Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*-
 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
 *
 * Copyright (c) 2004 Christian Limpach.
 * Copyright (c) 2004-2006,2008 Kip Macy
 * Copyright (c) 2008 The NetBSD Foundation, Inc.
 * Copyright (c) 2013 Roger Pau Monné <roger.pau@citrix.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"
#include "opt_kstack_pages.h"

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/boot.h>
#include <sys/ctype.h>
#include <sys/mutex.h>
#include <sys/smp.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>

#include <machine/_inttypes.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <x86/init.h>
#include <machine/pc/bios.h>
#include <machine/smp.h>
#include <machine/intr_machdep.h>
#include <machine/metadata.h>

#include <xen/xen-os.h>
#include <xen/hvm.h>
#include <xen/hypervisor.h>
#include <xen/xenstore/xenstorevar.h>
#include <xen/xen_pv.h>
#include <xen/xen_msi.h>

#include <xen/interface/arch-x86/hvm/start_info.h>
#include <xen/interface/vcpu.h>

#include <dev/xen/timer/timer.h>

#ifdef DDB
#include <ddb/ddb.h>
#endif

/* Native initial function */
extern u_int64_t hammer_time(u_int64_t, u_int64_t);
/* Xen initial function */
uint64_t hammer_time_xen_legacy(start_info_t *, uint64_t);
uint64_t hammer_time_xen(vm_paddr_t);

#define MAX_E820_ENTRIES	128

/*--------------------------- Forward Declarations ---------------------------*/
static caddr_t xen_legacy_pvh_parse_preload_data(uint64_t);
static caddr_t xen_pvh_parse_preload_data(uint64_t);
static void xen_pvh_parse_memmap(caddr_t, vm_paddr_t *, int *);

#ifdef SMP
static int xen_pv_start_all_aps(void);
#endif

/*---------------------------- Extern Declarations ---------------------------*/
#ifdef SMP
/* Variables used by amd64 mp_machdep to start APs */
extern char *doublefault_stack;
extern char *mce_stack;
extern char *nmi_stack;
extern char *dbg_stack;
#endif

/*
 * Placed by the linker at the end of the bss section, which is the last
 * section loaded by Xen before loading the symtab and strtab.
 */
extern uint32_t end;

/*-------------------------------- Global Data -------------------------------*/
/* Xen init_ops implementation. */
struct init_ops xen_legacy_init_ops = {
	.parse_preload_data		= xen_legacy_pvh_parse_preload_data,
	.early_clock_source_init	= xen_clock_init,
	.early_delay			= xen_delay,
	.parse_memmap			= xen_pvh_parse_memmap,
#ifdef SMP
	.start_all_aps			= xen_pv_start_all_aps,
#endif
	.msi_init			= xen_msi_init,
};

struct init_ops xen_pvh_init_ops = {
	.parse_preload_data		= xen_pvh_parse_preload_data,
	.early_clock_source_init	= xen_clock_init,
	.early_delay			= xen_delay,
	.parse_memmap			= xen_pvh_parse_memmap,
#ifdef SMP
	.mp_bootaddress			= mp_bootaddress,
	.start_all_aps			= native_start_all_aps,
#endif
	.msi_init			= msi_init,
};

static struct bios_smap xen_smap[MAX_E820_ENTRIES];

static start_info_t *legacy_start_info;
static struct hvm_start_info *start_info;

/*----------------------- Legacy PVH start_info accessors --------------------*/
static vm_paddr_t
legacy_get_xenstore_mfn(void)
{

	return (legacy_start_info->store_mfn);
}

static evtchn_port_t
legacy_get_xenstore_evtchn(void)
{

	return (legacy_start_info->store_evtchn);
}

static vm_paddr_t
legacy_get_console_mfn(void)
{

	return (legacy_start_info->console.domU.mfn);
}

static evtchn_port_t
legacy_get_console_evtchn(void)
{

	return (legacy_start_info->console.domU.evtchn);
}

static uint32_t
legacy_get_start_flags(void)
{

	return (legacy_start_info->flags);
}

struct hypervisor_info legacy_info = {
	.get_xenstore_mfn		= legacy_get_xenstore_mfn,
	.get_xenstore_evtchn		= legacy_get_xenstore_evtchn,
	.get_console_mfn		= legacy_get_console_mfn,
	.get_console_evtchn		= legacy_get_console_evtchn,
	.get_start_flags		= legacy_get_start_flags,
};

/*-------------------------------- Xen PV init -------------------------------*/
/*
 * First function called by the Xen legacy PVH boot sequence.
 *
 * Set some Xen global variables and prepare the environment so it is
 * as similar as possible to what native FreeBSD init function expects.
 */
uint64_t
hammer_time_xen_legacy(start_info_t *si, uint64_t xenstack)
{
	uint64_t physfree;
	uint64_t *PT4 = (u_int64_t *)xenstack;
	uint64_t *PT3 = (u_int64_t *)(xenstack + PAGE_SIZE);
	uint64_t *PT2 = (u_int64_t *)(xenstack + 2 * PAGE_SIZE);
	int i;
	char *kenv;

	xen_domain_type = XEN_PV_DOMAIN;
	vm_guest = VM_GUEST_XEN;

	if ((si == NULL) || (xenstack == 0)) {
		xc_printf("ERROR: invalid start_info or xen stack, halting\n");
		HYPERVISOR_shutdown(SHUTDOWN_crash);
	}

	xc_printf("FreeBSD PVH running on %s\n", si->magic);

	/* We use 3 pages of xen stack for the boot pagetables */
	physfree = xenstack + 3 * PAGE_SIZE - KERNBASE;

	/* Setup Xen global variables */
	legacy_start_info = si;
	HYPERVISOR_shared_info =
	    (shared_info_t *)(si->shared_info + KERNBASE);

	/*
	 * Use the stack Xen gives us to build the page tables
	 * as native FreeBSD expects to find them (created
	 * by the boot trampoline).
	 */
	for (i = 0; i < (PAGE_SIZE / sizeof(uint64_t)); i++) {
		/*
		 * Each slot of the level 4 pages points
		 * to the same level 3 page
		 */
		PT4[i] = ((uint64_t)&PT3[0]) - KERNBASE;
		PT4[i] |= PG_V | PG_RW | PG_U;

		/*
		 * Each slot of the level 3 pages points
		 * to the same level 2 page
		 */
		PT3[i] = ((uint64_t)&PT2[0]) - KERNBASE;
		PT3[i] |= PG_V | PG_RW | PG_U;

		/*
		 * The level 2 page slots are mapped with
		 * 2MB pages for 1GB.
		 */
		PT2[i] = i * (2 * 1024 * 1024);
		PT2[i] |= PG_V | PG_RW | PG_PS | PG_U;
	}
	load_cr3(((uint64_t)&PT4[0]) - KERNBASE);

	/*
	 * Init an empty static kenv using a free page. The contents will be
	 * filled from the parse_preload_data hook.
	 */
	kenv = (void *)(physfree + KERNBASE);
	physfree += PAGE_SIZE;
	bzero_early(kenv, PAGE_SIZE);
	init_static_kenv(kenv, PAGE_SIZE);

	/* Set the hooks for early functions that diverge from bare metal */
	init_ops = xen_legacy_init_ops;
	apic_ops = xen_apic_ops;
	hypervisor_info = legacy_info;

	/* Now we can jump into the native init function */
	return (hammer_time(0, physfree));
}

uint64_t
hammer_time_xen(vm_paddr_t start_info_paddr)
{
	struct hvm_modlist_entry *mod;
	struct xen_add_to_physmap xatp;
	uint64_t physfree;
	char *kenv;
	int rc;

	xen_domain_type = XEN_HVM_DOMAIN;
	vm_guest = VM_GUEST_XEN;

	rc = xen_hvm_init_hypercall_stubs(XEN_HVM_INIT_EARLY);
	if (rc) {
		xc_printf("ERROR: failed to initialize hypercall page: %d\n",
		    rc);
		HYPERVISOR_shutdown(SHUTDOWN_crash);
	}

	start_info = (struct hvm_start_info *)(start_info_paddr + KERNBASE);
	if (start_info->magic != XEN_HVM_START_MAGIC_VALUE) {
		xc_printf("Unknown magic value in start_info struct: %#x\n",
		    start_info->magic);
		HYPERVISOR_shutdown(SHUTDOWN_crash);
	}

	/*
	 * The hvm_start_into structure is always appended after loading
	 * the kernel and modules.
	 */
	physfree = roundup2(start_info_paddr + PAGE_SIZE, PAGE_SIZE);

	xatp.domid = DOMID_SELF;
	xatp.idx = 0;
	xatp.space = XENMAPSPACE_shared_info;
	xatp.gpfn = atop(physfree);
	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) {
		xc_printf("ERROR: failed to setup shared_info page\n");
		HYPERVISOR_shutdown(SHUTDOWN_crash);
	}
	HYPERVISOR_shared_info = (shared_info_t *)(physfree + KERNBASE);
	physfree += PAGE_SIZE;

	/*
	 * Init a static kenv using a free page. The contents will be filled
	 * from the parse_preload_data hook.
	 */
	kenv = (void *)(physfree + KERNBASE);
	physfree += PAGE_SIZE;
	bzero_early(kenv, PAGE_SIZE);
	init_static_kenv(kenv, PAGE_SIZE);

	if (start_info->modlist_paddr != 0) {
		if (start_info->modlist_paddr >= physfree) {
			xc_printf(
			    "ERROR: unexpected module list memory address\n");
			HYPERVISOR_shutdown(SHUTDOWN_crash);
		}
		if (start_info->nr_modules == 0) {
			xc_printf(
			    "ERROR: modlist_paddr != 0 but nr_modules == 0\n");
			HYPERVISOR_shutdown(SHUTDOWN_crash);
		}
		mod = (struct hvm_modlist_entry *)
		    (vm_paddr_t)start_info->modlist_paddr + KERNBASE;
		if (mod[0].paddr >= physfree) {
			xc_printf("ERROR: unexpected module memory address\n");
			HYPERVISOR_shutdown(SHUTDOWN_crash);
		}
	}

	/* Set the hooks for early functions that diverge from bare metal */
	init_ops = xen_pvh_init_ops;
	hvm_start_flags = start_info->flags;

	/* Now we can jump into the native init function */
	return (hammer_time(0, physfree));
}

/*-------------------------------- PV specific -------------------------------*/
#ifdef SMP
static bool
start_xen_ap(int cpu)
{
	struct vcpu_guest_context *ctxt;
	int ms, cpus = mp_naps;
	const size_t stacksize = kstack_pages * PAGE_SIZE;

	/* allocate and set up an idle stack data page */
	bootstacks[cpu] = (void *)kmem_malloc(stacksize, M_WAITOK | M_ZERO);
	doublefault_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
	mce_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
	nmi_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
	dbg_stack = (void *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
	dpcpu = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);

	bootSTK = (char *)bootstacks[cpu] + kstack_pages * PAGE_SIZE - 8;
	bootAP = cpu;

	ctxt = malloc(sizeof(*ctxt), M_TEMP, M_WAITOK | M_ZERO);

	ctxt->flags = VGCF_IN_KERNEL;
	ctxt->user_regs.rip = (unsigned long) init_secondary;
	ctxt->user_regs.rsp = (unsigned long) bootSTK;

	/* Set the AP to use the same page tables */
	ctxt->ctrlreg[3] = KPML4phys;

	if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
		panic("unable to initialize AP#%d", cpu);

	free(ctxt, M_TEMP);

	/* Launch the vCPU */
	if (HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
		panic("unable to start AP#%d", cpu);

	/* Wait up to 5 seconds for it to start. */
	for (ms = 0; ms < 5000; ms++) {
		if (mp_naps > cpus)
			return (true);
		DELAY(1000);
	}

	return (false);
}

static int
xen_pv_start_all_aps(void)
{
	int cpu;

	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);

	for (cpu = 1; cpu < mp_ncpus; cpu++) {
		/* attempt to start the Application Processor */
		if (!start_xen_ap(cpu))
			panic("AP #%d failed to start!", cpu);

		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
	}

	return (mp_naps);
}
#endif /* SMP */

/*
 * When booted as a PVH guest FreeBSD needs to avoid using the RSDP address
 * hint provided by the loader because it points to the native set of ACPI
 * tables instead of the ones crafted by Xen. The acpi.rsdp env variable is
 * removed from kenv if present, and a new acpi.rsdp is added to kenv that
 * points to the address of the Xen crafted RSDP.
 */
static bool reject_option(const char *option)
{
	static const char *reject[] = {
		"acpi.rsdp",
	};
	unsigned int i;

	for (i = 0; i < nitems(reject); i++)
		if (strncmp(option, reject[i], strlen(reject[i])) == 0)
			return (true);

	return (false);
}

static void
xen_pvh_set_env(char *env, bool (*filter)(const char *))
{
	char *option;

	if (env == NULL)
		return;

	option = env;
	while (*option != 0) {
		char *value;

		if (filter != NULL && filter(option)) {
			option += strlen(option) + 1;
			continue;
		}

		value = option;
		option = strsep(&value, "=");
		if (kern_setenv(option, value) != 0)
			xc_printf("unable to add kenv %s=%s\n", option, value);
		option = value + strlen(value) + 1;
	}
}

#ifdef DDB
/*
 * The way Xen loads the symtab is different from the native boot loader,
 * because it's tailored for NetBSD. So we have to adapt and use the same
 * method as NetBSD. Portions of the code below have been picked from NetBSD:
 * sys/kern/kern_ksyms.c CVS Revision 1.71.
 */
static void
xen_pvh_parse_symtab(void)
{
	Elf_Ehdr *ehdr;
	Elf_Shdr *shdr;
	uint32_t size;
	int i, j;

	size = end;

	ehdr = (Elf_Ehdr *)(&end + 1);
	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) ||
	    ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
	    ehdr->e_version > 1) {
		xc_printf("Unable to load ELF symtab: invalid symbol table\n");
		return;
	}

	shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff);
	/* Find the symbol table and the corresponding string table. */
	for (i = 1; i < ehdr->e_shnum; i++) {
		if (shdr[i].sh_type != SHT_SYMTAB)
			continue;
		if (shdr[i].sh_offset == 0)
			continue;
		ksymtab = (uintptr_t)((uint8_t *)ehdr + shdr[i].sh_offset);
		ksymtab_size = shdr[i].sh_size;
		j = shdr[i].sh_link;
		if (shdr[j].sh_offset == 0)
			continue; /* Can this happen? */
		kstrtab = (uintptr_t)((uint8_t *)ehdr + shdr[j].sh_offset);
		break;
	}

	if (ksymtab == 0 || kstrtab == 0)
		xc_printf(
    "Unable to load ELF symtab: could not find symtab or strtab\n");
}
#endif

static caddr_t
xen_legacy_pvh_parse_preload_data(uint64_t modulep)
{
	caddr_t		 kmdp;
	vm_ooffset_t	 off;
	vm_paddr_t	 metadata;
	char             *envp;

	if (legacy_start_info->mod_start != 0) {
		preload_metadata = (caddr_t)legacy_start_info->mod_start;

		kmdp = preload_search_by_type("elf kernel");
		if (kmdp == NULL)
			kmdp = preload_search_by_type("elf64 kernel");
		KASSERT(kmdp != NULL, ("unable to find kernel"));

		/*
		 * Xen has relocated the metadata and the modules,
		 * so we need to recalculate it's position. This is
		 * done by saving the original modulep address and
		 * then calculating the offset with mod_start,
		 * which contains the relocated modulep address.
		 */
		metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t);
		off = legacy_start_info->mod_start - metadata;

		preload_bootstrap_relocate(off);

		boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
		envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
		if (envp != NULL)
			envp += off;
		xen_pvh_set_env(envp, NULL);
	} else {
		/* Parse the extra boot information given by Xen */
		boot_parse_cmdline_delim(legacy_start_info->cmd_line, ",");
		kmdp = NULL;
	}

	boothowto |= boot_env_to_howto();

#ifdef DDB
	xen_pvh_parse_symtab();
#endif
	return (kmdp);
}

static caddr_t
xen_pvh_parse_preload_data(uint64_t modulep)
{
	caddr_t kmdp;
	vm_ooffset_t off;
	vm_paddr_t metadata;
	char *envp;
	char acpi_rsdp[19];

	if (start_info->modlist_paddr != 0) {
		struct hvm_modlist_entry *mod;

		mod = (struct hvm_modlist_entry *)
		    (start_info->modlist_paddr + KERNBASE);
		preload_metadata = (caddr_t)(mod[0].paddr + KERNBASE);

		kmdp = preload_search_by_type("elf kernel");
		if (kmdp == NULL)
			kmdp = preload_search_by_type("elf64 kernel");
		KASSERT(kmdp != NULL, ("unable to find kernel"));

		/*
		 * Xen has relocated the metadata and the modules,
		 * so we need to recalculate it's position. This is
		 * done by saving the original modulep address and
		 * then calculating the offset with mod_start,
		 * which contains the relocated modulep address.
		 */
		metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t);
		off = mod[0].paddr + KERNBASE - metadata;

		preload_bootstrap_relocate(off);

		boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
		envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
		if (envp != NULL)
			envp += off;
		xen_pvh_set_env(envp, reject_option);
	} else {
		/* Parse the extra boot information given by Xen */
		if (start_info->cmdline_paddr != 0)
			boot_parse_cmdline_delim(
			    (char *)(start_info->cmdline_paddr + KERNBASE),
			    ",");
		kmdp = NULL;
	}

	boothowto |= boot_env_to_howto();

	snprintf(acpi_rsdp, sizeof(acpi_rsdp), "%#" PRIx64,
	    start_info->rsdp_paddr);
	kern_setenv("acpi.rsdp", acpi_rsdp);

#ifdef DDB
	xen_pvh_parse_symtab();
#endif
	return (kmdp);
}

static void
xen_pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
{
	struct xen_memory_map memmap;
	u_int32_t size;
	int rc;

	/* Fetch the E820 map from Xen */
	memmap.nr_entries = MAX_E820_ENTRIES;
	set_xen_guest_handle(memmap.buffer, xen_smap);
	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
	if (rc) {
		xc_printf("ERROR: unable to fetch Xen E820 memory map: %d\n",
		    rc);
		HYPERVISOR_shutdown(SHUTDOWN_crash);
	}

	size = memmap.nr_entries * sizeof(xen_smap[0]);

	bios_add_smap_entries(xen_smap, size, physmap, physmap_idx);
}