/*-
* Copyright (c) 2012-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
#if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM
#include "ef10_tlv_layout.h"
/* Cursor for TLV partition format */
typedef struct tlv_cursor_s {
uint32_t *block; /* Base of data block */
uint32_t *current; /* Cursor position */
uint32_t *end; /* End tag position */
uint32_t *limit; /* Last dword of data block */
} tlv_cursor_t;
typedef struct nvram_partition_s {
uint16_t type;
uint8_t chip_select;
uint8_t flags;
/*
* The full length of the NVRAM partition.
* This is different from tlv_partition_header.total_length,
* which can be smaller.
*/
uint32_t length;
uint32_t erase_size;
uint32_t *data;
tlv_cursor_t tlv_cursor;
} nvram_partition_t;
static __checkReturn efx_rc_t
tlv_validate_state(
__inout tlv_cursor_t *cursor);
static void
tlv_init_block(
__out uint32_t *block)
{
*block = __CPU_TO_LE_32(TLV_TAG_END);
}
static uint32_t
tlv_tag(
__in tlv_cursor_t *cursor)
{
uint32_t dword, tag;
dword = cursor->current[0];
tag = __LE_TO_CPU_32(dword);
return (tag);
}
static size_t
tlv_length(
__in tlv_cursor_t *cursor)
{
uint32_t dword, length;
if (tlv_tag(cursor) == TLV_TAG_END)
return (0);
dword = cursor->current[1];
length = __LE_TO_CPU_32(dword);
return ((size_t)length);
}
static uint8_t *
tlv_value(
__in tlv_cursor_t *cursor)
{
if (tlv_tag(cursor) == TLV_TAG_END)
return (NULL);
return ((uint8_t *)(&cursor->current[2]));
}
static uint8_t *
tlv_item(
__in tlv_cursor_t *cursor)
{
if (tlv_tag(cursor) == TLV_TAG_END)
return (NULL);
return ((uint8_t *)cursor->current);
}
/*
* TLV item DWORD length is tag + length + value (rounded up to DWORD)
* equivalent to tlv_n_words_for_len in mc-comms tlv.c
*/
#define TLV_DWORD_COUNT(length) \
(1 + 1 + (((length) + sizeof (uint32_t) - 1) / sizeof (uint32_t)))
static uint32_t *
tlv_next_item_ptr(
__in tlv_cursor_t *cursor)
{
uint32_t length;
length = tlv_length(cursor);
return (cursor->current + TLV_DWORD_COUNT(length));
}
static __checkReturn efx_rc_t
tlv_advance(
__inout tlv_cursor_t *cursor)
{
efx_rc_t rc;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
if (cursor->current == cursor->end) {
/* No more tags after END tag */
cursor->current = NULL;
rc = ENOENT;
goto fail2;
}
/* Advance to next item and validate */
cursor->current = tlv_next_item_ptr(cursor);
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static efx_rc_t
tlv_rewind(
__in tlv_cursor_t *cursor)
{
efx_rc_t rc;
cursor->current = cursor->block;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static efx_rc_t
tlv_find(
__inout tlv_cursor_t *cursor,
__in uint32_t tag)
{
efx_rc_t rc;
rc = tlv_rewind(cursor);
while (rc == 0) {
if (tlv_tag(cursor) == tag)
break;
rc = tlv_advance(cursor);
}
return (rc);
}
static __checkReturn efx_rc_t
tlv_validate_state(
__inout tlv_cursor_t *cursor)
{
efx_rc_t rc;
/* Check cursor position */
if (cursor->current < cursor->block) {
rc = EINVAL;
goto fail1;
}
if (cursor->current > cursor->limit) {
rc = EINVAL;
goto fail2;
}
if (tlv_tag(cursor) != TLV_TAG_END) {
/* Check current item has space for tag and length */
if (cursor->current > (cursor->limit - 1)) {
cursor->current = NULL;
rc = EFAULT;
goto fail3;
}
/* Check we have value data for current item and an END tag */
if (tlv_next_item_ptr(cursor) > cursor->limit) {
cursor->current = NULL;
rc = EFAULT;
goto fail4;
}
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static efx_rc_t
tlv_init_cursor(
__out tlv_cursor_t *cursor,
__in uint32_t *block,
__in uint32_t *limit,
__in uint32_t *current)
{
cursor->block = block;
cursor->limit = limit;
cursor->current = current;
cursor->end = NULL;
return (tlv_validate_state(cursor));
}
static __checkReturn efx_rc_t
tlv_init_cursor_from_size(
__out tlv_cursor_t *cursor,
__in_bcount(size)
uint8_t *block,
__in size_t size)
{
uint32_t *limit;
limit = (uint32_t *)(block + size - sizeof (uint32_t));
return (tlv_init_cursor(cursor, (uint32_t *)block,
limit, (uint32_t *)block));
}
static __checkReturn efx_rc_t
tlv_init_cursor_at_offset(
__out tlv_cursor_t *cursor,
__in_bcount(size)
uint8_t *block,
__in size_t size,
__in size_t offset)
{
uint32_t *limit;
uint32_t *current;
limit = (uint32_t *)(block + size - sizeof (uint32_t));
current = (uint32_t *)(block + offset);
return (tlv_init_cursor(cursor, (uint32_t *)block, limit, current));
}
static __checkReturn efx_rc_t
tlv_require_end(
__inout tlv_cursor_t *cursor)
{
uint32_t *pos;
efx_rc_t rc;
if (cursor->end == NULL) {
pos = cursor->current;
if ((rc = tlv_find(cursor, TLV_TAG_END)) != 0)
goto fail1;
cursor->end = cursor->current;
cursor->current = pos;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static size_t
tlv_block_length_used(
__inout tlv_cursor_t *cursor)
{
efx_rc_t rc;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
if ((rc = tlv_require_end(cursor)) != 0)
goto fail2;
/* Return space used (including the END tag) */
return (cursor->end + 1 - cursor->block) * sizeof (uint32_t);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (0);
}
static uint32_t *
tlv_last_segment_end(
__in tlv_cursor_t *cursor)
{
tlv_cursor_t segment_cursor;
uint32_t *last_segment_end = cursor->block;
uint32_t *segment_start = cursor->block;
/*
* Go through each segment and check that it has an end tag. If there
* is no end tag then the previous segment was the last valid one,
* so return the pointer to its end tag.
*/
for (;;) {
if (tlv_init_cursor(&segment_cursor, segment_start,
cursor->limit, segment_start) != 0)
break;
if (tlv_require_end(&segment_cursor) != 0)
break;
last_segment_end = segment_cursor.end;
segment_start = segment_cursor.end + 1;
}
return (last_segment_end);
}
static uint32_t *
tlv_write(
__in tlv_cursor_t *cursor,
__in uint32_t tag,
__in_bcount(size) uint8_t *data,
__in size_t size)
{
uint32_t len = size;
uint32_t *ptr;
ptr = cursor->current;
*ptr++ = __CPU_TO_LE_32(tag);
*ptr++ = __CPU_TO_LE_32(len);
if (len > 0) {
ptr[(len - 1) / sizeof (uint32_t)] = 0;
memcpy(ptr, data, len);
ptr += EFX_P2ROUNDUP(uint32_t, len,
sizeof (uint32_t)) / sizeof (*ptr);
}
return (ptr);
}
static __checkReturn efx_rc_t
tlv_insert(
__inout tlv_cursor_t *cursor,
__in uint32_t tag,
__in_bcount(size)
uint8_t *data,
__in size_t size)
{
unsigned int delta;
uint32_t *last_segment_end;
efx_rc_t rc;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
if ((rc = tlv_require_end(cursor)) != 0)
goto fail2;
if (tag == TLV_TAG_END) {
rc = EINVAL;
goto fail3;
}
last_segment_end = tlv_last_segment_end(cursor);
delta = TLV_DWORD_COUNT(size);
if (last_segment_end + 1 + delta > cursor->limit) {
rc = ENOSPC;
goto fail4;
}
/* Move data up: new space at cursor->current */
memmove(cursor->current + delta, cursor->current,
(last_segment_end + 1 - cursor->current) * sizeof (uint32_t));
/* Adjust the end pointer */
cursor->end += delta;
/* Write new TLV item */
tlv_write(cursor, tag, data, size);
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
tlv_delete(
__inout tlv_cursor_t *cursor)
{
unsigned int delta;
uint32_t *last_segment_end;
efx_rc_t rc;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
if (tlv_tag(cursor) == TLV_TAG_END) {
rc = EINVAL;
goto fail2;
}
delta = TLV_DWORD_COUNT(tlv_length(cursor));
if ((rc = tlv_require_end(cursor)) != 0)
goto fail3;
last_segment_end = tlv_last_segment_end(cursor);
/* Shuffle things down, destroying the item at cursor->current */
memmove(cursor->current, cursor->current + delta,
(last_segment_end + 1 - cursor->current) * sizeof (uint32_t));
/* Zero the new space at the end of the TLV chain */
memset(last_segment_end + 1 - delta, 0, delta * sizeof (uint32_t));
/* Adjust the end pointer */
cursor->end -= delta;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
tlv_modify(
__inout tlv_cursor_t *cursor,
__in uint32_t tag,
__in_bcount(size)
uint8_t *data,
__in size_t size)
{
uint32_t *pos;
unsigned int old_ndwords;
unsigned int new_ndwords;
unsigned int delta;
uint32_t *last_segment_end;
efx_rc_t rc;
if ((rc = tlv_validate_state(cursor)) != 0)
goto fail1;
if (tlv_tag(cursor) == TLV_TAG_END) {
rc = EINVAL;
goto fail2;
}
if (tlv_tag(cursor) != tag) {
rc = EINVAL;
goto fail3;
}
old_ndwords = TLV_DWORD_COUNT(tlv_length(cursor));
new_ndwords = TLV_DWORD_COUNT(size);
if ((rc = tlv_require_end(cursor)) != 0)
goto fail4;
last_segment_end = tlv_last_segment_end(cursor);
if (new_ndwords > old_ndwords) {
/* Expand space used for TLV item */
delta = new_ndwords - old_ndwords;
pos = cursor->current + old_ndwords;
if (last_segment_end + 1 + delta > cursor->limit) {
rc = ENOSPC;
goto fail5;
}
/* Move up: new space at (cursor->current + old_ndwords) */
memmove(pos + delta, pos,
(last_segment_end + 1 - pos) * sizeof (uint32_t));
/* Adjust the end pointer */
cursor->end += delta;
} else if (new_ndwords < old_ndwords) {
/* Shrink space used for TLV item */
delta = old_ndwords - new_ndwords;
pos = cursor->current + new_ndwords;
/* Move down: remove words at (cursor->current + new_ndwords) */
memmove(pos, pos + delta,
(last_segment_end + 1 - pos) * sizeof (uint32_t));
/* Zero the new space at the end of the TLV chain */
memset(last_segment_end + 1 - delta, 0,
delta * sizeof (uint32_t));
/* Adjust the end pointer */
cursor->end -= delta;
}
/* Write new data */
tlv_write(cursor, tag, data, size);
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static uint32_t checksum_tlv_partition(
__in nvram_partition_t *partition)
{
tlv_cursor_t *cursor;
uint32_t *ptr;
uint32_t *end;
uint32_t csum;
size_t len;
cursor = &partition->tlv_cursor;
len = tlv_block_length_used(cursor);
EFSYS_ASSERT3U((len & 3), ==, 0);
csum = 0;
ptr = partition->data;
end = &ptr[len >> 2];
while (ptr < end)
csum += __LE_TO_CPU_32(*ptr++);
return (csum);
}
static __checkReturn efx_rc_t
tlv_update_partition_len_and_cks(
__in tlv_cursor_t *cursor)
{
efx_rc_t rc;
nvram_partition_t partition;
struct tlv_partition_header *header;
struct tlv_partition_trailer *trailer;
size_t new_len;
/*
* We just modified the partition, so the total length may not be
* valid. Don't use tlv_find(), which performs some sanity checks
* that may fail here.
*/
partition.data = cursor->block;
memcpy(&partition.tlv_cursor, cursor, sizeof (*cursor));
header = (struct tlv_partition_header *)partition.data;
/* Sanity check. */
if (__LE_TO_CPU_32(header->tag) != TLV_TAG_PARTITION_HEADER) {
rc = EFAULT;
goto fail1;
}
new_len = tlv_block_length_used(&partition.tlv_cursor);
if (new_len == 0) {
rc = EFAULT;
goto fail2;
}
header->total_length = __CPU_TO_LE_32(new_len);
/* Ensure the modified partition always has a new generation count. */
header->generation = __CPU_TO_LE_32(
__LE_TO_CPU_32(header->generation) + 1);
trailer = (struct tlv_partition_trailer *)((uint8_t *)header +
new_len - sizeof (*trailer) - sizeof (uint32_t));
trailer->generation = header->generation;
trailer->checksum = __CPU_TO_LE_32(
__LE_TO_CPU_32(trailer->checksum) -
checksum_tlv_partition(&partition));
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Validate buffer contents (before writing to flash) */
__checkReturn efx_rc_t
ef10_nvram_buffer_validate(
__in uint32_t partn,
__in_bcount(partn_size) caddr_t partn_data,
__in size_t partn_size)
{
tlv_cursor_t cursor;
struct tlv_partition_header *header;
struct tlv_partition_trailer *trailer;
size_t total_length;
uint32_t cksum;
int pos;
efx_rc_t rc;
EFX_STATIC_ASSERT(sizeof (*header) <= EF10_NVRAM_CHUNK);
if ((partn_data == NULL) || (partn_size == 0)) {
rc = EINVAL;
goto fail1;
}
/* The partition header must be the first item (at offset zero) */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)partn_data,
partn_size)) != 0) {
rc = EFAULT;
goto fail2;
}
if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail3;
}
header = (struct tlv_partition_header *)tlv_item(&cursor);
/* Check TLV partition length (includes the END tag) */
total_length = __LE_TO_CPU_32(header->total_length);
if (total_length > partn_size) {
rc = EFBIG;
goto fail4;
}
/* Check partition header matches partn */
if (__LE_TO_CPU_16(header->type_id) != partn) {
rc = EINVAL;
goto fail5;
}
/* Check partition ends with PARTITION_TRAILER and END tags */
if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) {
rc = EINVAL;
goto fail6;
}
trailer = (struct tlv_partition_trailer *)tlv_item(&cursor);
if ((rc = tlv_advance(&cursor)) != 0) {
rc = EINVAL;
goto fail7;
}
if (tlv_tag(&cursor) != TLV_TAG_END) {
rc = EINVAL;
goto fail8;
}
/* Check generation counts are consistent */
if (trailer->generation != header->generation) {
rc = EINVAL;
goto fail9;
}
/* Verify partition checksum */
cksum = 0;
for (pos = 0; (size_t)pos < total_length; pos += sizeof (uint32_t)) {
cksum += *((uint32_t *)(partn_data + pos));
}
if (cksum != 0) {
rc = EINVAL;
goto fail10;
}
return (0);
fail10:
EFSYS_PROBE(fail10);
fail9:
EFSYS_PROBE(fail9);
fail8:
EFSYS_PROBE(fail8);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_nvram_buffer_init(
__out_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size)
{
uint32_t *buf = (uint32_t *)bufferp;
memset(buf, 0xff, buffer_size);
tlv_init_block(buf);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_create(
__in uint32_t partn_type,
__out_bcount(partn_size)
caddr_t partn_data,
__in size_t partn_size)
{
uint32_t *buf = (uint32_t *)partn_data;
efx_rc_t rc;
tlv_cursor_t cursor;
struct tlv_partition_header header;
struct tlv_partition_trailer trailer;
unsigned int min_buf_size = sizeof (struct tlv_partition_header) +
sizeof (struct tlv_partition_trailer);
if (partn_size < min_buf_size) {
rc = EINVAL;
goto fail1;
}
ef10_nvram_buffer_init(partn_data, partn_size);
if ((rc = tlv_init_cursor(&cursor, buf,
(uint32_t *)((uint8_t *)buf + partn_size),
buf)) != 0) {
goto fail2;
}
header.tag = __CPU_TO_LE_32(TLV_TAG_PARTITION_HEADER);
header.length = __CPU_TO_LE_32(sizeof (header) - 8);
header.type_id = __CPU_TO_LE_16(partn_type);
header.preset = 0;
header.generation = __CPU_TO_LE_32(1);
header.total_length = 0; /* This will be fixed below. */
if ((rc = tlv_insert(
&cursor, TLV_TAG_PARTITION_HEADER,
(uint8_t *)&header.type_id, sizeof (header) - 8)) != 0)
goto fail3;
if ((rc = tlv_advance(&cursor)) != 0)
goto fail4;
trailer.tag = __CPU_TO_LE_32(TLV_TAG_PARTITION_TRAILER);
trailer.length = __CPU_TO_LE_32(sizeof (trailer) - 8);
trailer.generation = header.generation;
trailer.checksum = 0; /* This will be fixed below. */
if ((rc = tlv_insert(&cursor, TLV_TAG_PARTITION_TRAILER,
(uint8_t *)&trailer.generation, sizeof (trailer) - 8)) != 0)
goto fail5;
if ((rc = tlv_update_partition_len_and_cks(&cursor)) != 0)
goto fail6;
/* Check that the partition is valid. */
if ((rc = ef10_nvram_buffer_validate(partn_type,
partn_data, partn_size)) != 0)
goto fail7;
return (0);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static uint32_t
byte_offset(
__in uint32_t *position,
__in uint32_t *base)
{
return (uint32_t)((uint8_t *)position - (uint8_t *)base);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_find_item_start(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__out uint32_t *startp)
{
/* Read past partition header to find start address of the first key */
tlv_cursor_t cursor;
efx_rc_t rc;
/* A PARTITION_HEADER tag must be the first item (at offset zero) */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)bufferp,
buffer_size)) != 0) {
rc = EFAULT;
goto fail1;
}
if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail2;
}
if ((rc = tlv_advance(&cursor)) != 0) {
rc = EINVAL;
goto fail3;
}
*startp = byte_offset(cursor.current, cursor.block);
if ((rc = tlv_require_end(&cursor)) != 0)
goto fail4;
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_find_end(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__out uint32_t *endp)
{
/* Read to end of partition */
tlv_cursor_t cursor;
efx_rc_t rc;
uint32_t *segment_used;
_NOTE(ARGUNUSED(offset))
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)bufferp,
buffer_size)) != 0) {
rc = EFAULT;
goto fail1;
}
segment_used = cursor.block;
/*
* Go through each segment and check that it has an end tag. If there
* is no end tag then the previous segment was the last valid one,
* so return the used space including that end tag.
*/
while (tlv_tag(&cursor) == TLV_TAG_PARTITION_HEADER) {
if (tlv_require_end(&cursor) != 0) {
if (segment_used == cursor.block) {
/*
* First segment is corrupt, so there is
* no valid data in partition.
*/
rc = EINVAL;
goto fail2;
}
break;
}
segment_used = cursor.end + 1;
cursor.current = segment_used;
}
/* Return space used (including the END tag) */
*endp = (segment_used - cursor.block) * sizeof (uint32_t);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn __success(return != B_FALSE) boolean_t
ef10_nvram_buffer_find_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__out uint32_t *startp,
__out uint32_t *lengthp)
{
/* Find TLV at offset and return key start and length */
tlv_cursor_t cursor;
uint8_t *key;
uint32_t tag;
if (tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset) != 0) {
return (B_FALSE);
}
while ((key = tlv_item(&cursor)) != NULL) {
tag = tlv_tag(&cursor);
if (tag == TLV_TAG_PARTITION_HEADER ||
tag == TLV_TAG_PARTITION_TRAILER) {
if (tlv_advance(&cursor) != 0) {
break;
}
continue;
}
*startp = byte_offset(cursor.current, cursor.block);
*lengthp = byte_offset(tlv_next_item_ptr(&cursor),
cursor.current);
return (B_TRUE);
}
return (B_FALSE);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_peek_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__out uint32_t *tagp,
__out uint32_t *lengthp,
__out uint32_t *value_offsetp)
{
efx_rc_t rc;
tlv_cursor_t cursor;
uint32_t tag;
if ((rc = tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset)) != 0) {
goto fail1;
}
tag = tlv_tag(&cursor);
*tagp = tag;
if (tag == TLV_TAG_END) {
/*
* To allow stepping over the END tag, report the full tag
* length and a zero length value.
*/
*lengthp = sizeof (tag);
*value_offsetp = sizeof (tag);
} else {
*lengthp = byte_offset(tlv_next_item_ptr(&cursor),
cursor.current);
*value_offsetp = byte_offset((uint32_t *)tlv_value(&cursor),
cursor.current);
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_get_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__in uint32_t length,
__out uint32_t *tagp,
__out_bcount_part(value_max_size, *lengthp)
caddr_t valuep,
__in size_t value_max_size,
__out uint32_t *lengthp)
{
efx_rc_t rc;
tlv_cursor_t cursor;
uint32_t value_length;
if (buffer_size < (offset + length)) {
rc = ENOSPC;
goto fail1;
}
if ((rc = tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset)) != 0) {
goto fail2;
}
value_length = tlv_length(&cursor);
if (value_max_size < value_length) {
rc = ENOSPC;
goto fail3;
}
memcpy(valuep, tlv_value(&cursor), value_length);
*tagp = tlv_tag(&cursor);
*lengthp = value_length;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_insert_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__in uint32_t tag,
__in_bcount(length) caddr_t valuep,
__in uint32_t length,
__out uint32_t *lengthp)
{
efx_rc_t rc;
tlv_cursor_t cursor;
if ((rc = tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset)) != 0) {
goto fail1;
}
rc = tlv_insert(&cursor, tag, (uint8_t *)valuep, length);
if (rc != 0)
goto fail2;
*lengthp = byte_offset(tlv_next_item_ptr(&cursor),
cursor.current);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_modify_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__in uint32_t tag,
__in_bcount(length) caddr_t valuep,
__in uint32_t length,
__out uint32_t *lengthp)
{
efx_rc_t rc;
tlv_cursor_t cursor;
if ((rc = tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset)) != 0) {
goto fail1;
}
rc = tlv_modify(&cursor, tag, (uint8_t *)valuep, length);
if (rc != 0) {
goto fail2;
}
*lengthp = byte_offset(tlv_next_item_ptr(&cursor),
cursor.current);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_delete_item(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size,
__in uint32_t offset,
__in uint32_t length,
__in uint32_t end)
{
efx_rc_t rc;
tlv_cursor_t cursor;
_NOTE(ARGUNUSED(length, end))
if ((rc = tlv_init_cursor_at_offset(&cursor, (uint8_t *)bufferp,
buffer_size, offset)) != 0) {
goto fail1;
}
if ((rc = tlv_delete(&cursor)) != 0)
goto fail2;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_buffer_finish(
__in_bcount(buffer_size)
caddr_t bufferp,
__in size_t buffer_size)
{
efx_rc_t rc;
tlv_cursor_t cursor;
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)bufferp,
buffer_size)) != 0) {
rc = EFAULT;
goto fail1;
}
if ((rc = tlv_require_end(&cursor)) != 0)
goto fail2;
if ((rc = tlv_update_partition_len_and_cks(&cursor)) != 0)
goto fail3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Read and validate a segment from a partition. A segment is a complete
* tlv chain between PARTITION_HEADER and PARTITION_END tags. There may
* be multiple segments in a partition, so seg_offset allows segments
* beyond the first to be read.
*/
static __checkReturn efx_rc_t
ef10_nvram_read_tlv_segment(
__in efx_nic_t *enp,
__in uint32_t partn,
__in size_t seg_offset,
__in_bcount(max_seg_size) caddr_t seg_data,
__in size_t max_seg_size)
{
tlv_cursor_t cursor;
struct tlv_partition_header *header;
struct tlv_partition_trailer *trailer;
size_t total_length;
uint32_t cksum;
int pos;
efx_rc_t rc;
EFX_STATIC_ASSERT(sizeof (*header) <= EF10_NVRAM_CHUNK);
if ((seg_data == NULL) || (max_seg_size == 0)) {
rc = EINVAL;
goto fail1;
}
/* Read initial chunk of the segment, starting at offset */
if ((rc = ef10_nvram_partn_read_mode(enp, partn, seg_offset, seg_data,
EF10_NVRAM_CHUNK,
MC_CMD_NVRAM_READ_IN_V2_TARGET_CURRENT)) != 0) {
goto fail2;
}
/* A PARTITION_HEADER tag must be the first item at the given offset */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data,
max_seg_size)) != 0) {
rc = EFAULT;
goto fail3;
}
if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail4;
}
header = (struct tlv_partition_header *)tlv_item(&cursor);
/* Check TLV segment length (includes the END tag) */
total_length = __LE_TO_CPU_32(header->total_length);
if (total_length > max_seg_size) {
rc = EFBIG;
goto fail5;
}
/* Read the remaining segment content */
if (total_length > EF10_NVRAM_CHUNK) {
if ((rc = ef10_nvram_partn_read_mode(enp, partn,
seg_offset + EF10_NVRAM_CHUNK,
seg_data + EF10_NVRAM_CHUNK,
total_length - EF10_NVRAM_CHUNK,
MC_CMD_NVRAM_READ_IN_V2_TARGET_CURRENT)) != 0)
goto fail6;
}
/* Check segment ends with PARTITION_TRAILER and END tags */
if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) {
rc = EINVAL;
goto fail7;
}
trailer = (struct tlv_partition_trailer *)tlv_item(&cursor);
if ((rc = tlv_advance(&cursor)) != 0) {
rc = EINVAL;
goto fail8;
}
if (tlv_tag(&cursor) != TLV_TAG_END) {
rc = EINVAL;
goto fail9;
}
/* Check data read from segment is consistent */
if (trailer->generation != header->generation) {
/*
* The partition data may have been modified between successive
* MCDI NVRAM_READ requests by the MC or another PCI function.
*
* The caller must retry to obtain consistent partition data.
*/
rc = EAGAIN;
goto fail10;
}
/* Verify segment checksum */
cksum = 0;
for (pos = 0; (size_t)pos < total_length; pos += sizeof (uint32_t)) {
cksum += *((uint32_t *)(seg_data + pos));
}
if (cksum != 0) {
rc = EINVAL;
goto fail11;
}
return (0);
fail11:
EFSYS_PROBE(fail11);
fail10:
EFSYS_PROBE(fail10);
fail9:
EFSYS_PROBE(fail9);
fail8:
EFSYS_PROBE(fail8);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Read a single TLV item from a host memory
* buffer containing a TLV formatted segment.
*/
__checkReturn efx_rc_t
ef10_nvram_buf_read_tlv(
__in efx_nic_t *enp,
__in_bcount(max_seg_size) caddr_t seg_data,
__in size_t max_seg_size,
__in uint32_t tag,
__deref_out_bcount_opt(*sizep) caddr_t *datap,
__out size_t *sizep)
{
tlv_cursor_t cursor;
caddr_t data;
size_t length;
caddr_t value;
efx_rc_t rc;
_NOTE(ARGUNUSED(enp))
if ((seg_data == NULL) || (max_seg_size == 0)) {
rc = EINVAL;
goto fail1;
}
/* Find requested TLV tag in segment data */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data,
max_seg_size)) != 0) {
rc = EFAULT;
goto fail2;
}
if ((rc = tlv_find(&cursor, tag)) != 0) {
rc = ENOENT;
goto fail3;
}
value = (caddr_t)tlv_value(&cursor);
length = tlv_length(&cursor);
if (length == 0)
data = NULL;
else {
/* Copy out data from TLV item */
EFSYS_KMEM_ALLOC(enp->en_esip, length, data);
if (data == NULL) {
rc = ENOMEM;
goto fail4;
}
memcpy(data, value, length);
}
*datap = data;
*sizep = length;
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Read a single TLV item from the first segment in a TLV formatted partition */
__checkReturn efx_rc_t
ef10_nvram_partn_read_tlv(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t tag,
__deref_out_bcount_opt(*seg_sizep) caddr_t *seg_datap,
__out size_t *seg_sizep)
{
caddr_t seg_data = NULL;
size_t partn_size = 0;
size_t length;
caddr_t data;
int retry;
efx_rc_t rc;
/* Allocate sufficient memory for the entire partition */
if ((rc = ef10_nvram_partn_size(enp, partn, &partn_size)) != 0)
goto fail1;
if (partn_size == 0) {
rc = ENOENT;
goto fail2;
}
EFSYS_KMEM_ALLOC(enp->en_esip, partn_size, seg_data);
if (seg_data == NULL) {
rc = ENOMEM;
goto fail3;
}
/*
* Read the first segment in a TLV partition. Retry until consistent
* segment contents are returned. Inconsistent data may be read if:
* a) the segment contents are invalid
* b) the MC has rebooted while we were reading the partition
* c) the partition has been modified while we were reading it
* Limit retry attempts to ensure forward progress.
*/
retry = 10;
do {
if ((rc = ef10_nvram_read_tlv_segment(enp, partn, 0,
seg_data, partn_size)) != 0)
--retry;
} while ((rc == EAGAIN) && (retry > 0));
if (rc != 0) {
/* Failed to obtain consistent segment data */
if (rc == EAGAIN)
rc = EIO;
goto fail4;
}
if ((rc = ef10_nvram_buf_read_tlv(enp, seg_data, partn_size,
tag, &data, &length)) != 0)
goto fail5;
EFSYS_KMEM_FREE(enp->en_esip, partn_size, seg_data);
*seg_datap = data;
*seg_sizep = length;
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
EFSYS_KMEM_FREE(enp->en_esip, partn_size, seg_data);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Compute the size of a segment. */
static __checkReturn efx_rc_t
ef10_nvram_buf_segment_size(
__in caddr_t seg_data,
__in size_t max_seg_size,
__out size_t *seg_sizep)
{
efx_rc_t rc;
tlv_cursor_t cursor;
struct tlv_partition_header *header;
uint32_t cksum;
int pos;
uint32_t *end_tag_position;
uint32_t segment_length;
/* A PARTITION_HEADER tag must be the first item at the given offset */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data,
max_seg_size)) != 0) {
rc = EFAULT;
goto fail1;
}
if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail2;
}
header = (struct tlv_partition_header *)tlv_item(&cursor);
/* Check TLV segment length (includes the END tag) */
*seg_sizep = __LE_TO_CPU_32(header->total_length);
if (*seg_sizep > max_seg_size) {
rc = EFBIG;
goto fail3;
}
/* Check segment ends with PARTITION_TRAILER and END tags */
if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) {
rc = EINVAL;
goto fail4;
}
if ((rc = tlv_advance(&cursor)) != 0) {
rc = EINVAL;
goto fail5;
}
if (tlv_tag(&cursor) != TLV_TAG_END) {
rc = EINVAL;
goto fail6;
}
end_tag_position = cursor.current;
/* Verify segment checksum */
cksum = 0;
for (pos = 0; (size_t)pos < *seg_sizep; pos += sizeof (uint32_t)) {
cksum += *((uint32_t *)(seg_data + pos));
}
if (cksum != 0) {
rc = EINVAL;
goto fail7;
}
/*
* Calculate total length from HEADER to END tags and compare to
* max_seg_size and the total_length field in the HEADER tag.
*/
segment_length = tlv_block_length_used(&cursor);
if (segment_length > max_seg_size) {
rc = EINVAL;
goto fail8;
}
if (segment_length != *seg_sizep) {
rc = EINVAL;
goto fail9;
}
/* Skip over the first HEADER tag. */
rc = tlv_rewind(&cursor);
rc = tlv_advance(&cursor);
while (rc == 0) {
if (tlv_tag(&cursor) == TLV_TAG_END) {
/* Check that the END tag is the one found earlier. */
if (cursor.current != end_tag_position)
goto fail10;
break;
}
/* Check for duplicate HEADER tags before the END tag. */
if (tlv_tag(&cursor) == TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail11;
}
rc = tlv_advance(&cursor);
}
if (rc != 0)
goto fail12;
return (0);
fail12:
EFSYS_PROBE(fail12);
fail11:
EFSYS_PROBE(fail11);
fail10:
EFSYS_PROBE(fail10);
fail9:
EFSYS_PROBE(fail9);
fail8:
EFSYS_PROBE(fail8);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Add or update a single TLV item in a host memory buffer containing a TLV
* formatted segment. Historically partitions consisted of only one segment.
*/
__checkReturn efx_rc_t
ef10_nvram_buf_write_tlv(
__inout_bcount(max_seg_size) caddr_t seg_data,
__in size_t max_seg_size,
__in uint32_t tag,
__in_bcount(tag_size) caddr_t tag_data,
__in size_t tag_size,
__out size_t *total_lengthp)
{
tlv_cursor_t cursor;
struct tlv_partition_header *header;
struct tlv_partition_trailer *trailer;
uint32_t generation;
uint32_t cksum;
int pos;
efx_rc_t rc;
/* A PARTITION_HEADER tag must be the first item (at offset zero) */
if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data,
max_seg_size)) != 0) {
rc = EFAULT;
goto fail1;
}
if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) {
rc = EINVAL;
goto fail2;
}
header = (struct tlv_partition_header *)tlv_item(&cursor);
/* Update the TLV chain to contain the new data */
if ((rc = tlv_find(&cursor, tag)) == 0) {
/* Modify existing TLV item */
if ((rc = tlv_modify(&cursor, tag,
(uint8_t *)tag_data, tag_size)) != 0)
goto fail3;
} else {
/* Insert a new TLV item before the PARTITION_TRAILER */
rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER);
if (rc != 0) {
rc = EINVAL;
goto fail4;
}
if ((rc = tlv_insert(&cursor, tag,
(uint8_t *)tag_data, tag_size)) != 0) {
rc = EINVAL;
goto fail5;
}
}
/* Find the trailer tag */
if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) {
rc = EINVAL;
goto fail6;
}
trailer = (struct tlv_partition_trailer *)tlv_item(&cursor);
/* Update PARTITION_HEADER and PARTITION_TRAILER fields */
*total_lengthp = tlv_block_length_used(&cursor);
if (*total_lengthp > max_seg_size) {
rc = ENOSPC;
goto fail7;
}
generation = __LE_TO_CPU_32(header->generation) + 1;
header->total_length = __CPU_TO_LE_32(*total_lengthp);
header->generation = __CPU_TO_LE_32(generation);
trailer->generation = __CPU_TO_LE_32(generation);
/* Recompute PARTITION_TRAILER checksum */
trailer->checksum = 0;
cksum = 0;
for (pos = 0; (size_t)pos < *total_lengthp; pos += sizeof (uint32_t)) {
cksum += *((uint32_t *)(seg_data + pos));
}
trailer->checksum = ~cksum + 1;
return (0);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Add or update a single TLV item in the first segment of a TLV formatted
* dynamic config partition. The first segment is the current active
* configuration.
*/
__checkReturn efx_rc_t
ef10_nvram_partn_write_tlv(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t tag,
__in_bcount(size) caddr_t data,
__in size_t size)
{
return ef10_nvram_partn_write_segment_tlv(enp, partn, tag, data,
size, B_FALSE);
}
/*
* Read a segment from nvram at the given offset into a buffer (segment_data)
* and optionally write a new tag to it.
*/
static __checkReturn efx_rc_t
ef10_nvram_segment_write_tlv(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t tag,
__in_bcount(size) caddr_t data,
__in size_t size,
__inout caddr_t *seg_datap,
__inout size_t *partn_offsetp,
__inout size_t *src_remain_lenp,
__inout size_t *dest_remain_lenp,
__in boolean_t write)
{
efx_rc_t rc;
efx_rc_t status;
size_t original_segment_size;
size_t modified_segment_size;
/*
* Read the segment from NVRAM into the segment_data buffer and validate
* it, returning if it does not validate. This is not a failure unless
* this is the first segment in a partition. In this case the caller
* must propagate the error.
*/
status = ef10_nvram_read_tlv_segment(enp, partn, *partn_offsetp,
*seg_datap, *src_remain_lenp);
if (status != 0) {
rc = EINVAL;
goto fail1;
}
status = ef10_nvram_buf_segment_size(*seg_datap,
*src_remain_lenp, &original_segment_size);
if (status != 0) {
rc = EINVAL;
goto fail2;
}
if (write) {
/* Update the contents of the segment in the buffer */
if ((rc = ef10_nvram_buf_write_tlv(*seg_datap,
*dest_remain_lenp, tag, data, size,
&modified_segment_size)) != 0) {
goto fail3;
}
*dest_remain_lenp -= modified_segment_size;
*seg_datap += modified_segment_size;
} else {
/*
* We won't modify this segment, but still need to update the
* remaining lengths and pointers.
*/
*dest_remain_lenp -= original_segment_size;
*seg_datap += original_segment_size;
}
*partn_offsetp += original_segment_size;
*src_remain_lenp -= original_segment_size;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Add or update a single TLV item in either the first segment or in all
* segments in a TLV formatted dynamic config partition. Dynamic config
* partitions on boards that support RFID are divided into a number of segments,
* each formatted like a partition, with header, trailer and end tags. The first
* segment is the current active configuration.
*
* The segments are initialised by manftest and each contain a different
* configuration e.g. firmware variant. The firmware can be instructed
* via RFID to copy a segment to replace the first segment, hence changing the
* active configuration. This allows ops to change the configuration of a board
* prior to shipment using RFID.
*
* Changes to the dynamic config may need to be written to all segments (e.g.
* firmware versions) or just the first segment (changes to the active
* configuration). See SF-111324-SW "The use of RFID in Solarflare Products".
* If only the first segment is written the code still needs to be aware of the
* possible presence of subsequent segments as writing to a segment may cause
* its size to increase, which would overwrite the subsequent segments and
* invalidate them.
*/
__checkReturn efx_rc_t
ef10_nvram_partn_write_segment_tlv(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t tag,
__in_bcount(size) caddr_t data,
__in size_t size,
__in boolean_t all_segments)
{
size_t partn_size = 0;
caddr_t partn_data;
size_t total_length = 0;
efx_rc_t rc;
size_t current_offset = 0;
size_t remaining_original_length;
size_t remaining_modified_length;
caddr_t segment_data;
EFSYS_ASSERT3U(partn, ==, NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG);
/* Allocate sufficient memory for the entire partition */
if ((rc = ef10_nvram_partn_size(enp, partn, &partn_size)) != 0)
goto fail1;
EFSYS_KMEM_ALLOC(enp->en_esip, partn_size, partn_data);
if (partn_data == NULL) {
rc = ENOMEM;
goto fail2;
}
remaining_original_length = partn_size;
remaining_modified_length = partn_size;
segment_data = partn_data;
/* Lock the partition */
if ((rc = ef10_nvram_partn_lock(enp, partn)) != 0)
goto fail3;
/* Iterate over each (potential) segment to update it. */
do {
boolean_t write = all_segments || current_offset == 0;
rc = ef10_nvram_segment_write_tlv(enp, partn, tag, data, size,
&segment_data, ¤t_offset, &remaining_original_length,
&remaining_modified_length, write);
if (rc != 0) {
if (current_offset == 0) {
/*
* If no data has been read then the first
* segment is invalid, which is an error.
*/
goto fail4;
}
break;
}
} while (current_offset < partn_size);
total_length = segment_data - partn_data;
/*
* We've run out of space. This should actually be dealt with by
* ef10_nvram_buf_write_tlv returning ENOSPC.
*/
if (total_length > partn_size) {
rc = ENOSPC;
goto fail5;
}
/* Erase the whole partition in NVRAM */
if ((rc = ef10_nvram_partn_erase(enp, partn, 0, partn_size)) != 0)
goto fail6;
/* Write new partition contents from the buffer to NVRAM */
if ((rc = ef10_nvram_partn_write(enp, partn, 0, partn_data,
total_length)) != 0)
goto fail7;
/* Unlock the partition */
(void) ef10_nvram_partn_unlock(enp, partn, NULL);
EFSYS_KMEM_FREE(enp->en_esip, partn_size, partn_data);
return (0);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
(void) ef10_nvram_partn_unlock(enp, partn, NULL);
fail3:
EFSYS_PROBE(fail3);
EFSYS_KMEM_FREE(enp->en_esip, partn_size, partn_data);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Get the size of a NVRAM partition. This is the total size allocated in nvram,
* not the data used by the segments in the partition.
*/
__checkReturn efx_rc_t
ef10_nvram_partn_size(
__in efx_nic_t *enp,
__in uint32_t partn,
__out size_t *sizep)
{
efx_rc_t rc;
if ((rc = efx_mcdi_nvram_info(enp, partn, sizep,
NULL, NULL, NULL)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_lock(
__in efx_nic_t *enp,
__in uint32_t partn)
{
efx_rc_t rc;
if ((rc = efx_mcdi_nvram_update_start(enp, partn)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_read_mode(
__in efx_nic_t *enp,
__in uint32_t partn,
__in unsigned int offset,
__out_bcount(size) caddr_t data,
__in size_t size,
__in uint32_t mode)
{
size_t chunk;
efx_rc_t rc;
while (size > 0) {
chunk = MIN(size, EF10_NVRAM_CHUNK);
if ((rc = efx_mcdi_nvram_read(enp, partn, offset,
data, chunk, mode)) != 0) {
goto fail1;
}
size -= chunk;
data += chunk;
offset += chunk;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_read(
__in efx_nic_t *enp,
__in uint32_t partn,
__in unsigned int offset,
__out_bcount(size) caddr_t data,
__in size_t size)
{
/*
* An A/B partition has two data stores (current and backup).
* Read requests which come in through the EFX API expect to read the
* current, active store of an A/B partition. For non A/B partitions,
* there is only a single store and so the mode param is ignored.
*/
return ef10_nvram_partn_read_mode(enp, partn, offset, data, size,
MC_CMD_NVRAM_READ_IN_V2_TARGET_CURRENT);
}
__checkReturn efx_rc_t
ef10_nvram_partn_read_backup(
__in efx_nic_t *enp,
__in uint32_t partn,
__in unsigned int offset,
__out_bcount(size) caddr_t data,
__in size_t size)
{
/*
* An A/B partition has two data stores (current and backup).
* Read the backup store of an A/B partition (i.e. the store currently
* being written to if the partition is locked).
*
* This is needed when comparing the existing partition content to avoid
* unnecessary writes, or to read back what has been written to check
* that the writes have succeeded.
*/
return ef10_nvram_partn_read_mode(enp, partn, offset, data, size,
MC_CMD_NVRAM_READ_IN_V2_TARGET_BACKUP);
}
__checkReturn efx_rc_t
ef10_nvram_partn_erase(
__in efx_nic_t *enp,
__in uint32_t partn,
__in unsigned int offset,
__in size_t size)
{
efx_rc_t rc;
uint32_t erase_size;
if ((rc = efx_mcdi_nvram_info(enp, partn, NULL, NULL,
&erase_size, NULL)) != 0)
goto fail1;
if (erase_size == 0) {
if ((rc = efx_mcdi_nvram_erase(enp, partn, offset, size)) != 0)
goto fail2;
} else {
if (size % erase_size != 0) {
rc = EINVAL;
goto fail3;
}
while (size > 0) {
if ((rc = efx_mcdi_nvram_erase(enp, partn, offset,
erase_size)) != 0)
goto fail4;
offset += erase_size;
size -= erase_size;
}
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_write(
__in efx_nic_t *enp,
__in uint32_t partn,
__in unsigned int offset,
__in_bcount(size) caddr_t data,
__in size_t size)
{
size_t chunk;
uint32_t write_size;
efx_rc_t rc;
if ((rc = efx_mcdi_nvram_info(enp, partn, NULL, NULL,
NULL, &write_size)) != 0)
goto fail1;
if (write_size != 0) {
/*
* Check that the size is a multiple of the write chunk size if
* the write chunk size is available.
*/
if (size % write_size != 0) {
rc = EINVAL;
goto fail2;
}
} else {
write_size = EF10_NVRAM_CHUNK;
}
while (size > 0) {
chunk = MIN(size, write_size);
if ((rc = efx_mcdi_nvram_write(enp, partn, offset,
data, chunk)) != 0) {
goto fail3;
}
size -= chunk;
data += chunk;
offset += chunk;
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_unlock(
__in efx_nic_t *enp,
__in uint32_t partn,
__out_opt uint32_t *verify_resultp)
{
boolean_t reboot = B_FALSE;
efx_rc_t rc;
if (verify_resultp != NULL)
*verify_resultp = MC_CMD_NVRAM_VERIFY_RC_UNKNOWN;
rc = efx_mcdi_nvram_update_finish(enp, partn, reboot, verify_resultp);
if (rc != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_set_version(
__in efx_nic_t *enp,
__in uint32_t partn,
__in_ecount(4) uint16_t version[4])
{
struct tlv_partition_version partn_version;
size_t size;
efx_rc_t rc;
/* Add or modify partition version TLV item */
partn_version.version_w = __CPU_TO_LE_16(version[0]);
partn_version.version_x = __CPU_TO_LE_16(version[1]);
partn_version.version_y = __CPU_TO_LE_16(version[2]);
partn_version.version_z = __CPU_TO_LE_16(version[3]);
size = sizeof (partn_version) - (2 * sizeof (uint32_t));
/* Write the version number to all segments in the partition */
if ((rc = ef10_nvram_partn_write_segment_tlv(enp,
NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,
TLV_TAG_PARTITION_VERSION(partn),
(caddr_t)&partn_version.version_w, size, B_TRUE)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */
#if EFSYS_OPT_NVRAM
typedef struct ef10_parttbl_entry_s {
unsigned int partn;
unsigned int port_mask;
efx_nvram_type_t nvtype;
} ef10_parttbl_entry_t;
/* Port mask values */
#define PORT_1 (1u << 1)
#define PORT_2 (1u << 2)
#define PORT_3 (1u << 3)
#define PORT_4 (1u << 4)
#define PORT_ALL (0xffffffffu)
#define PARTN_MAP_ENTRY(partn, port_mask, nvtype) \
{ (NVRAM_PARTITION_TYPE_##partn), (PORT_##port_mask), (EFX_NVRAM_##nvtype) }
/* Translate EFX NVRAM types to firmware partition types */
static ef10_parttbl_entry_t hunt_parttbl[] = {
/* partn ports nvtype */
PARTN_MAP_ENTRY(MC_FIRMWARE, ALL, MC_FIRMWARE),
PARTN_MAP_ENTRY(MC_FIRMWARE_BACKUP, ALL, MC_GOLDEN),
PARTN_MAP_ENTRY(EXPANSION_ROM, ALL, BOOTROM),
PARTN_MAP_ENTRY(EXPROM_CONFIG_PORT0, 1, BOOTROM_CFG),
PARTN_MAP_ENTRY(EXPROM_CONFIG_PORT1, 2, BOOTROM_CFG),
PARTN_MAP_ENTRY(EXPROM_CONFIG_PORT2, 3, BOOTROM_CFG),
PARTN_MAP_ENTRY(EXPROM_CONFIG_PORT3, 4, BOOTROM_CFG),
PARTN_MAP_ENTRY(DYNAMIC_CONFIG, ALL, DYNAMIC_CFG),
PARTN_MAP_ENTRY(FPGA, ALL, FPGA),
PARTN_MAP_ENTRY(FPGA_BACKUP, ALL, FPGA_BACKUP),
PARTN_MAP_ENTRY(LICENSE, ALL, LICENSE),
};
static ef10_parttbl_entry_t medford_parttbl[] = {
/* partn ports nvtype */
PARTN_MAP_ENTRY(MC_FIRMWARE, ALL, MC_FIRMWARE),
PARTN_MAP_ENTRY(MC_FIRMWARE_BACKUP, ALL, MC_GOLDEN),
PARTN_MAP_ENTRY(EXPANSION_ROM, ALL, BOOTROM),
PARTN_MAP_ENTRY(EXPROM_CONFIG, ALL, BOOTROM_CFG),
PARTN_MAP_ENTRY(DYNAMIC_CONFIG, ALL, DYNAMIC_CFG),
PARTN_MAP_ENTRY(FPGA, ALL, FPGA),
PARTN_MAP_ENTRY(FPGA_BACKUP, ALL, FPGA_BACKUP),
PARTN_MAP_ENTRY(LICENSE, ALL, LICENSE),
PARTN_MAP_ENTRY(EXPANSION_UEFI, ALL, UEFIROM),
PARTN_MAP_ENTRY(MUM_FIRMWARE, ALL, MUM_FIRMWARE),
};
static ef10_parttbl_entry_t medford2_parttbl[] = {
/* partn ports nvtype */
PARTN_MAP_ENTRY(MC_FIRMWARE, ALL, MC_FIRMWARE),
PARTN_MAP_ENTRY(MC_FIRMWARE_BACKUP, ALL, MC_GOLDEN),
PARTN_MAP_ENTRY(EXPANSION_ROM, ALL, BOOTROM),
PARTN_MAP_ENTRY(EXPROM_CONFIG, ALL, BOOTROM_CFG),
PARTN_MAP_ENTRY(DYNAMIC_CONFIG, ALL, DYNAMIC_CFG),
PARTN_MAP_ENTRY(FPGA, ALL, FPGA),
PARTN_MAP_ENTRY(FPGA_BACKUP, ALL, FPGA_BACKUP),
PARTN_MAP_ENTRY(LICENSE, ALL, LICENSE),
PARTN_MAP_ENTRY(EXPANSION_UEFI, ALL, UEFIROM),
PARTN_MAP_ENTRY(MUM_FIRMWARE, ALL, MUM_FIRMWARE),
PARTN_MAP_ENTRY(DYNCONFIG_DEFAULTS, ALL, DYNCONFIG_DEFAULTS),
PARTN_MAP_ENTRY(ROMCONFIG_DEFAULTS, ALL, ROMCONFIG_DEFAULTS),
};
static __checkReturn efx_rc_t
ef10_parttbl_get(
__in efx_nic_t *enp,
__out ef10_parttbl_entry_t **parttblp,
__out size_t *parttbl_rowsp)
{
switch (enp->en_family) {
case EFX_FAMILY_HUNTINGTON:
*parttblp = hunt_parttbl;
*parttbl_rowsp = EFX_ARRAY_SIZE(hunt_parttbl);
break;
case EFX_FAMILY_MEDFORD:
*parttblp = medford_parttbl;
*parttbl_rowsp = EFX_ARRAY_SIZE(medford_parttbl);
break;
case EFX_FAMILY_MEDFORD2:
*parttblp = medford2_parttbl;
*parttbl_rowsp = EFX_ARRAY_SIZE(medford2_parttbl);
break;
default:
EFSYS_ASSERT(B_FALSE);
return (EINVAL);
}
return (0);
}
__checkReturn efx_rc_t
ef10_nvram_type_to_partn(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__out uint32_t *partnp)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
ef10_parttbl_entry_t *parttbl = NULL;
size_t parttbl_rows = 0;
unsigned int i;
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT(partnp != NULL);
if (ef10_parttbl_get(enp, &parttbl, &parttbl_rows) == 0) {
for (i = 0; i < parttbl_rows; i++) {
ef10_parttbl_entry_t *entry = &parttbl[i];
if ((entry->nvtype == type) &&
(entry->port_mask & (1u << emip->emi_port))) {
*partnp = entry->partn;
return (0);
}
}
}
return (ENOTSUP);
}
#if EFSYS_OPT_DIAG
static __checkReturn efx_rc_t
ef10_nvram_partn_to_type(
__in efx_nic_t *enp,
__in uint32_t partn,
__out efx_nvram_type_t *typep)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
ef10_parttbl_entry_t *parttbl = NULL;
size_t parttbl_rows = 0;
unsigned int i;
EFSYS_ASSERT(typep != NULL);
if (ef10_parttbl_get(enp, &parttbl, &parttbl_rows) == 0) {
for (i = 0; i < parttbl_rows; i++) {
ef10_parttbl_entry_t *entry = &parttbl[i];
if ((entry->partn == partn) &&
(entry->port_mask & (1u << emip->emi_port))) {
*typep = entry->nvtype;
return (0);
}
}
}
return (ENOTSUP);
}
__checkReturn efx_rc_t
ef10_nvram_test(
__in efx_nic_t *enp)
{
efx_nvram_type_t type;
unsigned int npartns = 0;
uint32_t *partns = NULL;
size_t size;
unsigned int i;
efx_rc_t rc;
/* Read available partitions from NVRAM partition map */
size = MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_MAXNUM * sizeof (uint32_t);
EFSYS_KMEM_ALLOC(enp->en_esip, size, partns);
if (partns == NULL) {
rc = ENOMEM;
goto fail1;
}
if ((rc = efx_mcdi_nvram_partitions(enp, (caddr_t)partns, size,
&npartns)) != 0) {
goto fail2;
}
for (i = 0; i < npartns; i++) {
/* Check if the partition is supported for this port */
if ((rc = ef10_nvram_partn_to_type(enp, partns[i], &type)) != 0)
continue;
if ((rc = efx_mcdi_nvram_test(enp, partns[i])) != 0)
goto fail3;
}
EFSYS_KMEM_FREE(enp->en_esip, size, partns);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
EFSYS_KMEM_FREE(enp->en_esip, size, partns);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
__checkReturn efx_rc_t
ef10_nvram_partn_get_version(
__in efx_nic_t *enp,
__in uint32_t partn,
__out uint32_t *subtypep,
__out_ecount(4) uint16_t version[4])
{
efx_rc_t rc;
/* FIXME: get highest partn version from all ports */
/* FIXME: return partn description if available */
if ((rc = efx_mcdi_nvram_metadata(enp, partn, subtypep,
version, NULL, 0)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_rw_start(
__in efx_nic_t *enp,
__in uint32_t partn,
__out size_t *chunk_sizep)
{
uint32_t write_size = 0;
efx_rc_t rc;
if ((rc = efx_mcdi_nvram_info(enp, partn, NULL, NULL,
NULL, &write_size)) != 0)
goto fail1;
if ((rc = ef10_nvram_partn_lock(enp, partn)) != 0)
goto fail2;
if (chunk_sizep != NULL) {
if (write_size == 0)
*chunk_sizep = EF10_NVRAM_CHUNK;
else
*chunk_sizep = write_size;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nvram_partn_rw_finish(
__in efx_nic_t *enp,
__in uint32_t partn,
__out_opt uint32_t *verify_resultp)
{
efx_rc_t rc;
if ((rc = ef10_nvram_partn_unlock(enp, partn, verify_resultp)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_NVRAM */
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */