Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*-
 * Copyright (c) 2007-2008
 *	Swinburne University of Technology, Melbourne, Australia
 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
 * Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
 * Copyright (c) 2014 The FreeBSD Foundation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * An implementation of the DCTCP algorithm for FreeBSD, based on
 * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
 * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
 * in ACM Conference on SIGCOMM 2010, New York, USA,
 * Originally released as the contribution of Microsoft Research project.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>

#include <net/vnet.h>

#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet/cc/cc.h>
#include <netinet/cc/cc_module.h>

#define DCTCP_SHIFT 10
#define MAX_ALPHA_VALUE (1<<DCTCP_SHIFT)
VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = MAX_ALPHA_VALUE;
#define V_dctcp_alpha	    VNET(dctcp_alpha)
VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
#define	V_dctcp_shift_g	    VNET(dctcp_shift_g)
VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
#define	V_dctcp_slowstart   VNET(dctcp_slowstart)

struct dctcp {
	uint32_t bytes_ecn;	  /* # of marked bytes during a RTT */
	uint32_t bytes_total;	  /* # of acked bytes during a RTT */
	int      alpha;		  /* the fraction of marked bytes */
	int      ce_prev;	  /* CE state of the last segment */
	tcp_seq  save_sndnxt;	  /* end sequence number of the current window */
	int      ece_curr;	  /* ECE flag in this segment */
	int      ece_prev;	  /* ECE flag in the last segment */
	uint32_t num_cong_events; /* # of congestion events */
};

static MALLOC_DEFINE(M_dctcp, "dctcp data",
    "Per connection data required for the dctcp algorithm");

static void	dctcp_ack_received(struct cc_var *ccv, uint16_t type);
static void	dctcp_after_idle(struct cc_var *ccv);
static void	dctcp_cb_destroy(struct cc_var *ccv);
static int	dctcp_cb_init(struct cc_var *ccv);
static void	dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
static void	dctcp_conn_init(struct cc_var *ccv);
static void	dctcp_post_recovery(struct cc_var *ccv);
static void	dctcp_ecnpkt_handler(struct cc_var *ccv);
static void	dctcp_update_alpha(struct cc_var *ccv);

struct cc_algo dctcp_cc_algo = {
	.name = "dctcp",
	.ack_received = dctcp_ack_received,
	.cb_destroy = dctcp_cb_destroy,
	.cb_init = dctcp_cb_init,
	.cong_signal = dctcp_cong_signal,
	.conn_init = dctcp_conn_init,
	.post_recovery = dctcp_post_recovery,
	.ecnpkt_handler = dctcp_ecnpkt_handler,
	.after_idle = dctcp_after_idle,
};

static void
dctcp_ack_received(struct cc_var *ccv, uint16_t type)
{
	struct dctcp *dctcp_data;
	int bytes_acked = 0;

	dctcp_data = ccv->cc_data;

	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
		/*
		 * DCTCP doesn't treat receipt of ECN marked packet as a
		 * congestion event. Thus, DCTCP always executes the ACK
		 * processing out of congestion recovery.
		 */
		if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
			EXIT_CONGRECOVERY(CCV(ccv, t_flags));
			newreno_cc_algo.ack_received(ccv, type);
			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
		} else
			newreno_cc_algo.ack_received(ccv, type);

		if (type == CC_DUPACK)
			bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg));

		if (type == CC_ACK)
			bytes_acked = ccv->bytes_this_ack;

		/* Update total bytes. */
		dctcp_data->bytes_total += bytes_acked;

		/* Update total marked bytes. */
		if (dctcp_data->ece_curr) {
			//XXRMS: For fluid-model DCTCP, update
			//cwnd here during for RTT fairness
			if (!dctcp_data->ece_prev
			    && bytes_acked > CCV(ccv, t_maxseg)) {
				dctcp_data->bytes_ecn +=
				    (bytes_acked - CCV(ccv, t_maxseg));
			} else
				dctcp_data->bytes_ecn += bytes_acked;
			dctcp_data->ece_prev = 1;
		} else {
			if (dctcp_data->ece_prev
			    && bytes_acked > CCV(ccv, t_maxseg))
				dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
			dctcp_data->ece_prev = 0;
		}
		dctcp_data->ece_curr = 0;

		/*
		 * Update the fraction of marked bytes at the end of
		 * current window size.
		 */
		if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
		    SEQ_GT(ccv->curack, dctcp_data->save_sndnxt))
			dctcp_update_alpha(ccv);
	} else
		newreno_cc_algo.ack_received(ccv, type);
}

static void
dctcp_after_idle(struct cc_var *ccv)
{
	struct dctcp *dctcp_data;

	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
		dctcp_data = ccv->cc_data;

		/* Initialize internal parameters after idle time */
		dctcp_data->bytes_ecn = 0;
		dctcp_data->bytes_total = 0;
		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
		dctcp_data->alpha = V_dctcp_alpha;
		dctcp_data->ece_curr = 0;
		dctcp_data->ece_prev = 0;
		dctcp_data->num_cong_events = 0;
	}

	newreno_cc_algo.after_idle(ccv);
}

static void
dctcp_cb_destroy(struct cc_var *ccv)
{
	free(ccv->cc_data, M_dctcp);
}

static int
dctcp_cb_init(struct cc_var *ccv)
{
	struct dctcp *dctcp_data;

	dctcp_data = malloc(sizeof(struct dctcp), M_dctcp, M_NOWAIT|M_ZERO);

	if (dctcp_data == NULL)
		return (ENOMEM);

	/* Initialize some key variables with sensible defaults. */
	dctcp_data->bytes_ecn = 0;
	dctcp_data->bytes_total = 0;
	/*
	 * When alpha is set to 0 in the beginning, DCTCP sender transfers as
	 * much data as possible until the value converges which may expand the
	 * queueing delay at the switch. When alpha is set to 1, queueing delay
	 * is kept small.
	 * Throughput-sensitive applications should have alpha = 0
	 * Latency-sensitive applications should have alpha = 1
	 *
	 * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
	 * keep it 0 as default.
	 */
	dctcp_data->alpha = V_dctcp_alpha;
	dctcp_data->save_sndnxt = 0;
	dctcp_data->ce_prev = 0;
	dctcp_data->ece_curr = 0;
	dctcp_data->ece_prev = 0;
	dctcp_data->num_cong_events = 0;

	ccv->cc_data = dctcp_data;
	return (0);
}

/*
 * Perform any necessary tasks before we enter congestion recovery.
 */
static void
dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
{
	struct dctcp *dctcp_data;
	u_int cwin, mss;

	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
		dctcp_data = ccv->cc_data;
		cwin = CCV(ccv, snd_cwnd);
		mss = tcp_maxseg(ccv->ccvc.tcp);

		switch (type) {
		case CC_NDUPACK:
			if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
				if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
					CCV(ccv, snd_ssthresh) =
					    max(cwin / 2, 2 * mss);
					dctcp_data->num_cong_events++;
				} else {
					/* cwnd has already updated as congestion
					 * recovery. Reverse cwnd value using
					 * snd_cwnd_prev and recalculate snd_ssthresh
					 */
					cwin = CCV(ccv, snd_cwnd_prev);
					CCV(ccv, snd_ssthresh) =
					    max(cwin / 2, 2 * mss);
				}
				ENTER_RECOVERY(CCV(ccv, t_flags));
			}
			break;
		case CC_ECN:
			/*
			 * Save current snd_cwnd when the host encounters both
			 * congestion recovery and fast recovery.
			 */
			CCV(ccv, snd_cwnd_prev) = cwin;
			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
				if (V_dctcp_slowstart &&
				    dctcp_data->num_cong_events++ == 0) {
					CCV(ccv, snd_ssthresh) =
					    max(cwin / 2, 2 * mss);
					dctcp_data->alpha = MAX_ALPHA_VALUE;
					dctcp_data->bytes_ecn = 0;
					dctcp_data->bytes_total = 0;
					dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
				} else
					CCV(ccv, snd_ssthresh) =
					    max((cwin - (((uint64_t)cwin *
					    dctcp_data->alpha) >> (DCTCP_SHIFT+1))),
					    2 * mss);
				CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
				ENTER_CONGRECOVERY(CCV(ccv, t_flags));
			}
			dctcp_data->ece_curr = 1;
			break;
		case CC_RTO:
			CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd),
							 CCV(ccv, snd_cwnd)) / 2 / mss,
						     2) * mss;
			CCV(ccv, snd_cwnd) = mss;
			dctcp_update_alpha(ccv);
			dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
			dctcp_data->num_cong_events++;
			break;
		}
	} else
		newreno_cc_algo.cong_signal(ccv, type);
}

static void
dctcp_conn_init(struct cc_var *ccv)
{
	struct dctcp *dctcp_data;

	dctcp_data = ccv->cc_data;

	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
}

/*
 * Perform any necessary tasks before we exit congestion recovery.
 */
static void
dctcp_post_recovery(struct cc_var *ccv)
{
	newreno_cc_algo.post_recovery(ccv);

	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
		dctcp_update_alpha(ccv);
}

/*
 * Execute an additional ECN processing using ECN field in IP header
 * and the CWR bit in TCP header.
 */
static void
dctcp_ecnpkt_handler(struct cc_var *ccv)
{
	struct dctcp *dctcp_data;
	uint32_t ccflag;
	int acknow;

	dctcp_data = ccv->cc_data;
	ccflag = ccv->flags;
	acknow = 0;

	/*
	 * DCTCP responds with an ACK immediately when the CE state
	 * in between this segment and the last segment has changed.
	 */
	if (ccflag & CCF_IPHDR_CE) {
		if (!dctcp_data->ce_prev) {
			acknow = 1;
			dctcp_data->ce_prev = 1;
			CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE;
		}
	} else {
		if (dctcp_data->ce_prev) {
			acknow = 1;
			dctcp_data->ce_prev = 0;
			CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE;
		}
	}

	if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) {
		ccv->flags |= CCF_ACKNOW;
	} else {
		ccv->flags &= ~CCF_ACKNOW;
	}
}

/*
 * Update the fraction of marked bytes represented as 'alpha'.
 * Also initialize several internal parameters at the end of this function.
 */
static void
dctcp_update_alpha(struct cc_var *ccv)
{
	struct dctcp *dctcp_data;
	int alpha_prev;

	dctcp_data = ccv->cc_data;
	alpha_prev = dctcp_data->alpha;
	dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);

	/*
	 * Update alpha: alpha = (1 - g) * alpha + g * M.
	 * Here:
	 * g is weight factor
	 *	recommaded to be set to 1/16
	 *	small g = slow convergence between competitive DCTCP flows
	 *	large g = impacts low utilization of bandwidth at switches
	 * M is fraction of marked segments in last RTT
	 *	updated every RTT
	 * Alpha must be round to 0 - MAX_ALPHA_VALUE.
	 */
	dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
	    ((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) /
	    dctcp_data->bytes_total, MAX_ALPHA_VALUE);

	/* Initialize internal parameters for next alpha calculation */
	dctcp_data->bytes_ecn = 0;
	dctcp_data->bytes_total = 0;
	dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
}

static int
dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
{
	uint32_t new;
	int error;

	new = V_dctcp_alpha;
	error = sysctl_handle_int(oidp, &new, 0, req);
	if (error == 0 && req->newptr != NULL) {
		if (new > MAX_ALPHA_VALUE)
			error = EINVAL;
		else
			V_dctcp_alpha = new;
	}

	return (error);
}

static int
dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
{
	uint32_t new;
	int error;

	new = V_dctcp_shift_g;
	error = sysctl_handle_int(oidp, &new, 0, req);
	if (error == 0 && req->newptr != NULL) {
		if (new > DCTCP_SHIFT)
			error = EINVAL;
		else
			V_dctcp_shift_g = new;
	}

	return (error);
}

static int
dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
{
	uint32_t new;
	int error;

	new = V_dctcp_slowstart;
	error = sysctl_handle_int(oidp, &new, 0, req);
	if (error == 0 && req->newptr != NULL) {
		if (new > 1)
			error = EINVAL;
		else
			V_dctcp_slowstart = new;
	}

	return (error);
}

SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp,
    CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
    "dctcp congestion control related settings");

SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
    &VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU",
    "dctcp alpha parameter at start of session");

SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
    &VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU",
    "dctcp shift parameter");

SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
    &VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU",
    "half CWND reduction after the first slow start");

DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
MODULE_VERSION(dctcp, 1);