sc;

	sc = device_get_softc(dev);
	if (sc->slot_init_done)
		sdhci_cleanup_slot(&sc->slot);
	if (sc->gpio != NULL)
		sdhci_fdt_gpio_teardown(sc->gpio);
	if (sc->irq_cookie != NULL)
		bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie);
	if (sc->irq_res != NULL)
		bus_free_resource(dev, SYS_RES_IRQ, sc->irq_res);
	if (sc->mem_res != NULL)
		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
	return (0);
}

static int
sdhci_fsl_fdt_probe(device_t dev)
{

	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (!ofw_bus_search_compatible(dev,
	   sdhci_fsl_fdt_compat_data)->ocd_data)
		return (ENXIO);

	device_set_desc(dev, "NXP QorIQ Layerscape eSDHC controller");
	return (BUS_PROBE_DEFAULT);
}

static int
sdhci_fsl_fdt_read_ivar(device_t bus, device_t child, int which,
    uintptr_t *result)
{
	struct sdhci_slot *slot = device_get_ivars(child);

	if (which == MMCBR_IVAR_MAX_DATA && (slot->opt & SDHCI_HAVE_DMA)) {
		/*
		 * In the absence of SDMA buffer boundary functionality,
		 * limit the maximum data length per read/write command
		 * to bounce buffer size.
		 */
		*result = howmany(slot->sdma_bbufsz, 512);
		return (0);
	}
	return (sdhci_generic_read_ivar(bus, child, which, result));
}

static const device_method_t sdhci_fsl_fdt_methods[] = {
	/* Device interface. */
	DEVMETHOD(device_probe,			sdhci_fsl_fdt_probe),
	DEVMETHOD(device_attach,		sdhci_fsl_fdt_attach),
	DEVMETHOD(device_detach,		sdhci_fsl_fdt_detach),

	/* Bus interface. */
	DEVMETHOD(bus_read_ivar,		sdhci_fsl_fdt_read_ivar),
	DEVMETHOD(bus_write_ivar,		sdhci_generic_write_ivar),

	/* MMC bridge interface. */
	DEVMETHOD(mmcbr_update_ios,		sdhci_generic_update_ios),
	DEVMETHOD(mmcbr_request,		sdhci_generic_request),
	DEVMETHOD(mmcbr_get_ro,			sdhci_fsl_fdt_get_ro),
	DEVMETHOD(mmcbr_acquire_host,		sdhci_generic_acquire_host),
	DEVMETHOD(mmcbr_release_host,		sdhci_generic_release_host),

	/* SDHCI accessors. */
	DEVMETHOD(sdhci_read_1,			sdhci_fsl_fdt_read_1),
	DEVMETHOD(sdhci_read_2,			sdhci_fsl_fdt_read_2),
	DEVMETHOD(sdhci_read_4,			sdhci_fsl_fdt_read_4),
	DEVMETHOD(sdhci_read_multi_4,		sdhci_fsl_fdt_read_multi_4),
	DEVMETHOD(sdhci_write_1,		sdhci_fsl_fdt_write_1),
	DEVMETHOD(sdhci_write_2,		sdhci_fsl_fdt_write_2),
	DEVMETHOD(sdhci_write_4,		sdhci_fsl_fdt_write_4),
	DEVMETHOD(sdhci_write_multi_4,		sdhci_fsl_fdt_write_multi_4),
	DEVMETHOD(sdhci_get_card_present,	sdhci_fsl_fdt_get_card_present),
	DEVMETHOD_END
};

static devclass_t sdhci_fsl_fdt_devclass;
static driver_t sdhci_fsl_fdt_driver = {
	"sdhci_fsl_fdt",
	sdhci_fsl_fdt_methods,
	sizeof(struct sdhci_fsl_fdt_softc),
};

DRIVER_MODULE(sdhci_fsl_fdt, simplebus, sdhci_fsl_fdt_driver,
    sdhci_fsl_fdt_devclass, NULL, NULL);
SDHCI_DEPEND(sdhci_fsl_fdt);

#ifndef MMCCAM
MMC_DECLARE_BRIDGE(sdhci_fsl_fdt);
#endif