/*-
* Copyright (c) 2012-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
#if EFSYS_OPT_QSTATS
#define EFX_TX_QSTAT_INCR(_etp, _stat) \
do { \
(_etp)->et_stat[_stat]++; \
_NOTE(CONSTANTCONDITION) \
} while (B_FALSE)
#else
#define EFX_TX_QSTAT_INCR(_etp, _stat)
#endif
static __checkReturn efx_rc_t
efx_mcdi_init_txq(
__in efx_nic_t *enp,
__in uint32_t ndescs,
__in uint32_t target_evq,
__in uint32_t label,
__in uint32_t instance,
__in uint16_t flags,
__in efsys_mem_t *esmp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_IN_LEN(EFX_TXQ_MAX_BUFS),
MC_CMD_INIT_TXQ_OUT_LEN);
efx_qword_t *dma_addr;
uint64_t addr;
int npages;
int i;
efx_rc_t rc;
EFSYS_ASSERT(EFX_TXQ_MAX_BUFS >=
EFX_TXQ_NBUFS(enp->en_nic_cfg.enc_txq_max_ndescs));
if ((esmp == NULL) || (EFSYS_MEM_SIZE(esmp) < EFX_TXQ_SIZE(ndescs))) {
rc = EINVAL;
goto fail1;
}
npages = EFX_TXQ_NBUFS(ndescs);
if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
rc = EINVAL;
goto fail2;
}
req.emr_cmd = MC_CMD_INIT_TXQ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
(flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
(flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
(flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
(flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
INIT_TXQ_IN_CRC_MODE, 0,
INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
addr = EFSYS_MEM_ADDR(esmp);
for (i = 0; i < npages; i++) {
EFX_POPULATE_QWORD_2(*dma_addr,
EFX_DWORD_1, (uint32_t)(addr >> 32),
EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
dma_addr++;
addr += EFX_BUF_SIZE;
}
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail3;
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_fini_txq(
__in efx_nic_t *enp,
__in uint32_t instance)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
MC_CMD_FINI_TXQ_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_FINI_TXQ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
/*
* EALREADY is not an error, but indicates that the MC has rebooted and
* that the TXQ has already been destroyed.
*/
if (rc != EALREADY)
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_tx_init(
__in efx_nic_t *enp)
{
_NOTE(ARGUNUSED(enp))
return (0);
}
void
ef10_tx_fini(
__in efx_nic_t *enp)
{
_NOTE(ARGUNUSED(enp))
}
__checkReturn efx_rc_t
ef10_tx_qcreate(
__in efx_nic_t *enp,
__in unsigned int index,
__in unsigned int label,
__in efsys_mem_t *esmp,
__in size_t ndescs,
__in uint32_t id,
__in uint16_t flags,
__in efx_evq_t *eep,
__in efx_txq_t *etp,
__out unsigned int *addedp)
{
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
uint16_t inner_csum;
efx_desc_t desc;
efx_rc_t rc;
_NOTE(ARGUNUSED(id))
inner_csum = EFX_TXQ_CKSUM_INNER_IPV4 | EFX_TXQ_CKSUM_INNER_TCPUDP;
if (((flags & inner_csum) != 0) &&
(encp->enc_tunnel_encapsulations_supported == 0)) {
rc = EINVAL;
goto fail1;
}
if ((rc = efx_mcdi_init_txq(enp, ndescs, eep->ee_index, label, index,
flags, esmp)) != 0)
goto fail2;
/*
* A previous user of this TX queue may have written a descriptor to the
* TX push collector, but not pushed the doorbell (e.g. after a crash).
* The next doorbell write would then push the stale descriptor.
*
* Ensure the (per network port) TX push collector is cleared by writing
* a no-op TX option descriptor. See bug29981 for details.
*/
*addedp = 1;
ef10_tx_qdesc_checksum_create(etp, flags, &desc);
EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc.ed_eq);
ef10_tx_qpush(etp, *addedp, 0);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_tx_qdestroy(
__in efx_txq_t *etp)
{
/* FIXME */
_NOTE(ARGUNUSED(etp))
/* FIXME */
}
__checkReturn efx_rc_t
ef10_tx_qpio_enable(
__in efx_txq_t *etp)
{
efx_nic_t *enp = etp->et_enp;
efx_piobuf_handle_t handle;
efx_rc_t rc;
if (etp->et_pio_size != 0) {
rc = EALREADY;
goto fail1;
}
/* Sub-allocate a PIO block from a piobuf */
if ((rc = ef10_nic_pio_alloc(enp,
&etp->et_pio_bufnum,
&handle,
&etp->et_pio_blknum,
&etp->et_pio_offset,
&etp->et_pio_size)) != 0) {
goto fail2;
}
EFSYS_ASSERT3U(etp->et_pio_size, !=, 0);
/* Link the piobuf to this TXQ */
if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) {
goto fail3;
}
/*
* et_pio_offset is the offset of the sub-allocated block within the
* hardware PIO buffer. It is used as the buffer address in the PIO
* option descriptor.
*
* et_pio_write_offset is the offset of the sub-allocated block from the
* start of the write-combined memory mapping, and is used for writing
* data into the PIO buffer.
*/
etp->et_pio_write_offset =
(etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) +
ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset;
return (0);
fail3:
EFSYS_PROBE(fail3);
(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum);
fail2:
EFSYS_PROBE(fail2);
etp->et_pio_size = 0;
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_tx_qpio_disable(
__in efx_txq_t *etp)
{
efx_nic_t *enp = etp->et_enp;
if (etp->et_pio_size != 0) {
/* Unlink the piobuf from this TXQ */
if (ef10_nic_pio_unlink(enp, etp->et_index) != 0)
return;
/* Free the sub-allocated PIO block */
(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum,
etp->et_pio_blknum);
etp->et_pio_size = 0;
etp->et_pio_write_offset = 0;
}
}
__checkReturn efx_rc_t
ef10_tx_qpio_write(
__in efx_txq_t *etp,
__in_ecount(length) uint8_t *buffer,
__in size_t length,
__in size_t offset)
{
efx_nic_t *enp = etp->et_enp;
efsys_bar_t *esbp = enp->en_esbp;
uint32_t write_offset;
uint32_t write_offset_limit;
efx_qword_t *eqp;
efx_rc_t rc;
EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0);
if (etp->et_pio_size == 0) {
rc = ENOENT;
goto fail1;
}
if (offset + length > etp->et_pio_size) {
rc = ENOSPC;
goto fail2;
}
/*
* Writes to PIO buffers must be 64 bit aligned, and multiples of
* 64 bits.
*/
write_offset = etp->et_pio_write_offset + offset;
write_offset_limit = write_offset + length;
eqp = (efx_qword_t *)buffer;
while (write_offset < write_offset_limit) {
EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp);
eqp++;
write_offset += sizeof (efx_qword_t);
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_tx_qpio_post(
__in efx_txq_t *etp,
__in size_t pkt_length,
__in unsigned int completed,
__inout unsigned int *addedp)
{
efx_qword_t pio_desc;
unsigned int id;
size_t offset;
unsigned int added = *addedp;
efx_rc_t rc;
if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
rc = ENOSPC;
goto fail1;
}
if (etp->et_pio_size == 0) {
rc = ENOENT;
goto fail2;
}
id = added++ & etp->et_mask;
offset = id * sizeof (efx_qword_t);
EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index,
unsigned int, id, uint32_t, etp->et_pio_offset,
size_t, pkt_length);
EFX_POPULATE_QWORD_5(pio_desc,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, 1,
ESF_DZ_TX_PIO_CONT, 0,
ESF_DZ_TX_PIO_BYTE_CNT, pkt_length,
ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset);
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc);
EFX_TX_QSTAT_INCR(etp, TX_POST_PIO);
*addedp = added;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_tx_qpost(
__in efx_txq_t *etp,
__in_ecount(ndescs) efx_buffer_t *eb,
__in unsigned int ndescs,
__in unsigned int completed,
__inout unsigned int *addedp)
{
unsigned int added = *addedp;
unsigned int i;
efx_rc_t rc;
if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
rc = ENOSPC;
goto fail1;
}
for (i = 0; i < ndescs; i++) {
efx_buffer_t *ebp = &eb[i];
efsys_dma_addr_t addr = ebp->eb_addr;
size_t size = ebp->eb_size;
boolean_t eop = ebp->eb_eop;
unsigned int id;
size_t offset;
efx_qword_t qword;
/* No limitations on boundary crossing */
EFSYS_ASSERT(size <=
etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
id = added++ & etp->et_mask;
offset = id * sizeof (efx_qword_t);
EFSYS_PROBE5(tx_post, unsigned int, etp->et_index,
unsigned int, id, efsys_dma_addr_t, addr,
size_t, size, boolean_t, eop);
EFX_POPULATE_QWORD_5(qword,
ESF_DZ_TX_KER_TYPE, 0,
ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword);
}
EFX_TX_QSTAT_INCR(etp, TX_POST);
*addedp = added;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* This improves performance by, when possible, pushing a TX descriptor at the
* same time as the doorbell. The descriptor must be added to the TXQ, so that
* can be used if the hardware decides not to use the pushed descriptor.
*/
void
ef10_tx_qpush(
__in efx_txq_t *etp,
__in unsigned int added,
__in unsigned int pushed)
{
efx_nic_t *enp = etp->et_enp;
unsigned int wptr;
unsigned int id;
size_t offset;
efx_qword_t desc;
efx_oword_t oword;
wptr = added & etp->et_mask;
id = pushed & etp->et_mask;
offset = id * sizeof (efx_qword_t);
EFSYS_MEM_READQ(etp->et_esmp, offset, &desc);
/*
* SF Bug 65776: TSO option descriptors cannot be pushed if pacer bypass
* is enabled on the event queue this transmit queue is attached to.
*
* To ensure the code is safe, it is easiest to simply test the type of
* the descriptor to push, and only push it is if it not a TSO option
* descriptor.
*/
if ((EFX_QWORD_FIELD(desc, ESF_DZ_TX_DESC_IS_OPT) != 1) ||
(EFX_QWORD_FIELD(desc, ESF_DZ_TX_OPTION_TYPE) !=
ESE_DZ_TX_OPTION_DESC_TSO)) {
/* Push the descriptor and update the wptr. */
EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr,
ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
wptr, id);
EFSYS_PIO_WRITE_BARRIER();
EFX_BAR_VI_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG,
etp->et_index, &oword);
} else {
efx_dword_t dword;
/*
* Only update the wptr. This is signalled to the hardware by
* only writing one DWORD of the doorbell register.
*/
EFX_POPULATE_OWORD_1(oword, ERF_DZ_TX_DESC_WPTR, wptr);
dword = oword.eo_dword[2];
/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
wptr, id);
EFSYS_PIO_WRITE_BARRIER();
EFX_BAR_VI_WRITED2(enp, ER_DZ_TX_DESC_UPD_REG,
etp->et_index, &dword, B_FALSE);
}
}
__checkReturn efx_rc_t
ef10_tx_qdesc_post(
__in efx_txq_t *etp,
__in_ecount(ndescs) efx_desc_t *ed,
__in unsigned int ndescs,
__in unsigned int completed,
__inout unsigned int *addedp)
{
unsigned int added = *addedp;
unsigned int i;
if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1))
return (ENOSPC);
for (i = 0; i < ndescs; i++) {
efx_desc_t *edp = &ed[i];
unsigned int id;
size_t offset;
id = added++ & etp->et_mask;
offset = id * sizeof (efx_desc_t);
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq);
}
EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index,
unsigned int, added, unsigned int, ndescs);
EFX_TX_QSTAT_INCR(etp, TX_POST);
*addedp = added;
return (0);
}
void
ef10_tx_qdesc_dma_create(
__in efx_txq_t *etp,
__in efsys_dma_addr_t addr,
__in size_t size,
__in boolean_t eop,
__out efx_desc_t *edp)
{
_NOTE(ARGUNUSED(etp))
/* No limitations on boundary crossing */
EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index,
efsys_dma_addr_t, addr,
size_t, size, boolean_t, eop);
EFX_POPULATE_QWORD_5(edp->ed_eq,
ESF_DZ_TX_KER_TYPE, 0,
ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
}
void
ef10_tx_qdesc_tso_create(
__in efx_txq_t *etp,
__in uint16_t ipv4_id,
__in uint32_t tcp_seq,
__in uint8_t tcp_flags,
__out efx_desc_t *edp)
{
_NOTE(ARGUNUSED(etp))
EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index,
uint16_t, ipv4_id, uint32_t, tcp_seq,
uint8_t, tcp_flags);
EFX_POPULATE_QWORD_5(edp->ed_eq,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
}
void
ef10_tx_qdesc_tso2_create(
__in efx_txq_t *etp,
__in uint16_t ipv4_id,
__in uint16_t outer_ipv4_id,
__in uint32_t tcp_seq,
__in uint16_t tcp_mss,
__out_ecount(count) efx_desc_t *edp,
__in int count)
{
_NOTE(ARGUNUSED(etp, count))
EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index,
uint16_t, ipv4_id, uint32_t, tcp_seq,
uint16_t, tcp_mss);
EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS);
EFX_POPULATE_QWORD_5(edp[0].ed_eq,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
EFX_POPULATE_QWORD_5(edp[1].ed_eq,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
}
void
ef10_tx_qdesc_vlantci_create(
__in efx_txq_t *etp,
__in uint16_t tci,
__out efx_desc_t *edp)
{
_NOTE(ARGUNUSED(etp))
EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index,
uint16_t, tci);
EFX_POPULATE_QWORD_4(edp->ed_eq,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_VLAN,
ESF_DZ_TX_VLAN_OP, tci ? 1 : 0,
ESF_DZ_TX_VLAN_TAG1, tci);
}
void
ef10_tx_qdesc_checksum_create(
__in efx_txq_t *etp,
__in uint16_t flags,
__out efx_desc_t *edp)
{
_NOTE(ARGUNUSED(etp));
EFSYS_PROBE2(tx_desc_checksum_create, unsigned int, etp->et_index,
uint32_t, flags);
EFX_POPULATE_QWORD_6(edp->ed_eq,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
ESF_DZ_TX_OPTION_UDP_TCP_CSUM,
(flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0,
ESF_DZ_TX_OPTION_IP_CSUM,
(flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0,
ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM,
(flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
ESF_DZ_TX_OPTION_INNER_IP_CSUM,
(flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0);
}
__checkReturn efx_rc_t
ef10_tx_qpace(
__in efx_txq_t *etp,
__in unsigned int ns)
{
efx_rc_t rc;
/* FIXME */
_NOTE(ARGUNUSED(etp, ns))
_NOTE(CONSTANTCONDITION)
if (B_FALSE) {
rc = ENOTSUP;
goto fail1;
}
/* FIXME */
return (0);
fail1:
/*
* EALREADY is not an error, but indicates that the MC has rebooted and
* that the TXQ has already been destroyed. Callers need to know that
* the TXQ flush has completed to avoid waiting until timeout for a
* flush done event that will not be delivered.
*/
if (rc != EALREADY)
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_tx_qflush(
__in efx_txq_t *etp)
{
efx_nic_t *enp = etp->et_enp;
efx_rc_t rc;
if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_tx_qenable(
__in efx_txq_t *etp)
{
/* FIXME */
_NOTE(ARGUNUSED(etp))
/* FIXME */
}
#if EFSYS_OPT_QSTATS
void
ef10_tx_qstats_update(
__in efx_txq_t *etp,
__inout_ecount(TX_NQSTATS) efsys_stat_t *stat)
{
unsigned int id;
for (id = 0; id < TX_NQSTATS; id++) {
efsys_stat_t *essp = &stat[id];
EFSYS_STAT_INCR(essp, etp->et_stat[id]);
etp->et_stat[id] = 0;
}
}
#endif /* EFSYS_OPT_QSTATS */
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */