/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND 4-Clause-BSD
*
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
*/
/*-
* Copyright (C) 2001 Benno Rice.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Native 64-bit page table operations for running without a hypervisor.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/rwlock.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <machine/cpu.h>
#include <machine/hid.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include "mmu_oea64.h"
#define PTESYNC() __asm __volatile("ptesync");
#define TLBSYNC() __asm __volatile("tlbsync; ptesync");
#define SYNC() __asm __volatile("sync");
#define EIEIO() __asm __volatile("eieio");
#define VSID_HASH_MASK 0x0000007fffffffffULL
/* POWER9 only permits a 64k partition table size. */
#define PART_SIZE 0x10000
/* Actual page sizes (to be used with tlbie, when L=0) */
#define AP_4K 0x00
#define AP_16M 0x80
#define LPTE_KERNEL_VSID_BIT (KERNEL_VSID_BIT << \
(16 - (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)))
/* Abbreviated Virtual Address Page - high bits */
#define LPTE_AVA_PGNHI_MASK 0x0000000000000F80ULL
#define LPTE_AVA_PGNHI_SHIFT 7
/* Effective Address Page - low bits */
#define EA_PAGELO_MASK 0x7ffULL
#define EA_PAGELO_SHIFT 11
static bool moea64_crop_tlbie;
static bool moea64_need_lock;
/*
* The tlbie instruction has two forms: an old one used by PowerISA
* 2.03 and prior, and a newer one used by PowerISA 2.06 and later.
* We need to support both.
*/
static __inline void
TLBIE(uint64_t vpn, uint64_t oldptehi)
{
#ifndef __powerpc64__
register_t vpn_hi, vpn_lo;
register_t msr;
register_t scratch, intr;
#endif
static volatile u_int tlbie_lock = 0;
bool need_lock = moea64_need_lock;
vpn <<= ADDR_PIDX_SHFT;
/* Hobo spinlock: we need stronger guarantees than mutexes provide */
if (need_lock) {
while (!atomic_cmpset_int(&tlbie_lock, 0, 1));
isync(); /* Flush instruction queue once lock acquired */
if (moea64_crop_tlbie) {
vpn &= ~(0xffffULL << 48);
#ifdef __powerpc64__
if ((oldptehi & LPTE_BIG) != 0)
__asm __volatile("tlbie %0, 1" :: "r"(vpn) :
"memory");
else
__asm __volatile("tlbie %0, 0" :: "r"(vpn) :
"memory");
__asm __volatile("eieio; tlbsync; ptesync" :::
"memory");
goto done;
#endif
}
}
#ifdef __powerpc64__
/*
* If this page has LPTE_BIG set and is from userspace, then
* it must be a superpage with 4KB base/16MB actual page size.
*/
if ((oldptehi & LPTE_BIG) != 0 &&
(oldptehi & LPTE_KERNEL_VSID_BIT) == 0)
vpn |= AP_16M;
/*
* Explicitly clobber r0. The tlbie instruction has two forms: an old
* one used by PowerISA 2.03 and prior, and a newer one used by PowerISA
* 2.06 (maybe 2.05?) and later. We need to support both, and it just
* so happens that since we use 4k pages we can simply zero out r0, and
* clobber it, and the assembler will interpret the single-operand form
* of tlbie as having RB set, and everything else as 0. The RS operand
* in the newer form is in the same position as the L(page size) bit of
* the old form, so a slong as RS is 0, we're good on both sides.
*/
__asm __volatile("li 0, 0 \n tlbie %0, 0" :: "r"(vpn) : "r0", "memory");
__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
done:
#else
vpn_hi = (uint32_t)(vpn >> 32);
vpn_lo = (uint32_t)vpn;
intr = intr_disable();
__asm __volatile("\
mfmsr %0; \
mr %1, %0; \
insrdi %1,%5,1,0; \
mtmsrd %1; isync; \
\
sld %1,%2,%4; \
or %1,%1,%3; \
tlbie %1; \
\
mtmsrd %0; isync; \
eieio; \
tlbsync; \
ptesync;"
: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
: "memory");
intr_restore(intr);
#endif
/* No barriers or special ops -- taken care of by ptesync above */
if (need_lock)
tlbie_lock = 0;
}
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
#define ENABLE_TRANS(msr) mtmsr(msr)
/*
* PTEG data.
*/
static volatile struct lpte *moea64_pteg_table;
static struct rwlock moea64_eviction_lock;
static volatile struct pate *moea64_part_table;
/*
* Dump function.
*/
static void *moea64_dump_pmap_native(void *ctx, void *buf,
u_long *nbytes);
/*
* PTE calls.
*/
static int64_t moea64_pte_insert_native(struct pvo_entry *);
static int64_t moea64_pte_synch_native(struct pvo_entry *);
static int64_t moea64_pte_clear_native(struct pvo_entry *, uint64_t);
static int64_t moea64_pte_replace_native(struct pvo_entry *, int);
static int64_t moea64_pte_unset_native(struct pvo_entry *);
static int64_t moea64_pte_insert_sp_native(struct pvo_entry *);
static int64_t moea64_pte_unset_sp_native(struct pvo_entry *);
static int64_t moea64_pte_replace_sp_native(struct pvo_entry *);
/*
* Utility routines.
*/
static void moea64_bootstrap_native(
vm_offset_t kernelstart, vm_offset_t kernelend);
static void moea64_cpu_bootstrap_native(int ap);
static void tlbia(void);
static void moea64_install_native(void);
static struct pmap_funcs moea64_native_methods = {
.install = moea64_install_native,
/* Internal interfaces */
.bootstrap = moea64_bootstrap_native,
.cpu_bootstrap = moea64_cpu_bootstrap_native,
.dumpsys_dump_pmap = moea64_dump_pmap_native,
};
static struct moea64_funcs moea64_native_funcs = {
.pte_synch = moea64_pte_synch_native,
.pte_clear = moea64_pte_clear_native,
.pte_unset = moea64_pte_unset_native,
.pte_replace = moea64_pte_replace_native,
.pte_insert = moea64_pte_insert_native,
.pte_insert_sp = moea64_pte_insert_sp_native,
.pte_unset_sp = moea64_pte_unset_sp_native,
.pte_replace_sp = moea64_pte_replace_sp_native,
};
MMU_DEF_INHERIT(oea64_mmu_native, MMU_TYPE_G5, moea64_native_methods, oea64_mmu);
static void
moea64_install_native()
{
/* Install the MOEA64 ops. */
moea64_ops = &moea64_native_funcs;
}
static int64_t
moea64_pte_synch_native(struct pvo_entry *pvo)
{
volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
uint64_t ptelo, pvo_ptevpn;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
rw_rlock(&moea64_eviction_lock);
if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) {
/* Evicted */
rw_runlock(&moea64_eviction_lock);
return (-1);
}
PTESYNC();
ptelo = be64toh(pt->pte_lo);
rw_runlock(&moea64_eviction_lock);
return (ptelo & (LPTE_REF | LPTE_CHG));
}
static int64_t
moea64_pte_clear_native(struct pvo_entry *pvo, uint64_t ptebit)
{
volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
struct lpte properpt;
uint64_t ptelo;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
moea64_pte_from_pvo(pvo, &properpt);
rw_rlock(&moea64_eviction_lock);
if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
(properpt.pte_hi & LPTE_AVPN_MASK)) {
/* Evicted */
rw_runlock(&moea64_eviction_lock);
return (-1);
}
if (ptebit == LPTE_REF) {
/* See "Resetting the Reference Bit" in arch manual */
PTESYNC();
/* 2-step here safe: precision is not guaranteed */
ptelo = be64toh(pt->pte_lo);
/* One-byte store to avoid touching the C bit */
((volatile uint8_t *)(&pt->pte_lo))[6] =
#if BYTE_ORDER == BIG_ENDIAN
((uint8_t *)(&properpt.pte_lo))[6];
#else
((uint8_t *)(&properpt.pte_lo))[1];
#endif
rw_runlock(&moea64_eviction_lock);
critical_enter();
TLBIE(pvo->pvo_vpn, properpt.pte_hi);
critical_exit();
} else {
rw_runlock(&moea64_eviction_lock);
ptelo = moea64_pte_unset_native(pvo);
moea64_pte_insert_native(pvo);
}
return (ptelo & (LPTE_REF | LPTE_CHG));
}
static __always_inline int64_t
moea64_pte_unset_locked(volatile struct lpte *pt, uint64_t vpn)
{
uint64_t ptelo, ptehi;
/*
* Invalidate the pte, briefly locking it to collect RC bits. No
* atomics needed since this is protected against eviction by the lock.
*/
isync();
critical_enter();
ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED;
pt->pte_hi = htobe64(ptehi);
PTESYNC();
TLBIE(vpn, ptehi);
ptelo = be64toh(pt->pte_lo);
*((volatile int32_t *)(&pt->pte_hi) + 1) = 0; /* Release lock */
critical_exit();
/* Keep statistics */
STAT_MOEA64(moea64_pte_valid--);
return (ptelo & (LPTE_CHG | LPTE_REF));
}
static int64_t
moea64_pte_unset_native(struct pvo_entry *pvo)
{
volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
int64_t ret;
uint64_t pvo_ptevpn;
pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
rw_rlock(&moea64_eviction_lock);
if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) {
/* Evicted */
STAT_MOEA64(moea64_pte_overflow--);
ret = -1;
} else
ret = moea64_pte_unset_locked(pt, pvo->pvo_vpn);
rw_runlock(&moea64_eviction_lock);
return (ret);
}
static int64_t
moea64_pte_replace_inval_native(struct pvo_entry *pvo,
volatile struct lpte *pt)
{
struct lpte properpt;
uint64_t ptelo, ptehi;
moea64_pte_from_pvo(pvo, &properpt);
rw_rlock(&moea64_eviction_lock);
if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
(properpt.pte_hi & LPTE_AVPN_MASK)) {
/* Evicted */
STAT_MOEA64(moea64_pte_overflow--);
rw_runlock(&moea64_eviction_lock);
return (-1);
}
/*
* Replace the pte, briefly locking it to collect RC bits. No
* atomics needed since this is protected against eviction by the lock.
*/
isync();
critical_enter();
ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED;
pt->pte_hi = htobe64(ptehi);
PTESYNC();
TLBIE(pvo->pvo_vpn, ptehi);
ptelo = be64toh(pt->pte_lo);
EIEIO();
pt->pte_lo = htobe64(properpt.pte_lo);
EIEIO();
pt->pte_hi = htobe64(properpt.pte_hi); /* Release lock */
PTESYNC();
critical_exit();
rw_runlock(&moea64_eviction_lock);
return (ptelo & (LPTE_CHG | LPTE_REF));
}
static int64_t
moea64_pte_replace_native(struct pvo_entry *pvo, int flags)
{
volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
struct lpte properpt;
int64_t ptelo;
if (flags == 0) {
/* Just some software bits changing. */
moea64_pte_from_pvo(pvo, &properpt);
rw_rlock(&moea64_eviction_lock);
if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
(properpt.pte_hi & LPTE_AVPN_MASK)) {
rw_runlock(&moea64_eviction_lock);
return (-1);
}
pt->pte_hi = htobe64(properpt.pte_hi);
ptelo = be64toh(pt->pte_lo);
rw_runlock(&moea64_eviction_lock);
} else {
/* Otherwise, need reinsertion and deletion */
ptelo = moea64_pte_replace_inval_native(pvo, pt);
}
return (ptelo);
}
static void
moea64_cpu_bootstrap_native(int ap)
{
int i = 0;
#ifdef __powerpc64__
struct slb *slb = PCPU_GET(aim.slb);
register_t seg0;
#endif
/*
* Initialize segment registers and MMU
*/
mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR);
switch(mfpvr() >> 16) {
case IBMPOWER9:
mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_RADIX);
break;
}
/*
* Install kernel SLB entries
*/
#ifdef __powerpc64__
__asm __volatile ("slbia");
__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) :
"r"(0));
for (i = 0; i < n_slbs; i++) {
if (!(slb[i].slbe & SLBE_VALID))
continue;
__asm __volatile ("slbmte %0, %1" ::
"r"(slb[i].slbv), "r"(slb[i].slbe));
}
#else
for (i = 0; i < 16; i++)
mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
#endif
/*
* Install page table
*/
if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
mtspr(SPR_PTCR,
((uintptr_t)moea64_part_table & ~DMAP_BASE_ADDRESS) |
flsl((PART_SIZE >> 12) - 1));
else
__asm __volatile ("ptesync; mtsdr1 %0; isync"
:: "r"(((uintptr_t)moea64_pteg_table & ~DMAP_BASE_ADDRESS)
| (uintptr_t)(flsl(moea64_pteg_mask >> 11))));
tlbia();
}
static void
moea64_bootstrap_native(vm_offset_t kernelstart, vm_offset_t kernelend)
{
vm_size_t size;
vm_offset_t off;
vm_paddr_t pa;
register_t msr;
moea64_early_bootstrap(kernelstart, kernelend);
switch (mfpvr() >> 16) {
case IBMPOWER9:
moea64_need_lock = false;
break;
case IBMPOWER4:
case IBMPOWER4PLUS:
case IBM970:
case IBM970FX:
case IBM970GX:
case IBM970MP:
moea64_crop_tlbie = true;
default:
moea64_need_lock = true;
}
/*
* Allocate PTEG table.
*/
size = moea64_pteg_count * sizeof(struct lpteg);
CTR2(KTR_PMAP, "moea64_bootstrap: %lu PTEGs, %lu bytes",
moea64_pteg_count, size);
rw_init(&moea64_eviction_lock, "pte eviction");
/*
* We now need to allocate memory. This memory, to be allocated,
* has to reside in a page table. The page table we are about to
* allocate. We don't have BAT. So drop to data real mode for a minute
* as a measure of last resort. We do this a couple times.
*/
/*
* PTEG table must be aligned on a 256k boundary, but can be placed
* anywhere with that alignment on POWER ISA 3+ systems. On earlier
* systems, offset addition is done by the CPU with bitwise OR rather
* than addition, so the table must also be aligned on a boundary of
* its own size. Pick the larger of the two, which works on all
* systems.
*/
moea64_pteg_table = (struct lpte *)moea64_bootstrap_alloc(size,
MAX(256*1024, size));
if (hw_direct_map)
moea64_pteg_table =
(struct lpte *)PHYS_TO_DMAP((vm_offset_t)moea64_pteg_table);
/* Allocate partition table (ISA 3.0). */
if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
moea64_part_table =
(struct pate *)moea64_bootstrap_alloc(PART_SIZE, PART_SIZE);
moea64_part_table =
(struct pate *)PHYS_TO_DMAP((vm_offset_t)moea64_part_table);
}
DISABLE_TRANS(msr);
bzero(__DEVOLATILE(void *, moea64_pteg_table), moea64_pteg_count *
sizeof(struct lpteg));
if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
bzero(__DEVOLATILE(void *, moea64_part_table), PART_SIZE);
moea64_part_table[0].pagetab = htobe64(
(DMAP_TO_PHYS((vm_offset_t)moea64_pteg_table)) |
(uintptr_t)(flsl((moea64_pteg_count - 1) >> 11)));
}
ENABLE_TRANS(msr);
CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
moea64_mid_bootstrap(kernelstart, kernelend);
/*
* Add a mapping for the page table itself if there is no direct map.
*/
if (!hw_direct_map) {
size = moea64_pteg_count * sizeof(struct lpteg);
off = (vm_offset_t)(moea64_pteg_table);
DISABLE_TRANS(msr);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
pmap_kenter(pa, pa);
ENABLE_TRANS(msr);
}
/* Bring up virtual memory */
moea64_late_bootstrap(kernelstart, kernelend);
}
static void
tlbia(void)
{
vm_offset_t i;
#ifndef __powerpc64__
register_t msr, scratch;
#endif
i = 0xc00; /* IS = 11 */
switch (mfpvr() >> 16) {
case IBM970:
case IBM970FX:
case IBM970MP:
case IBM970GX:
case IBMPOWER4:
case IBMPOWER4PLUS:
case IBMPOWER5:
case IBMPOWER5PLUS:
i = 0; /* IS not supported */
break;
}
TLBSYNC();
for (; i < 0x400000; i += 0x00001000) {
#ifdef __powerpc64__
__asm __volatile("tlbiel %0" :: "r"(i));
#else
__asm __volatile("\
mfmsr %0; \
mr %1, %0; \
insrdi %1,%3,1,0; \
mtmsrd %1; \
isync; \
\
tlbiel %2; \
\
mtmsrd %0; \
isync;"
: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
#endif
}
EIEIO();
TLBSYNC();
}
static int
atomic_pte_lock(volatile struct lpte *pte, uint64_t bitmask, uint64_t *oldhi)
{
int ret;
#ifdef __powerpc64__
uint64_t temp;
#else
uint32_t oldhihalf;
#endif
/*
* Note: in principle, if just the locked bit were set here, we
* could avoid needing the eviction lock. However, eviction occurs
* so rarely that it isn't worth bothering about in practice.
*/
#ifdef __powerpc64__
/*
* Note: Success of this sequence has the side effect of invalidating
* the PTE, as we are setting it to LPTE_LOCKED and discarding the
* other bits, including LPTE_V.
*/
__asm __volatile (
"1:\tldarx %1, 0, %3\n\t" /* load old value */
"and. %0,%1,%4\n\t" /* check if any bits set */
"bne 2f\n\t" /* exit if any set */
"stdcx. %5, 0, %3\n\t" /* attempt to store */
"bne- 1b\n\t" /* spin if failed */
"li %0, 1\n\t" /* success - retval = 1 */
"b 3f\n\t" /* we've succeeded */
"2:\n\t"
"stdcx. %1, 0, %3\n\t" /* clear reservation (74xx) */
"li %0, 0\n\t" /* failure - retval = 0 */
"3:\n\t"
: "=&r" (ret), "=&r"(temp), "=m" (pte->pte_hi)
: "r" ((volatile char *)&pte->pte_hi),
"r" (htobe64(bitmask)), "r" (htobe64(LPTE_LOCKED)),
"m" (pte->pte_hi)
: "cr0", "cr1", "cr2", "memory");
*oldhi = be64toh(temp);
#else
/*
* This code is used on bridge mode only.
*/
__asm __volatile (
"1:\tlwarx %1, 0, %3\n\t" /* load old value */
"and. %0,%1,%4\n\t" /* check if any bits set */
"bne 2f\n\t" /* exit if any set */
"stwcx. %5, 0, %3\n\t" /* attempt to store */
"bne- 1b\n\t" /* spin if failed */
"li %0, 1\n\t" /* success - retval = 1 */
"b 3f\n\t" /* we've succeeded */
"2:\n\t"
"stwcx. %1, 0, %3\n\t" /* clear reservation (74xx) */
"li %0, 0\n\t" /* failure - retval = 0 */
"3:\n\t"
: "=&r" (ret), "=&r"(oldhihalf), "=m" (pte->pte_hi)
: "r" ((volatile char *)&pte->pte_hi + 4),
"r" ((uint32_t)bitmask), "r" ((uint32_t)LPTE_LOCKED),
"m" (pte->pte_hi)
: "cr0", "cr1", "cr2", "memory");
*oldhi = (pte->pte_hi & 0xffffffff00000000ULL) | oldhihalf;
#endif
return (ret);
}
static uintptr_t
moea64_insert_to_pteg_native(struct lpte *pvo_pt, uintptr_t slotbase,
uint64_t mask)
{
volatile struct lpte *pt;
uint64_t oldptehi, va;
uintptr_t k;
int i, j;
/* Start at a random slot */
i = mftb() % 8;
for (j = 0; j < 8; j++) {
k = slotbase + (i + j) % 8;
pt = &moea64_pteg_table[k];
/* Invalidate and seize lock only if no bits in mask set */
if (atomic_pte_lock(pt, mask, &oldptehi)) /* Lock obtained */
break;
}
if (j == 8)
return (-1);
if (oldptehi & LPTE_VALID) {
KASSERT(!(oldptehi & LPTE_WIRED), ("Unmapped wired entry"));
/*
* Need to invalidate old entry completely: see
* "Modifying a Page Table Entry". Need to reconstruct
* the virtual address for the outgoing entry to do that.
*/
va = oldptehi >> (ADDR_SR_SHFT - ADDR_API_SHFT64);
if (oldptehi & LPTE_HID)
va = (((k >> 3) ^ moea64_pteg_mask) ^ va) &
(ADDR_PIDX >> ADDR_PIDX_SHFT);
else
va = ((k >> 3) ^ va) & (ADDR_PIDX >> ADDR_PIDX_SHFT);
va |= (oldptehi & LPTE_AVPN_MASK) <<
(ADDR_API_SHFT64 - ADDR_PIDX_SHFT);
PTESYNC();
TLBIE(va, oldptehi);
STAT_MOEA64(moea64_pte_valid--);
STAT_MOEA64(moea64_pte_overflow++);
}
/*
* Update the PTE as per "Adding a Page Table Entry". Lock is released
* by setting the high doubleworld.
*/
pt->pte_lo = htobe64(pvo_pt->pte_lo);
EIEIO();
pt->pte_hi = htobe64(pvo_pt->pte_hi);
PTESYNC();
/* Keep statistics */
STAT_MOEA64(moea64_pte_valid++);
return (k);
}
static __always_inline int64_t
moea64_pte_insert_locked(struct pvo_entry *pvo, struct lpte *insertpt,
uint64_t mask)
{
uintptr_t slot;
/*
* First try primary hash.
*/
slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot,
mask | LPTE_WIRED | LPTE_LOCKED);
if (slot != -1) {
pvo->pvo_pte.slot = slot;
return (0);
}
/*
* Now try secondary hash.
*/
pvo->pvo_vaddr ^= PVO_HID;
insertpt->pte_hi ^= LPTE_HID;
pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot,
mask | LPTE_WIRED | LPTE_LOCKED);
if (slot != -1) {
pvo->pvo_pte.slot = slot;
return (0);
}
return (-1);
}
static int64_t
moea64_pte_insert_native(struct pvo_entry *pvo)
{
struct lpte insertpt;
int64_t ret;
/* Initialize PTE */
moea64_pte_from_pvo(pvo, &insertpt);
/* Make sure further insertion is locked out during evictions */
rw_rlock(&moea64_eviction_lock);
pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */
ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID);
if (ret == -1) {
/*
* Out of luck. Find a PTE to sacrifice.
*/
/* Lock out all insertions for a bit */
if (!rw_try_upgrade(&moea64_eviction_lock)) {
rw_runlock(&moea64_eviction_lock);
rw_wlock(&moea64_eviction_lock);
}
/* Don't evict large pages */
ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_BIG);
rw_wunlock(&moea64_eviction_lock);
/* No freeable slots in either PTEG? We're hosed. */
if (ret == -1)
panic("moea64_pte_insert: overflow");
} else
rw_runlock(&moea64_eviction_lock);
return (0);
}
static void *
moea64_dump_pmap_native(void *ctx, void *buf, u_long *nbytes)
{
struct dump_context *dctx;
u_long ptex, ptex_end;
dctx = (struct dump_context *)ctx;
ptex = dctx->ptex;
ptex_end = ptex + dctx->blksz / sizeof(struct lpte);
ptex_end = MIN(ptex_end, dctx->ptex_end);
*nbytes = (ptex_end - ptex) * sizeof(struct lpte);
if (*nbytes == 0)
return (NULL);
dctx->ptex = ptex_end;
return (__DEVOLATILE(struct lpte *, moea64_pteg_table) + ptex);
}
static __always_inline uint64_t
moea64_vpn_from_pte(uint64_t ptehi, uintptr_t slot)
{
uint64_t pgn, pgnlo, vsid;
vsid = (ptehi & LPTE_AVA_MASK) >> LPTE_VSID_SHIFT;
if ((ptehi & LPTE_HID) != 0)
slot ^= (moea64_pteg_mask << 3);
pgnlo = ((vsid & VSID_HASH_MASK) ^ (slot >> 3)) & EA_PAGELO_MASK;
pgn = ((ptehi & LPTE_AVA_PGNHI_MASK) << (EA_PAGELO_SHIFT -
LPTE_AVA_PGNHI_SHIFT)) | pgnlo;
return ((vsid << 16) | pgn);
}
static __always_inline int64_t
moea64_pte_unset_sp_locked(struct pvo_entry *pvo)
{
volatile struct lpte *pt;
uint64_t ptehi, refchg, vpn;
vm_offset_t eva;
pmap_t pm;
pm = pvo->pvo_pmap;
refchg = 0;
eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
for (; pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
pt = moea64_pteg_table + pvo->pvo_pte.slot;
ptehi = be64toh(pt->pte_hi);
if ((ptehi & LPTE_AVPN_MASK) !=
moea64_pte_vpn_from_pvo_vpn(pvo)) {
/* Evicted: invalidate new entry */
STAT_MOEA64(moea64_pte_overflow--);
vpn = moea64_vpn_from_pte(ptehi, pvo->pvo_pte.slot);
CTR1(KTR_PMAP, "Evicted page in pte_unset_sp: vpn=%jx",
(uintmax_t)vpn);
/* Assume evicted page was modified */
refchg |= LPTE_CHG;
} else
vpn = pvo->pvo_vpn;
refchg |= moea64_pte_unset_locked(pt, vpn);
}
return (refchg);
}
static int64_t
moea64_pte_unset_sp_native(struct pvo_entry *pvo)
{
uint64_t refchg;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
rw_rlock(&moea64_eviction_lock);
refchg = moea64_pte_unset_sp_locked(pvo);
rw_runlock(&moea64_eviction_lock);
return (refchg);
}
static __always_inline int64_t
moea64_pte_insert_sp_locked(struct pvo_entry *pvo)
{
struct lpte insertpt;
int64_t ret;
vm_offset_t eva;
pmap_t pm;
pm = pvo->pvo_pmap;
eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
for (; pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
moea64_pte_from_pvo(pvo, &insertpt);
pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */
ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID);
if (ret == -1) {
/* Lock out all insertions for a bit */
if (!rw_try_upgrade(&moea64_eviction_lock)) {
rw_runlock(&moea64_eviction_lock);
rw_wlock(&moea64_eviction_lock);
}
/* Don't evict large pages */
ret = moea64_pte_insert_locked(pvo, &insertpt,
LPTE_BIG);
rw_downgrade(&moea64_eviction_lock);
/* No freeable slots in either PTEG? We're hosed. */
if (ret == -1)
panic("moea64_pte_insert_sp: overflow");
}
}
return (0);
}
static int64_t
moea64_pte_insert_sp_native(struct pvo_entry *pvo)
{
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
rw_rlock(&moea64_eviction_lock);
moea64_pte_insert_sp_locked(pvo);
rw_runlock(&moea64_eviction_lock);
return (0);
}
static int64_t
moea64_pte_replace_sp_native(struct pvo_entry *pvo)
{
uint64_t refchg;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
rw_rlock(&moea64_eviction_lock);
refchg = moea64_pte_unset_sp_locked(pvo);
moea64_pte_insert_sp_locked(pvo);
rw_runlock(&moea64_eviction_lock);
return (refchg);
}