/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Michael Lorenz
* Copyright 2008 by Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/clock.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/led/led.h>
#include <machine/_inttypes.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/hid.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/pio.h>
#include <machine/resource.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <sys/rman.h>
#include <dev/adb/adb.h>
#include "clock_if.h"
#include "pmuvar.h"
#include "viareg.h"
#include "uninorthvar.h" /* For unin_chip_sleep()/unin_chip_wake() */
#define PMU_DEFAULTS PMU_INT_TICK | PMU_INT_ADB | \
PMU_INT_PCEJECT | PMU_INT_SNDBRT | \
PMU_INT_BATTERY | PMU_INT_ENVIRONMENT
/*
* Bus interface
*/
static int pmu_probe(device_t);
static int pmu_attach(device_t);
static int pmu_detach(device_t);
/*
* Clock interface
*/
static int pmu_gettime(device_t dev, struct timespec *ts);
static int pmu_settime(device_t dev, struct timespec *ts);
/*
* ADB Interface
*/
static u_int pmu_adb_send(device_t dev, u_char command_byte, int len,
u_char *data, u_char poll);
static u_int pmu_adb_autopoll(device_t dev, uint16_t mask);
static u_int pmu_poll(device_t dev);
/*
* Power interface
*/
static void pmu_shutdown(void *xsc, int howto);
static void pmu_set_sleepled(void *xsc, int onoff);
static int pmu_server_mode(SYSCTL_HANDLER_ARGS);
static int pmu_acline_state(SYSCTL_HANDLER_ARGS);
static int pmu_query_battery(struct pmu_softc *sc, int batt,
struct pmu_battstate *info);
static int pmu_battquery_sysctl(SYSCTL_HANDLER_ARGS);
static int pmu_battmon(SYSCTL_HANDLER_ARGS);
static void pmu_battquery_proc(void);
static void pmu_battery_notify(struct pmu_battstate *batt,
struct pmu_battstate *old);
/*
* List of battery-related sysctls we might ask for
*/
enum {
PMU_BATSYSCTL_PRESENT = 1 << 8,
PMU_BATSYSCTL_CHARGING = 2 << 8,
PMU_BATSYSCTL_CHARGE = 3 << 8,
PMU_BATSYSCTL_MAXCHARGE = 4 << 8,
PMU_BATSYSCTL_CURRENT = 5 << 8,
PMU_BATSYSCTL_VOLTAGE = 6 << 8,
PMU_BATSYSCTL_TIME = 7 << 8,
PMU_BATSYSCTL_LIFE = 8 << 8
};
static device_method_t pmu_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pmu_probe),
DEVMETHOD(device_attach, pmu_attach),
DEVMETHOD(device_detach, pmu_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* ADB bus interface */
DEVMETHOD(adb_hb_send_raw_packet, pmu_adb_send),
DEVMETHOD(adb_hb_controller_poll, pmu_poll),
DEVMETHOD(adb_hb_set_autopoll_mask, pmu_adb_autopoll),
/* Clock interface */
DEVMETHOD(clock_gettime, pmu_gettime),
DEVMETHOD(clock_settime, pmu_settime),
DEVMETHOD_END
};
static driver_t pmu_driver = {
"pmu",
pmu_methods,
sizeof(struct pmu_softc),
};
static devclass_t pmu_devclass;
EARLY_DRIVER_MODULE(pmu, macio, pmu_driver, pmu_devclass, 0, 0,
BUS_PASS_RESOURCE);
DRIVER_MODULE(adb, pmu, adb_driver, adb_devclass, 0, 0);
static int pmuextint_probe(device_t);
static int pmuextint_attach(device_t);
static device_method_t pmuextint_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pmuextint_probe),
DEVMETHOD(device_attach, pmuextint_attach),
{0,0}
};
static driver_t pmuextint_driver = {
"pmuextint",
pmuextint_methods,
0
};
static devclass_t pmuextint_devclass;
EARLY_DRIVER_MODULE(pmuextint, macgpio, pmuextint_driver, pmuextint_devclass,
0, 0, BUS_PASS_RESOURCE);
/* Make sure uhid is loaded, as it turns off some of the ADB emulation */
MODULE_DEPEND(pmu, usb, 1, 1, 1);
static void pmu_intr(void *arg);
static void pmu_in(struct pmu_softc *sc);
static void pmu_out(struct pmu_softc *sc);
static void pmu_ack_on(struct pmu_softc *sc);
static void pmu_ack_off(struct pmu_softc *sc);
static int pmu_send(void *cookie, int cmd, int length, uint8_t *in_msg,
int rlen, uint8_t *out_msg);
static uint8_t pmu_read_reg(struct pmu_softc *sc, u_int offset);
static void pmu_write_reg(struct pmu_softc *sc, u_int offset, uint8_t value);
static int pmu_intr_state(struct pmu_softc *);
/* these values shows that number of data returned after 'send' cmd is sent */
static signed char pm_send_cmd_type[] = {
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
0x01, 0x01, -1, -1, -1, -1, -1, -1,
0x00, 0x00, -1, -1, -1, -1, -1, 0x00,
-1, 0x00, 0x02, 0x01, 0x01, -1, -1, -1,
0x00, -1, -1, -1, -1, -1, -1, -1,
0x04, 0x14, -1, 0x03, -1, -1, -1, -1,
0x00, 0x00, 0x02, 0x02, -1, -1, -1, -1,
0x01, 0x01, -1, -1, -1, -1, -1, -1,
0x00, 0x00, -1, -1, 0x01, -1, -1, -1,
0x01, 0x00, 0x02, 0x02, -1, 0x01, 0x03, 0x01,
0x00, 0x01, 0x00, 0x00, 0x00, -1, -1, -1,
0x02, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, -1, -1,
0x01, 0x01, 0x01, -1, -1, -1, -1, -1,
0x00, 0x00, -1, -1, -1, 0x05, 0x04, 0x04,
0x04, -1, 0x00, -1, -1, -1, -1, -1,
0x00, -1, -1, -1, -1, -1, -1, -1,
0x01, 0x02, -1, -1, -1, -1, -1, -1,
0x00, 0x00, -1, -1, -1, -1, -1, -1,
0x02, 0x02, 0x02, 0x04, -1, 0x00, -1, -1,
0x01, 0x01, 0x03, 0x02, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
0x00, -1, -1, -1, -1, -1, -1, -1,
0x01, 0x01, -1, -1, 0x00, 0x00, -1, -1,
-1, 0x04, 0x00, -1, -1, -1, -1, -1,
0x03, -1, 0x00, -1, 0x00, -1, -1, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
/* these values shows that number of data returned after 'receive' cmd is sent */
static signed char pm_receive_cmd_type[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, -1, -1, -1, -1, -1, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x05, 0x15, -1, 0x02, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x03, 0x03, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x04, 0x03, 0x09, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x06, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, -1, -1, 0x02, -1, -1, -1,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, 0x02, -1, -1, -1, -1, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-1, -1, -1, -1, -1, -1, -1, -1,
};
static int pmu_battmon_enabled = 1;
static struct proc *pmubattproc;
static struct kproc_desc pmu_batt_kp = {
"pmu_batt",
pmu_battquery_proc,
&pmubattproc
};
/* We only have one of each device, so globals are safe */
static device_t pmu = NULL;
static device_t pmu_extint = NULL;
static int
pmuextint_probe(device_t dev)
{
const char *type = ofw_bus_get_type(dev);
if (strcmp(type, "extint-gpio1") != 0)
return (ENXIO);
device_set_desc(dev, "Apple PMU99 External Interrupt");
return (0);
}
static int
pmu_probe(device_t dev)
{
const char *type = ofw_bus_get_type(dev);
if (strcmp(type, "via-pmu") != 0)
return (ENXIO);
device_set_desc(dev, "Apple PMU99 Controller");
return (0);
}
static int
setup_pmu_intr(device_t dev, device_t extint)
{
struct pmu_softc *sc;
sc = device_get_softc(dev);
sc->sc_irqrid = 0;
sc->sc_irq = bus_alloc_resource_any(extint, SYS_RES_IRQ, &sc->sc_irqrid,
RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_MISC | INTR_MPSAFE
| INTR_ENTROPY, NULL, pmu_intr, dev, &sc->sc_ih) != 0) {
device_printf(dev, "could not setup interrupt\n");
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irqrid,
sc->sc_irq);
return (ENXIO);
}
return (0);
}
static int
pmuextint_attach(device_t dev)
{
pmu_extint = dev;
if (pmu)
return (setup_pmu_intr(pmu,dev));
return (0);
}
static int
pmu_attach(device_t dev)
{
struct pmu_softc *sc;
int i;
uint8_t reg;
uint8_t cmd[2] = {2, 0};
uint8_t resp[16];
phandle_t node,child;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_memrid = 0;
sc->sc_memr = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_memrid, RF_ACTIVE);
mtx_init(&sc->sc_mutex,"pmu",NULL,MTX_DEF | MTX_RECURSE);
if (sc->sc_memr == NULL) {
device_printf(dev, "Could not alloc mem resource!\n");
return (ENXIO);
}
/*
* Our interrupt is attached to a GPIO pin. Depending on probe order,
* we may not have found it yet. If we haven't, it will find us, and
* attach our interrupt then.
*/
pmu = dev;
if (pmu_extint != NULL) {
if (setup_pmu_intr(dev,pmu_extint) != 0)
return (ENXIO);
}
sc->sc_autopoll = 0;
sc->sc_batteries = 0;
sc->adb_bus = NULL;
sc->sc_leddev = NULL;
/* Init PMU */
pmu_write_reg(sc, vBufB, pmu_read_reg(sc, vBufB) | vPB4);
pmu_write_reg(sc, vDirB, (pmu_read_reg(sc, vDirB) | vPB4) & ~vPB3);
reg = PMU_DEFAULTS;
pmu_send(sc, PMU_SET_IMASK, 1, ®, 16, resp);
pmu_write_reg(sc, vIER, 0x94); /* make sure VIA interrupts are on */
pmu_send(sc, PMU_SYSTEM_READY, 1, cmd, 16, resp);
pmu_send(sc, PMU_GET_VERSION, 0, cmd, 16, resp);
/* Initialize child buses (ADB) */
node = ofw_bus_get_node(dev);
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
char name[32];
memset(name, 0, sizeof(name));
OF_getprop(child, "name", name, sizeof(name));
if (bootverbose)
device_printf(dev, "PMU child <%s>\n",name);
if (strncmp(name, "adb", 4) == 0) {
sc->adb_bus = device_add_child(dev,"adb",-1);
}
if (strncmp(name, "power-mgt", 9) == 0) {
uint32_t prim_info[9];
if (OF_getprop(child, "prim-info", prim_info,
sizeof(prim_info)) >= 7)
sc->sc_batteries = (prim_info[6] >> 16) & 0xff;
if (bootverbose && sc->sc_batteries > 0)
device_printf(dev, "%d batteries detected\n",
sc->sc_batteries);
}
}
/*
* Set up sysctls
*/
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
pmu_server_mode, "I", "Enable reboot after power failure");
if (sc->sc_batteries > 0) {
struct sysctl_oid *oid, *battroot;
char battnum[2];
/* Only start the battery monitor if we have a battery. */
kproc_start(&pmu_batt_kp);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"monitor_batteries",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
pmu_battmon, "I", "Post battery events to devd");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"acline", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
0, pmu_acline_state, "I", "AC Line Status");
battroot = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"batteries", CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Battery Information");
for (i = 0; i < sc->sc_batteries; i++) {
battnum[0] = i + '0';
battnum[1] = '\0';
oid = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(battroot),
OID_AUTO, battnum, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Battery Information");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"present",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_PRESENT | i, pmu_battquery_sysctl,
"I", "Battery present");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"charging",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_CHARGING | i, pmu_battquery_sysctl,
"I", "Battery charging");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"charge",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_CHARGE | i, pmu_battquery_sysctl,
"I", "Battery charge (mAh)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"maxcharge",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_MAXCHARGE | i, pmu_battquery_sysctl,
"I", "Maximum battery capacity (mAh)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"rate",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_CURRENT | i, pmu_battquery_sysctl,
"I", "Battery discharge rate (mA)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"voltage",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_VOLTAGE | i, pmu_battquery_sysctl,
"I", "Battery voltage (mV)");
/* Knobs for mental compatibility with ACPI */
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"time",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_TIME | i, pmu_battquery_sysctl,
"I", "Time Remaining (minutes)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"life",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
PMU_BATSYSCTL_LIFE | i, pmu_battquery_sysctl,
"I", "Capacity remaining (percent)");
}
}
/*
* Set up LED interface
*/
sc->sc_leddev = led_create(pmu_set_sleepled, sc, "sleepled");
/*
* Register RTC
*/
clock_register(dev, 1000);
/*
* Register power control handler
*/
EVENTHANDLER_REGISTER(shutdown_final, pmu_shutdown, sc,
SHUTDOWN_PRI_LAST);
return (bus_generic_attach(dev));
}
static int
pmu_detach(device_t dev)
{
struct pmu_softc *sc;
sc = device_get_softc(dev);
if (sc->sc_leddev != NULL)
led_destroy(sc->sc_leddev);
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irqrid, sc->sc_irq);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_memrid, sc->sc_memr);
mtx_destroy(&sc->sc_mutex);
return (bus_generic_detach(dev));
}
static uint8_t
pmu_read_reg(struct pmu_softc *sc, u_int offset)
{
return (bus_read_1(sc->sc_memr, offset));
}
static void
pmu_write_reg(struct pmu_softc *sc, u_int offset, uint8_t value)
{
bus_write_1(sc->sc_memr, offset, value);
}
static int
pmu_send_byte(struct pmu_softc *sc, uint8_t data)
{
pmu_out(sc);
pmu_write_reg(sc, vSR, data);
pmu_ack_off(sc);
/* wait for intr to come up */
/* XXX should add a timeout and bail if it expires */
do {} while (pmu_intr_state(sc) == 0);
pmu_ack_on(sc);
do {} while (pmu_intr_state(sc));
pmu_ack_on(sc);
return 0;
}
static inline int
pmu_read_byte(struct pmu_softc *sc, uint8_t *data)
{
volatile uint8_t scratch;
pmu_in(sc);
scratch = pmu_read_reg(sc, vSR);
pmu_ack_off(sc);
/* wait for intr to come up */
do {} while (pmu_intr_state(sc) == 0);
pmu_ack_on(sc);
do {} while (pmu_intr_state(sc));
*data = pmu_read_reg(sc, vSR);
return 0;
}
static int
pmu_intr_state(struct pmu_softc *sc)
{
return ((pmu_read_reg(sc, vBufB) & vPB3) == 0);
}
static int
pmu_send(void *cookie, int cmd, int length, uint8_t *in_msg, int rlen,
uint8_t *out_msg)
{
struct pmu_softc *sc = cookie;
int i, rcv_len = -1;
uint8_t out_len, intreg;
intreg = pmu_read_reg(sc, vIER);
intreg &= 0x10;
pmu_write_reg(sc, vIER, intreg);
/* wait idle */
do {} while (pmu_intr_state(sc));
/* send command */
pmu_send_byte(sc, cmd);
/* send length if necessary */
if (pm_send_cmd_type[cmd] < 0) {
pmu_send_byte(sc, length);
}
for (i = 0; i < length; i++) {
pmu_send_byte(sc, in_msg[i]);
}
/* see if there's data to read */
rcv_len = pm_receive_cmd_type[cmd];
if (rcv_len == 0)
goto done;
/* read command */
if (rcv_len == 1) {
pmu_read_byte(sc, out_msg);
goto done;
} else
out_msg[0] = cmd;
if (rcv_len < 0) {
pmu_read_byte(sc, &out_len);
rcv_len = out_len + 1;
}
for (i = 1; i < min(rcv_len, rlen); i++)
pmu_read_byte(sc, &out_msg[i]);
done:
pmu_write_reg(sc, vIER, (intreg == 0) ? 0 : 0x90);
return rcv_len;
}
static u_int
pmu_poll(device_t dev)
{
pmu_intr(dev);
return (0);
}
static void
pmu_in(struct pmu_softc *sc)
{
uint8_t reg;
reg = pmu_read_reg(sc, vACR);
reg &= ~vSR_OUT;
reg |= 0x0c;
pmu_write_reg(sc, vACR, reg);
}
static void
pmu_out(struct pmu_softc *sc)
{
uint8_t reg;
reg = pmu_read_reg(sc, vACR);
reg |= vSR_OUT;
reg |= 0x0c;
pmu_write_reg(sc, vACR, reg);
}
static void
pmu_ack_off(struct pmu_softc *sc)
{
uint8_t reg;
reg = pmu_read_reg(sc, vBufB);
reg &= ~vPB4;
pmu_write_reg(sc, vBufB, reg);
}
static void
pmu_ack_on(struct pmu_softc *sc)
{
uint8_t reg;
reg = pmu_read_reg(sc, vBufB);
reg |= vPB4;
pmu_write_reg(sc, vBufB, reg);
}
static void
pmu_intr(void *arg)
{
device_t dev;
struct pmu_softc *sc;
unsigned int len;
uint8_t resp[16];
uint8_t junk[16];
dev = (device_t)arg;
sc = device_get_softc(dev);
mtx_lock(&sc->sc_mutex);
pmu_write_reg(sc, vIFR, 0x90); /* Clear 'em */
len = pmu_send(sc, PMU_INT_ACK, 0, NULL, 16, resp);
mtx_unlock(&sc->sc_mutex);
if ((len < 1) || (resp[1] == 0)) {
return;
}
if (resp[1] & PMU_INT_ADB) {
/*
* the PMU will turn off autopolling after each command that
* it did not issue, so we assume any but TALK R0 is ours and
* re-enable autopoll here whenever we receive an ACK for a
* non TR0 command.
*/
mtx_lock(&sc->sc_mutex);
if ((resp[2] & 0x0f) != (ADB_COMMAND_TALK << 2)) {
if (sc->sc_autopoll) {
uint8_t cmd[] = {0, PMU_SET_POLL_MASK,
(sc->sc_autopoll >> 8) & 0xff,
sc->sc_autopoll & 0xff};
pmu_send(sc, PMU_ADB_CMD, 4, cmd, 16, junk);
}
}
mtx_unlock(&sc->sc_mutex);
adb_receive_raw_packet(sc->adb_bus,resp[1],resp[2],
len - 3,&resp[3]);
}
if (resp[1] & PMU_INT_ENVIRONMENT) {
/* if the lid was just closed, notify devd. */
if ((resp[2] & PMU_ENV_LID_CLOSED) && (!sc->lid_closed)) {
sc->lid_closed = 1;
devctl_notify("PMU", "lid", "close", NULL);
}
else if (!(resp[2] & PMU_ENV_LID_CLOSED) && (sc->lid_closed)) {
/* if the lid was just opened, notify devd. */
sc->lid_closed = 0;
devctl_notify("PMU", "lid", "open", NULL);
}
if (resp[2] & PMU_ENV_POWER)
devctl_notify("PMU", "Button", "pressed", NULL);
}
}
static u_int
pmu_adb_send(device_t dev, u_char command_byte, int len, u_char *data,
u_char poll)
{
struct pmu_softc *sc = device_get_softc(dev);
int i,replen;
uint8_t packet[16], resp[16];
/* construct an ADB command packet and send it */
packet[0] = command_byte;
packet[1] = 0;
packet[2] = len;
for (i = 0; i < len; i++)
packet[i + 3] = data[i];
mtx_lock(&sc->sc_mutex);
replen = pmu_send(sc, PMU_ADB_CMD, len + 3, packet, 16, resp);
mtx_unlock(&sc->sc_mutex);
if (poll)
pmu_poll(dev);
return 0;
}
static u_int
pmu_adb_autopoll(device_t dev, uint16_t mask)
{
struct pmu_softc *sc = device_get_softc(dev);
/* magical incantation to re-enable autopolling */
uint8_t cmd[] = {0, PMU_SET_POLL_MASK, (mask >> 8) & 0xff, mask & 0xff};
uint8_t resp[16];
mtx_lock(&sc->sc_mutex);
if (sc->sc_autopoll == mask) {
mtx_unlock(&sc->sc_mutex);
return 0;
}
sc->sc_autopoll = mask & 0xffff;
if (mask)
pmu_send(sc, PMU_ADB_CMD, 4, cmd, 16, resp);
else
pmu_send(sc, PMU_ADB_POLL_OFF, 0, NULL, 16, resp);
mtx_unlock(&sc->sc_mutex);
return 0;
}
static void
pmu_shutdown(void *xsc, int howto)
{
struct pmu_softc *sc = xsc;
uint8_t cmd[] = {'M', 'A', 'T', 'T'};
if (howto & RB_HALT)
pmu_send(sc, PMU_POWER_OFF, 4, cmd, 0, NULL);
else
pmu_send(sc, PMU_RESET_CPU, 0, NULL, 0, NULL);
for (;;);
}
static void
pmu_set_sleepled(void *xsc, int onoff)
{
struct pmu_softc *sc = xsc;
uint8_t cmd[] = {4, 0, 0};
cmd[2] = onoff;
mtx_lock(&sc->sc_mutex);
pmu_send(sc, PMU_SET_SLEEPLED, 3, cmd, 0, NULL);
mtx_unlock(&sc->sc_mutex);
}
static int
pmu_server_mode(SYSCTL_HANDLER_ARGS)
{
struct pmu_softc *sc = arg1;
u_int server_mode = 0;
uint8_t getcmd[] = {PMU_PWR_GET_POWERUP_EVENTS};
uint8_t setcmd[] = {0, 0, PMU_PWR_WAKEUP_AC_INSERT};
uint8_t resp[3];
int error, len;
mtx_lock(&sc->sc_mutex);
len = pmu_send(sc, PMU_POWER_EVENTS, 1, getcmd, 3, resp);
mtx_unlock(&sc->sc_mutex);
if (len == 3)
server_mode = (resp[2] & PMU_PWR_WAKEUP_AC_INSERT) ? 1 : 0;
error = sysctl_handle_int(oidp, &server_mode, 0, req);
if (len != 3)
return (EINVAL);
if (error || !req->newptr)
return (error);
if (server_mode == 1)
setcmd[0] = PMU_PWR_SET_POWERUP_EVENTS;
else if (server_mode == 0)
setcmd[0] = PMU_PWR_CLR_POWERUP_EVENTS;
else
return (EINVAL);
setcmd[1] = resp[1];
mtx_lock(&sc->sc_mutex);
pmu_send(sc, PMU_POWER_EVENTS, 3, setcmd, 2, resp);
mtx_unlock(&sc->sc_mutex);
return (0);
}
static int
pmu_query_battery(struct pmu_softc *sc, int batt, struct pmu_battstate *info)
{
uint8_t reg;
uint8_t resp[16];
int len;
reg = batt + 1;
mtx_lock(&sc->sc_mutex);
len = pmu_send(sc, PMU_SMART_BATTERY_STATE, 1, ®, 16, resp);
mtx_unlock(&sc->sc_mutex);
if (len < 3)
return (-1);
/* All PMU battery info replies share a common header:
* Byte 1 Payload Format
* Byte 2 Battery Flags
*/
info->state = resp[2];
switch (resp[1]) {
case 3:
case 4:
/*
* Formats 3 and 4 appear to be the same:
* Byte 3 Charge
* Byte 4 Max Charge
* Byte 5 Current
* Byte 6 Voltage
*/
info->charge = resp[3];
info->maxcharge = resp[4];
/* Current can be positive or negative */
info->current = (int8_t)resp[5];
info->voltage = resp[6];
break;
case 5:
/*
* Formats 5 is a wider version of formats 3 and 4
* Byte 3-4 Charge
* Byte 5-6 Max Charge
* Byte 7-8 Current
* Byte 9-10 Voltage
*/
info->charge = (resp[3] << 8) | resp[4];
info->maxcharge = (resp[5] << 8) | resp[6];
/* Current can be positive or negative */
info->current = (int16_t)((resp[7] << 8) | resp[8]);
info->voltage = (resp[9] << 8) | resp[10];
break;
default:
device_printf(sc->sc_dev, "Unknown battery info format (%d)!\n",
resp[1]);
return (-1);
}
return (0);
}
static void
pmu_battery_notify(struct pmu_battstate *batt, struct pmu_battstate *old)
{
char notify_buf[16];
int new_acline, old_acline;
new_acline = (batt->state & PMU_PWR_AC_PRESENT) ? 1 : 0;
old_acline = (old->state & PMU_PWR_AC_PRESENT) ? 1 : 0;
if (new_acline != old_acline) {
snprintf(notify_buf, sizeof(notify_buf),
"notify=0x%02x", new_acline);
devctl_notify("PMU", "POWER", "ACLINE", notify_buf);
}
}
static void
pmu_battquery_proc()
{
struct pmu_softc *sc;
struct pmu_battstate batt;
struct pmu_battstate cur_batt;
int error;
sc = device_get_softc(pmu);
bzero(&cur_batt, sizeof(cur_batt));
while (1) {
kproc_suspend_check(curproc);
error = pmu_query_battery(sc, 0, &batt);
pmu_battery_notify(&batt, &cur_batt);
cur_batt = batt;
pause("pmu_batt", hz);
}
}
static int
pmu_battmon(SYSCTL_HANDLER_ARGS)
{
struct pmu_softc *sc;
int error, result;
sc = arg1;
result = pmu_battmon_enabled;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (!result && pmu_battmon_enabled)
error = kproc_suspend(pmubattproc, hz);
else if (result && pmu_battmon_enabled == 0)
error = kproc_resume(pmubattproc);
pmu_battmon_enabled = (result != 0);
return (error);
}
static int
pmu_acline_state(SYSCTL_HANDLER_ARGS)
{
struct pmu_softc *sc;
struct pmu_battstate batt;
int error, result;
sc = arg1;
/* The PMU treats the AC line status as a property of the battery */
error = pmu_query_battery(sc, 0, &batt);
if (error != 0)
return (error);
result = (batt.state & PMU_PWR_AC_PRESENT) ? 1 : 0;
error = sysctl_handle_int(oidp, &result, 0, req);
return (error);
}
static int
pmu_battquery_sysctl(SYSCTL_HANDLER_ARGS)
{
struct pmu_softc *sc;
struct pmu_battstate batt;
int error, result;
sc = arg1;
error = pmu_query_battery(sc, arg2 & 0x00ff, &batt);
if (error != 0)
return (error);
switch (arg2 & 0xff00) {
case PMU_BATSYSCTL_PRESENT:
result = (batt.state & PMU_PWR_BATT_PRESENT) ? 1 : 0;
break;
case PMU_BATSYSCTL_CHARGING:
result = (batt.state & PMU_PWR_BATT_CHARGING) ? 1 : 0;
break;
case PMU_BATSYSCTL_CHARGE:
result = batt.charge;
break;
case PMU_BATSYSCTL_MAXCHARGE:
result = batt.maxcharge;
break;
case PMU_BATSYSCTL_CURRENT:
result = batt.current;
break;
case PMU_BATSYSCTL_VOLTAGE:
result = batt.voltage;
break;
case PMU_BATSYSCTL_TIME:
/* Time remaining until full charge/discharge, in minutes */
if (batt.current >= 0)
result = (batt.maxcharge - batt.charge) /* mAh */ * 60
/ batt.current /* mA */;
else
result = (batt.charge /* mAh */ * 60)
/ (-batt.current /* mA */);
break;
case PMU_BATSYSCTL_LIFE:
/* Battery charge fraction, in percent */
result = (batt.charge * 100) / batt.maxcharge;
break;
default:
/* This should never happen */
result = -1;
}
error = sysctl_handle_int(oidp, &result, 0, req);
return (error);
}
#define DIFF19041970 2082844800
static int
pmu_gettime(device_t dev, struct timespec *ts)
{
struct pmu_softc *sc = device_get_softc(dev);
uint8_t resp[16];
uint32_t sec;
mtx_lock(&sc->sc_mutex);
pmu_send(sc, PMU_READ_RTC, 0, NULL, 16, resp);
mtx_unlock(&sc->sc_mutex);
memcpy(&sec, &resp[1], 4);
ts->tv_sec = sec - DIFF19041970;
ts->tv_nsec = 0;
return (0);
}
static int
pmu_settime(device_t dev, struct timespec *ts)
{
struct pmu_softc *sc = device_get_softc(dev);
uint32_t sec;
sec = ts->tv_sec + DIFF19041970;
mtx_lock(&sc->sc_mutex);
pmu_send(sc, PMU_SET_RTC, sizeof(sec), (uint8_t *)&sec, 0, NULL);
mtx_unlock(&sc->sc_mutex);
return (0);
}
int
pmu_set_speed(int low_speed)
{
struct pmu_softc *sc;
uint8_t sleepcmd[] = {'W', 'O', 'O', 'F', 0};
uint8_t resp[16];
sc = device_get_softc(pmu);
pmu_write_reg(sc, vIER, 0x10);
spinlock_enter();
mtdec(0x7fffffff);
mb();
mtdec(0x7fffffff);
sleepcmd[4] = low_speed;
pmu_send(sc, PMU_CPU_SPEED, 5, sleepcmd, 16, resp);
unin_chip_sleep(NULL, 1);
platform_sleep();
unin_chip_wake(NULL);
mtdec(1); /* Force a decrementer exception */
spinlock_exit();
pmu_write_reg(sc, vIER, 0x90);
return (0);
}