Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*-
 * Copyright (C) 1996 Wolfgang Solfrank.
 * Copyright (C) 1996 TooLs GmbH.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by TooLs GmbH.
 * 4. The name of TooLs GmbH may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *	$NetBSD: fpu.c,v 1.5 2001/07/22 11:29:46 wiz Exp $
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/limits.h>

#include <machine/altivec.h>
#include <machine/fpu.h>
#include <machine/ieeefp.h>
#include <machine/pcb.h>
#include <machine/psl.h>

#include <powerpc/fpu/fpu_arith.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>

void spe_handle_fpdata(struct trapframe *);
void spe_handle_fpround(struct trapframe *);
static int spe_emu_instr(uint32_t, struct fpemu *, struct fpn **, uint32_t *);

static void
save_vec_int(struct thread *td)
{
	int	msr;
	struct	pcb *pcb;

	pcb = td->td_pcb;

	/*
	 * Temporarily re-enable the vector unit during the save
	 */
	msr = mfmsr();
	mtmsr(msr | PSL_VEC);

	/*
	 * Save the vector registers and SPEFSCR to the PCB
	 */
#define EVSTDW(n)   __asm ("evstdw %1,0(%0)" \
		:: "b"(pcb->pcb_vec.vr[n]), "n"(n));
	EVSTDW(0);	EVSTDW(1);	EVSTDW(2);	EVSTDW(3);
	EVSTDW(4);	EVSTDW(5);	EVSTDW(6);	EVSTDW(7);
	EVSTDW(8);	EVSTDW(9);	EVSTDW(10);	EVSTDW(11);
	EVSTDW(12);	EVSTDW(13);	EVSTDW(14);	EVSTDW(15);
	EVSTDW(16);	EVSTDW(17);	EVSTDW(18);	EVSTDW(19);
	EVSTDW(20);	EVSTDW(21);	EVSTDW(22);	EVSTDW(23);
	EVSTDW(24);	EVSTDW(25);	EVSTDW(26);	EVSTDW(27);
	EVSTDW(28);	EVSTDW(29);	EVSTDW(30);	EVSTDW(31);
#undef EVSTDW

	__asm ( "evxor 0,0,0\n"
		"evmwumiaa 0,0,0\n"
		"evstdd 0,0(%0)" :: "b"(&pcb->pcb_vec.spare[0]));
	pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);

	/*
	 * Disable vector unit again
	 */
	isync();
	mtmsr(msr);

}

void
enable_vec(struct thread *td)
{
	int	msr;
	struct	pcb *pcb;
	struct	trapframe *tf;

	pcb = td->td_pcb;
	tf = trapframe(td);

	/*
	 * Save the thread's SPE CPU number, and set the CPU's current
	 * vector thread
	 */
	td->td_pcb->pcb_veccpu = PCPU_GET(cpuid);
	PCPU_SET(vecthread, td);

	/*
	 * Enable the vector unit for when the thread returns from the
	 * exception. If this is the first time the unit has been used by
	 * the thread, initialise the vector registers and VSCR to 0, and
	 * set the flag to indicate that the vector unit is in use.
	 */
	tf->srr1 |= PSL_VEC;
	if (!(pcb->pcb_flags & PCB_VEC)) {
		memset(&pcb->pcb_vec, 0, sizeof pcb->pcb_vec);
		pcb->pcb_flags |= PCB_VEC;
		pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
	}

	/*
	 * Temporarily enable the vector unit so the registers
	 * can be restored.
	 */
	msr = mfmsr();
	mtmsr(msr | PSL_VEC);

	/* Restore SPEFSCR and ACC.  Use %r0 as the scratch for ACC. */
	mtspr(SPR_SPEFSCR, pcb->pcb_vec.vscr);
	__asm __volatile("isync;evldd 0, 0(%0); evmra 0,0\n"
	    :: "b"(&pcb->pcb_vec.spare[0]));

	/* 
	 * The lower half of each register will be restored on trap return.  Use
	 * %r0 as a scratch register, and restore it last.
	 */
#define	EVLDW(n)   __asm __volatile("evldw 0, 0(%0); evmergehilo "#n",0,"#n \
	    :: "b"(&pcb->pcb_vec.vr[n]));
	EVLDW(1);	EVLDW(2);	EVLDW(3);	EVLDW(4);
	EVLDW(5);	EVLDW(6);	EVLDW(7);	EVLDW(8);
	EVLDW(9);	EVLDW(10);	EVLDW(11);	EVLDW(12);
	EVLDW(13);	EVLDW(14);	EVLDW(15);	EVLDW(16);
	EVLDW(17);	EVLDW(18);	EVLDW(19);	EVLDW(20);
	EVLDW(21);	EVLDW(22);	EVLDW(23);	EVLDW(24);
	EVLDW(25);	EVLDW(26);	EVLDW(27);	EVLDW(28);
	EVLDW(29);	EVLDW(30);	EVLDW(31);	EVLDW(0);
#undef EVLDW

	isync();
	mtmsr(msr);
}

void
save_vec(struct thread *td)
{
	struct pcb *pcb;

	pcb = td->td_pcb;

	save_vec_int(td);

	/*
	 * Clear the current vec thread and pcb's CPU id
	 * XXX should this be left clear to allow lazy save/restore ?
	 */
	pcb->pcb_veccpu = INT_MAX;
	PCPU_SET(vecthread, NULL);
}

/*
 * Save SPE state without dropping ownership.  This will only save state if
 * the current vector-thread is `td'.  This is used for taking core dumps, so
 * don't leak kernel information; overwrite the low words of each vector with
 * their real value, taken from the thread's trap frame, unconditionally.
 */
void
save_vec_nodrop(struct thread *td)
{
	struct pcb *pcb;
	int i;

	if (td == PCPU_GET(vecthread))
		save_vec_int(td);

	pcb = td->td_pcb;

	for (i = 0; i < 32; i++) {
		pcb->pcb_vec.vr[i][1] =
		    td->td_frame ? td->td_frame->fixreg[i] : 0;
	}
}

#define	SPE_INST_MASK	0x31f
#define	EADD	0x200
#define	ESUB	0x201
#define	EABS	0x204
#define	ENABS	0x205
#define	ENEG	0x206
#define	EMUL	0x208
#define	EDIV	0x209
#define	ECMPGT	0x20c
#define	ECMPLT	0x20d
#define	ECMPEQ	0x20e
#define	ECFUI	0x210
#define	ECFSI	0x211
#define	ECTUI	0x214
#define	ECTSI	0x215
#define	ECTUF	0x216
#define	ECTSF	0x217
#define	ECTUIZ	0x218
#define	ECTSIZ	0x21a

#define	SPE		0x4
#define	SPFP		0x6
#define	DPFP		0x7

#define	SPE_OPC		4
#define	OPC_SHIFT	26

#define	EVFSADD		0x280
#define	EVFSSUB		0x281
#define	EVFSABS		0x284
#define	EVFSNABS	0x285
#define	EVFSNEG		0x286
#define	EVFSMUL		0x288
#define	EVFSDIV		0x289
#define	EVFSCMPGT	0x28c
#define	EVFSCMPLT	0x28d
#define	EVFSCMPEQ	0x28e
#define	EVFSCFUI	0x290
#define	EVFSCFSI	0x291
#define	EVFSCTUI	0x294
#define	EVFSCTSI	0x295
#define	EVFSCTUF	0x296
#define	EVFSCTSF	0x297
#define	EVFSCTUIZ	0x298
#define	EVFSCTSIZ	0x29a

#define	EFSADD		0x2c0
#define	EFSSUB		0x2c1
#define	EFSABS		0x2c4
#define	EFSNABS		0x2c5
#define	EFSNEG		0x2c6
#define	EFSMUL		0x2c8
#define	EFSDIV		0x2c9
#define	EFSCMPGT	0x2cc
#define	EFSCMPLT	0x2cd
#define	EFSCMPEQ	0x2ce
#define	EFSCFD		0x2cf
#define	EFSCFUI		0x2d0
#define	EFSCFSI		0x2d1
#define	EFSCTUI		0x2d4
#define	EFSCTSI		0x2d5
#define	EFSCTUF		0x2d6
#define	EFSCTSF		0x2d7
#define	EFSCTUIZ	0x2d8
#define	EFSCTSIZ	0x2da

#define	EFDADD		0x2e0
#define	EFDSUB		0x2e1
#define	EFDABS		0x2e4
#define	EFDNABS		0x2e5
#define	EFDNEG		0x2e6
#define	EFDMUL		0x2e8
#define	EFDDIV		0x2e9
#define	EFDCMPGT	0x2ec
#define	EFDCMPLT	0x2ed
#define	EFDCMPEQ	0x2ee
#define	EFDCFS		0x2ef
#define	EFDCFUI		0x2f0
#define	EFDCFSI		0x2f1
#define	EFDCTUI		0x2f4
#define	EFDCTSI		0x2f5
#define	EFDCTUF		0x2f6
#define	EFDCTSF		0x2f7
#define	EFDCTUIZ	0x2f8
#define	EFDCTSIZ	0x2fa

enum {
	NONE,
	SINGLE,
	DOUBLE,
	VECTOR,
};

static uint32_t fpscr_to_spefscr(uint32_t fpscr)
{
	uint32_t spefscr;

	spefscr = 0;

	if (fpscr & FPSCR_VX)
		spefscr |= SPEFSCR_FINV;
	if (fpscr & FPSCR_OX)
		spefscr |= SPEFSCR_FOVF;
	if (fpscr & FPSCR_UX)
		spefscr |= SPEFSCR_FUNF;
	if (fpscr & FPSCR_ZX)
		spefscr |= SPEFSCR_FDBZ;
	if (fpscr & FPSCR_XX)
		spefscr |= SPEFSCR_FX;

	return (spefscr);
}

/* Sign is 0 for unsigned, 1 for signed. */
static int
spe_to_int(struct fpemu *fpemu, struct fpn *fpn, uint32_t *val, int sign)
{
	uint32_t res[2];

	res[0] = fpu_ftox(fpemu, fpn, res);
	if (res[0] != UINT_MAX && res[0] != 0)
		fpemu->fe_cx |= FPSCR_OX;
	else if (sign == 0 && res[0] != 0)
		fpemu->fe_cx |= FPSCR_UX;
	else
		*val = res[1];

	return (0);
}

/* Masked instruction */
/*
 * For compare instructions, returns 1 if success, 0 if not.  For all others,
 * returns -1, or -2 if no result needs recorded.
 */
static int
spe_emu_instr(uint32_t instr, struct fpemu *fpemu,
    struct fpn **result, uint32_t *iresult)
{
	switch (instr & SPE_INST_MASK) {
	case EABS:
	case ENABS:
	case ENEG:
		/* Taken care of elsewhere. */
		break;
	case ECTUIZ:
		fpemu->fe_cx &= ~FPSCR_RN;
		fpemu->fe_cx |= FP_RZ;
	case ECTUI:
		spe_to_int(fpemu, &fpemu->fe_f2, iresult, 0);
		return (-1);
	case ECTSIZ:
		fpemu->fe_cx &= ~FPSCR_RN;
		fpemu->fe_cx |= FP_RZ;
	case ECTSI:
		spe_to_int(fpemu, &fpemu->fe_f2, iresult, 1);
		return (-1);
	case EADD:
		*result = fpu_add(fpemu);
		break;
	case ESUB:
		*result = fpu_sub(fpemu);
		break;
	case EMUL:
		*result = fpu_mul(fpemu);
		break;
	case EDIV:
		*result = fpu_div(fpemu);
		break;
	case ECMPGT:
		fpu_compare(fpemu, 0);
		if (fpemu->fe_cx & FPSCR_FG)
			return (1);
		return (0);
	case ECMPLT:
		fpu_compare(fpemu, 0);
		if (fpemu->fe_cx & FPSCR_FL)
			return (1);
		return (0);
	case ECMPEQ:
		fpu_compare(fpemu, 0);
		if (fpemu->fe_cx & FPSCR_FE)
			return (1);
		return (0);
	default:
		printf("Unknown instruction %x\n", instr);
	}

	return (-1);
}

static int
spe_explode(struct fpemu *fe, struct fpn *fp, uint32_t type,
    uint32_t hi, uint32_t lo)
{
	uint32_t s;

	fp->fp_sign = hi >> 31;
	fp->fp_sticky = 0;
	switch (type) {
	case SINGLE:
		s = fpu_stof(fp, hi);
		break;

	case DOUBLE:
		s = fpu_dtof(fp, hi, lo);
		break;
	}

	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
		/*
		 * Input is a signalling NaN.  All operations that return
		 * an input NaN operand put it through a ``NaN conversion'',
		 * which basically just means ``turn on the quiet bit''.
		 * We do this here so that all NaNs internally look quiet
		 * (we can tell signalling ones by their class).
		 */
		fp->fp_mant[0] |= FP_QUIETBIT;
		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
		s = FPC_SNAN;
	}
	fp->fp_class = s;

	return (0);
}

/*
 * Save the high word of a 64-bit GPR for manipulation in the exception handler.
 */
static uint32_t
spe_save_reg_high(int reg)
{
	uint32_t vec[2];
#define EVSTDW(n)   case n: __asm __volatile ("evstdw %1,0(%0)" \
		:: "b"(vec), "n"(n) : "memory"); break;
	switch (reg) {
	EVSTDW(0);	EVSTDW(1);	EVSTDW(2);	EVSTDW(3);
	EVSTDW(4);	EVSTDW(5);	EVSTDW(6);	EVSTDW(7);
	EVSTDW(8);	EVSTDW(9);	EVSTDW(10);	EVSTDW(11);
	EVSTDW(12);	EVSTDW(13);	EVSTDW(14);	EVSTDW(15);
	EVSTDW(16);	EVSTDW(17);	EVSTDW(18);	EVSTDW(19);
	EVSTDW(20);	EVSTDW(21);	EVSTDW(22);	EVSTDW(23);
	EVSTDW(24);	EVSTDW(25);	EVSTDW(26);	EVSTDW(27);
	EVSTDW(28);	EVSTDW(29);	EVSTDW(30);	EVSTDW(31);
	}
#undef EVSTDW

	return (vec[0]);
}

/*
 * Load the given value into the high word of the requested register.
 */
static void
spe_load_reg_high(int reg, uint32_t val)
{
#define	EVLDW(n)   case n: __asm __volatile("evmergelo "#n",%0,"#n \
	    :: "r"(val)); break;
	switch (reg) {
	EVLDW(1);	EVLDW(2);	EVLDW(3);	EVLDW(4);
	EVLDW(5);	EVLDW(6);	EVLDW(7);	EVLDW(8);
	EVLDW(9);	EVLDW(10);	EVLDW(11);	EVLDW(12);
	EVLDW(13);	EVLDW(14);	EVLDW(15);	EVLDW(16);
	EVLDW(17);	EVLDW(18);	EVLDW(19);	EVLDW(20);
	EVLDW(21);	EVLDW(22);	EVLDW(23);	EVLDW(24);
	EVLDW(25);	EVLDW(26);	EVLDW(27);	EVLDW(28);
	EVLDW(29);	EVLDW(30);	EVLDW(31);	EVLDW(0);
	}
#undef EVLDW

}

void
spe_handle_fpdata(struct trapframe *frame)
{
	struct fpemu fpemu;
	struct fpn *result;
	uint32_t instr, instr_sec_op;
	uint32_t cr_shift, ra, rb, rd, src;
	uint32_t high, low, res, tmp; /* For vector operations. */
	uint32_t spefscr = 0;
	uint32_t ftod_res[2];
	int width; /* Single, Double, Vector, Integer */
	int err;
	uint32_t msr;

	err = fueword32((void *)frame->srr0, &instr);

	if (err != 0)
		return;
		/* Fault. */;

	if ((instr >> OPC_SHIFT) != SPE_OPC)
		return;

	msr = mfmsr();
	/*
	 * 'cr' field is the upper 3 bits of rd.  Magically, since a) rd is 5
	 * bits, b) each 'cr' field is 4 bits, and c) Only the 'GT' bit is
	 * modified for most compare operations, the full value of rd can be
	 * used as a shift value.
	 */
	rd = (instr >> 21) & 0x1f;
	ra = (instr >> 16) & 0x1f;
	rb = (instr >> 11) & 0x1f;
	src = (instr >> 5) & 0x7;
	cr_shift = 28 - (rd & 0x1f);

	instr_sec_op = (instr & 0x7ff);

	memset(&fpemu, 0, sizeof(fpemu));

	width = NONE;
	switch (src) {
	case SPE:
		mtmsr(msr | PSL_VEC);
		switch (instr_sec_op) {
		case EVFSABS:
			high = spe_save_reg_high(ra) & ~(1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
			spe_load_reg_high(rd, high);
			break;
		case EVFSNABS:
			high = spe_save_reg_high(ra) | (1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
			spe_load_reg_high(rd, high);
			break;
		case EVFSNEG:
			high = spe_save_reg_high(ra) ^ (1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
			spe_load_reg_high(rd, high);
			break;
		default:
			/* High word */
			spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
			    spe_save_reg_high(ra), 0);
			spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
			    spe_save_reg_high(rb), 0);
			high = spe_emu_instr(instr_sec_op, &fpemu, &result,
			    &tmp);

			if (high < 0)
				spe_load_reg_high(rd, tmp);

			spefscr = fpscr_to_spefscr(fpemu.fe_cx) << 16;
			/* Clear the fpemu to start over on the lower bits. */
			memset(&fpemu, 0, sizeof(fpemu));

			/* Now low word */
			spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
			    frame->fixreg[ra], 0);
			spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
			    frame->fixreg[rb], 0);
			spefscr |= fpscr_to_spefscr(fpemu.fe_cx);
			low = spe_emu_instr(instr_sec_op, &fpemu, &result,
			    &frame->fixreg[rd]);
			if (instr_sec_op == EVFSCMPEQ ||
			    instr_sec_op == EVFSCMPGT ||
			    instr_sec_op == EVFSCMPLT) {
				res = (high << 3) | (low << 2) |
				    ((high | low) << 1) | (high & low);
				width = NONE;
			} else
				width = VECTOR;
			break;
		}
		goto end;

	case SPFP:
		switch (instr_sec_op) {
		case EFSABS:
			frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
			break;
		case EFSNABS:
			frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
			break;
		case EFSNEG:
			frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
			break;
		case EFSCFD:
			mtmsr(msr | PSL_VEC);
			spe_explode(&fpemu, &fpemu.fe_f3, DOUBLE,
			    spe_save_reg_high(rb), frame->fixreg[rb]);
			result = &fpemu.fe_f3;
			width = SINGLE;
			break;
		default:
			spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
			    frame->fixreg[ra], 0);
			spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
			    frame->fixreg[rb], 0);
			width = SINGLE;
		}
		break;
	case DPFP:
		mtmsr(msr | PSL_VEC);
		switch (instr_sec_op) {
		case EFDABS:
			high = spe_save_reg_high(ra) & ~(1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra];
			spe_load_reg_high(rd, high);
			break;
		case EFDNABS:
			high = spe_save_reg_high(ra) | (1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra];
			spe_load_reg_high(rd, high);
			break;
		case EFDNEG:
			high = spe_save_reg_high(ra) ^ (1U << 31);
			frame->fixreg[rd] = frame->fixreg[ra];
			spe_load_reg_high(rd, high);
			break;
		case EFDCFS:
			spe_explode(&fpemu, &fpemu.fe_f3, SINGLE,
			    frame->fixreg[rb], 0);
			result = &fpemu.fe_f3;
			width = DOUBLE;
			break;
		default:
			spe_explode(&fpemu, &fpemu.fe_f1, DOUBLE,
			    spe_save_reg_high(ra), frame->fixreg[ra]);
			spe_explode(&fpemu, &fpemu.fe_f2, DOUBLE,
			    spe_save_reg_high(rb), frame->fixreg[rb]);
			width = DOUBLE;
		}
		break;
	}
	switch (instr_sec_op) {
	case EFDCFS:
	case EFSCFD:
		/* Already handled. */
		break;
	default:
		res = spe_emu_instr(instr_sec_op, &fpemu, &result,
		    &frame->fixreg[rd]);
		if (res != -1)
			res <<= 2;
		break;
	}

	switch (instr_sec_op & SPE_INST_MASK) {
	case ECMPEQ:
	case ECMPGT:
	case ECMPLT:
		frame->cr &= ~(0xf << cr_shift);
		frame->cr |= (res << cr_shift);
		break;
	case ECTUI:
	case ECTUIZ:
	case ECTSI:
	case ECTSIZ:
		break;
	default:
		switch (width) {
		case NONE:
		case VECTOR:
			break;
		case SINGLE:
			frame->fixreg[rd] = fpu_ftos(&fpemu, result);
			break;
		case DOUBLE:
			spe_load_reg_high(rd, fpu_ftod(&fpemu, result, ftod_res));
			frame->fixreg[rd] = ftod_res[1];
			break;
		default:
			panic("Unknown storage width %d", width);
			break;
		}
	}

end:
	spefscr |= (mfspr(SPR_SPEFSCR) & ~SPEFSCR_FINVS);
	mtspr(SPR_SPEFSCR, spefscr);
	frame->srr0 += 4;
	mtmsr(msr);

	return;
}

void
spe_handle_fpround(struct trapframe *frame)
{

	/*
	 * Punt fpround exceptions for now.  This leaves the truncated result in
	 * the register.  We'll deal with overflow/underflow later.
	 */
	return;
}