Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * Given several files containing CTF data, merge and uniquify that data into
 * a single CTF section in an output file.
 *
 * Merges can proceed independently.  As such, we perform the merges in parallel
 * using a worker thread model.  A given glob of CTF data (either all of the CTF
 * data from a single input file, or the result of one or more merges) can only
 * be involved in a single merge at any given time, so the process decreases in
 * parallelism, especially towards the end, as more and more files are
 * consolidated, finally resulting in a single merge of two large CTF graphs.
 * Unfortunately, the last merge is also the slowest, as the two graphs being
 * merged are each the product of merges of half of the input files.
 *
 * The algorithm consists of two phases, described in detail below.  The first
 * phase entails the merging of CTF data in groups of eight.  The second phase
 * takes the results of Phase I, and merges them two at a time.  This disparity
 * is due to an observation that the merge time increases at least quadratically
 * with the size of the CTF data being merged.  As such, merges of CTF graphs
 * newly read from input files are much faster than merges of CTF graphs that
 * are themselves the results of prior merges.
 *
 * A further complication is the need to ensure the repeatability of CTF merges.
 * That is, a merge should produce the same output every time, given the same
 * input.  In both phases, this consistency requirement is met by imposing an
 * ordering on the merge process, thus ensuring that a given set of input files
 * are merged in the same order every time.
 *
 *   Phase I
 *
 *   The main thread reads the input files one by one, transforming the CTF
 *   data they contain into tdata structures.  When a given file has been read
 *   and parsed, it is placed on the work queue for retrieval by worker threads.
 *
 *   Central to Phase I is the Work In Progress (wip) array, which is used to
 *   merge batches of files in a predictable order.  Files are read by the main
 *   thread, and are merged into wip array elements in round-robin order.  When
 *   the number of files merged into a given array slot equals the batch size,
 *   the merged CTF graph in that array is added to the done slot in order by
 *   array slot.
 *
 *   For example, consider a case where we have five input files, a batch size
 *   of two, a wip array size of two, and two worker threads (T1 and T2).
 *
 *    1. The wip array elements are assigned initial batch numbers 0 and 1.
 *    2. T1 reads an input file from the input queue (wq_queue).  This is the
 *       first input file, so it is placed into wip[0].  The second file is
 *       similarly read and placed into wip[1].  The wip array slots now contain
 *       one file each (wip_nmerged == 1).
 *    3. T1 reads the third input file, which it merges into wip[0].  The
 *       number of files in wip[0] is equal to the batch size.
 *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
 *       is now full too.
 *    5. T2 attempts to place the contents of wip[1] on the done queue
 *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
 *       Batch 0 needs to be on the done queue before batch 1 can be added, so
 *       T2 blocks on wip[1]'s cv.
 *    6. T1 attempts to place the contents of wip[0] on the done queue, and
 *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
 *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
 *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
 *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
 *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
 *       restarts.
 *
 *   The above process continues until all input files have been consumed.  At
 *   this point, a pair of barriers are used to allow a single thread to move
 *   any partial batches from the wip array to the done array in batch ID order.
 *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
 *   begins.
 *
 *	Locking Semantics (Phase I)
 *
 *	The input queue (wq_queue) and the done queue (wq_done_queue) are
 *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
 *	array slots are protected by their own mutexes, which must be grabbed
 *	before releasing the input queue lock.  The wip array lock is dropped
 *	when the thread restarts the loop.  If the array slot was full, the
 *	array lock will be held while the slot contents are added to the done
 *	queue.  The done queue lock is used to protect the wip slot cv's.
 *
 *	The pow number is protected by the queue lock.  The master batch ID
 *	and last completed batch (wq_lastdonebatch) counters are protected *in
 *	Phase I* by the done queue lock.
 *
 *   Phase II
 *
 *   When Phase II begins, the queue consists of the merged batches from the
 *   first phase.  Assume we have five batches:
 *
 *	Q:	a b c d e
 *
 *   Using the same batch ID mechanism we used in Phase I, but without the wip
 *   array, worker threads remove two entries at a time from the beginning of
 *   the queue.  These two entries are merged, and are added back to the tail
 *   of the queue, as follows:
 *
 *	Q:	a b c d e	# start
 *	Q:	c d e ab	# a, b removed, merged, added to end
 *	Q:	e ab cd		# c, d removed, merged, added to end
 *	Q:	cd eab		# e, ab removed, merged, added to end
 *	Q:	cdeab		# cd, eab removed, merged, added to end
 *
 *   When one entry remains on the queue, with no merges outstanding, Phase II
 *   finishes.  We pre-determine the stopping point by pre-calculating the
 *   number of nodes that will appear on the list.  In the example above, the
 *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
 *   signaling the main thread via wq_done_cv.
 *
 *	Locking Semantics (Phase II)
 *
 *	The queue (wq_queue), ninqueue, and the master batch ID and last
 *	completed batch counters are protected by wq_queue_lock.  The done
 *	queue and corresponding lock are unused in Phase II as is the wip array.
 *
 *   Uniquification
 *
 *   We want the CTF data that goes into a given module to be as small as
 *   possible.  For example, we don't want it to contain any type data that may
 *   be present in another common module.  As such, after creating the master
 *   tdata_t for a given module, we can, if requested by the user, uniquify it
 *   against the tdata_t from another module (genunix in the case of the SunOS
 *   kernel).  We perform a merge between the tdata_t for this module and the
 *   tdata_t from genunix.  Nodes found in this module that are not present in
 *   genunix are added to a third tdata_t - the uniquified tdata_t.
 *
 *   Additive Merges
 *
 *   In some cases, for example if we are issuing a new version of a common
 *   module in a patch, we need to make sure that the CTF data already present
 *   in that module does not change.  Changes to this data would void the CTF
 *   data in any module that uniquified against the common module.  To preserve
 *   the existing data, we can perform what is known as an additive merge.  In
 *   this case, a final uniquification is performed against the CTF data in the
 *   previous version of the module.  The result will be the placement of new
 *   and changed data after the existing data, thus preserving the existing type
 *   ID space.
 *
 *   Saving the result
 *
 *   When the merges are complete, the resulting tdata_t is placed into the
 *   output file, replacing the .SUNW_ctf section (if any) already in that file.
 *
 * The person who changes the merging thread code in this file without updating
 * this comment will not live to see the stock hit five.
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <assert.h>
#ifdef illumos
#include <synch.h>
#endif
#include <signal.h>
#include <libgen.h>
#include <string.h>
#include <errno.h>
#ifdef illumos
#include <alloca.h>
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/mman.h>
#ifdef illumos
#include <sys/sysconf.h>
#endif

#include "ctf_headers.h"
#include "ctftools.h"
#include "ctfmerge.h"
#include "traverse.h"
#include "memory.h"
#include "fifo.h"
#include "barrier.h"

#pragma init(bigheap)

#define	MERGE_PHASE1_BATCH_SIZE		8
#define	MERGE_PHASE1_MAX_SLOTS		5
#define	MERGE_INPUT_THROTTLE_LEN	10

const char *progname;
static char *outfile = NULL;
static char *tmpname = NULL;
static int dynsym;
int debug_level = DEBUG_LEVEL;
static size_t maxpgsize = 0x400000;


void
usage(void)
{
	(void) fprintf(stderr,
	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
	    "       %*s [-g] [-D uniqlabel] file ...\n"
	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
	    "file ...\n"
	    "       %s [-g] -c srcfile destfile\n"
	    "\n"
	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
	    "  the environment, a default value is used.\n",
	    progname, progname, (int)strlen(progname), " ",
	    progname, progname);
}

#ifdef illumos
static void
bigheap(void)
{
	size_t big, *size;
	int sizes;
	struct memcntl_mha mha;

	/*
	 * First, get the available pagesizes.
	 */
	if ((sizes = getpagesizes(NULL, 0)) == -1)
		return;

	if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
		return;

	if (getpagesizes(size, sizes) == -1)
		return;

	while (size[sizes - 1] > maxpgsize)
		sizes--;

	/* set big to the largest allowed page size */
	big = size[sizes - 1];
	if (big & (big - 1)) {
		/*
		 * The largest page size is not a power of two for some
		 * inexplicable reason; return.
		 */
		return;
	}

	/*
	 * Now, align our break to the largest page size.
	 */
	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
		return;

	/*
	 * set the preferred page size for the heap
	 */
	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
	mha.mha_flags = 0;
	mha.mha_pagesize = big;

	(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
}
#endif	/* illumos */

static void
finalize_phase_one(workqueue_t *wq)
{
	int startslot, i;

	/*
	 * wip slots are cleared out only when maxbatchsz td's have been merged
	 * into them.  We're not guaranteed that the number of files we're
	 * merging is a multiple of maxbatchsz, so there will be some partial
	 * groups in the wip array.  Move them to the done queue in batch ID
	 * order, starting with the slot containing the next batch that would
	 * have been placed on the done queue, followed by the others.
	 * One thread will be doing this while the others wait at the barrier
	 * back in worker_thread(), so we don't need to worry about pesky things
	 * like locks.
	 */

	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
			startslot = i;
			break;
		}
	}

	assert(startslot != -1);

	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
		int slotnum = i % wq->wq_nwipslots;
		wip_t *wipslot = &wq->wq_wip[slotnum];

		if (wipslot->wip_td != NULL) {
			debug(2, "clearing slot %d (%d) (saving %d)\n",
			    slotnum, i, wipslot->wip_nmerged);
		} else
			debug(2, "clearing slot %d (%d)\n", slotnum, i);

		if (wipslot->wip_td != NULL) {
			fifo_add(wq->wq_donequeue, wipslot->wip_td);
			wq->wq_wip[slotnum].wip_td = NULL;
		}
	}

	wq->wq_lastdonebatch = wq->wq_next_batchid++;

	debug(2, "phase one done: donequeue has %d items\n",
	    fifo_len(wq->wq_donequeue));
}

static void
init_phase_two(workqueue_t *wq)
{
	int num;

	/*
	 * We're going to continually merge the first two entries on the queue,
	 * placing the result on the end, until there's nothing left to merge.
	 * At that point, everything will have been merged into one.  The
	 * initial value of ninqueue needs to be equal to the total number of
	 * entries that will show up on the queue, both at the start of the
	 * phase and as generated by merges during the phase.
	 */
	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
	while (num != 1) {
		wq->wq_ninqueue += num / 2;
		num = num / 2 + num % 2;
	}

	/*
	 * Move the done queue to the work queue.  We won't be using the done
	 * queue in phase 2.
	 */
	assert(fifo_len(wq->wq_queue) == 0);
	fifo_free(wq->wq_queue, NULL);
	wq->wq_queue = wq->wq_donequeue;
}

static void
wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
{
	pthread_mutex_lock(&wq->wq_donequeue_lock);

	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
		pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);

	fifo_add(wq->wq_donequeue, slot->wip_td);
	wq->wq_lastdonebatch++;
	pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
	    wq->wq_nwipslots].wip_cv);

	/* reset the slot for next use */
	slot->wip_td = NULL;
	slot->wip_batchid = wq->wq_next_batchid++;

	pthread_mutex_unlock(&wq->wq_donequeue_lock);
}

static void
wip_add_work(wip_t *slot, tdata_t *pow)
{
	if (slot->wip_td == NULL) {
		slot->wip_td = pow;
		slot->wip_nmerged = 1;
	} else {
		debug(2, "%d: merging %p into %p\n", pthread_self(),
		    (void *)pow, (void *)slot->wip_td);

		merge_into_master(pow, slot->wip_td, NULL, 0);
		tdata_free(pow);

		slot->wip_nmerged++;
	}
}

static void
worker_runphase1(workqueue_t *wq)
{
	wip_t *wipslot;
	tdata_t *pow;
	int wipslotnum, pownum;

	for (;;) {
		pthread_mutex_lock(&wq->wq_queue_lock);

		while (fifo_empty(wq->wq_queue)) {
			if (wq->wq_nomorefiles == 1) {
				pthread_cond_broadcast(&wq->wq_work_avail);
				pthread_mutex_unlock(&wq->wq_queue_lock);

				/* on to phase 2 ... */
				return;
			}

			pthread_cond_wait(&wq->wq_work_avail,
			    &wq->wq_queue_lock);
		}

		/* there's work to be done! */
		pow = fifo_remove(wq->wq_queue);
		pownum = wq->wq_nextpownum++;
		pthread_cond_broadcast(&wq->wq_work_removed);

		assert(pow != NULL);

		/* merge it into the right slot */
		wipslotnum = pownum % wq->wq_nwipslots;
		wipslot = &wq->wq_wip[wipslotnum];

		pthread_mutex_lock(&wipslot->wip_lock);

		pthread_mutex_unlock(&wq->wq_queue_lock);

		wip_add_work(wipslot, pow);

		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
			wip_save_work(wq, wipslot, wipslotnum);

		pthread_mutex_unlock(&wipslot->wip_lock);
	}
}

static void
worker_runphase2(workqueue_t *wq)
{
	tdata_t *pow1, *pow2;
	int batchid;

	for (;;) {
		pthread_mutex_lock(&wq->wq_queue_lock);

		if (wq->wq_ninqueue == 1) {
			pthread_cond_broadcast(&wq->wq_work_avail);
			pthread_mutex_unlock(&wq->wq_queue_lock);

			debug(2, "%d: entering p2 completion barrier\n",
			    pthread_self());
			if (barrier_wait(&wq->wq_bar1)) {
				pthread_mutex_lock(&wq->wq_queue_lock);
				wq->wq_alldone = 1;
				pthread_cond_signal(&wq->wq_alldone_cv);
				pthread_mutex_unlock(&wq->wq_queue_lock);
			}

			return;
		}

		if (fifo_len(wq->wq_queue) < 2) {
			pthread_cond_wait(&wq->wq_work_avail,
			    &wq->wq_queue_lock);
			pthread_mutex_unlock(&wq->wq_queue_lock);
			continue;
		}

		/* there's work to be done! */
		pow1 = fifo_remove(wq->wq_queue);
		pow2 = fifo_remove(wq->wq_queue);
		wq->wq_ninqueue -= 2;

		batchid = wq->wq_next_batchid++;

		pthread_mutex_unlock(&wq->wq_queue_lock);

		debug(2, "%d: merging %p into %p\n", pthread_self(),
		    (void *)pow1, (void *)pow2);
		merge_into_master(pow1, pow2, NULL, 0);
		tdata_free(pow1);

		/*
		 * merging is complete.  place at the tail of the queue in
		 * proper order.
		 */
		pthread_mutex_lock(&wq->wq_queue_lock);
		while (wq->wq_lastdonebatch + 1 != batchid) {
			pthread_cond_wait(&wq->wq_done_cv,
			    &wq->wq_queue_lock);
		}

		wq->wq_lastdonebatch = batchid;

		fifo_add(wq->wq_queue, pow2);
		debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
		    pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
		    wq->wq_ninqueue);
		pthread_cond_broadcast(&wq->wq_done_cv);
		pthread_cond_signal(&wq->wq_work_avail);
		pthread_mutex_unlock(&wq->wq_queue_lock);
	}
}

/*
 * Main loop for worker threads.
 */
static void
worker_thread(workqueue_t *wq)
{
	worker_runphase1(wq);

	debug(2, "%d: entering first barrier\n", pthread_self());

	if (barrier_wait(&wq->wq_bar1)) {

		debug(2, "%d: doing work in first barrier\n", pthread_self());

		finalize_phase_one(wq);

		init_phase_two(wq);

		debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
	}

	debug(2, "%d: entering second barrier\n", pthread_self());

	(void) barrier_wait(&wq->wq_bar2);

	debug(2, "%d: phase 1 complete\n", pthread_self());

	worker_runphase2(wq);
}

/*
 * Pass a tdata_t tree, built from an input file, off to the work queue for
 * consumption by worker threads.
 */
static int
merge_ctf_cb(tdata_t *td, char *name, void *arg)
{
	workqueue_t *wq = arg;

	debug(3, "Adding tdata %p for processing\n", (void *)td);

	pthread_mutex_lock(&wq->wq_queue_lock);
	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
		debug(2, "Throttling input (len = %d, throttle = %d)\n",
		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
		pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
	}

	fifo_add(wq->wq_queue, td);
	debug(1, "Thread %d announcing %s\n", pthread_self(), name);
	pthread_cond_broadcast(&wq->wq_work_avail);
	pthread_mutex_unlock(&wq->wq_queue_lock);

	return (1);
}

/*
 * This program is intended to be invoked from a Makefile, as part of the build.
 * As such, in the event of a failure or user-initiated interrupt (^C), we need
 * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
 * Unfortunately, ctfmerge will usually be invoked directly after (and as part
 * of the same Makefile rule as) a link, and will operate on the linked file
 * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
 * will notice that the *linked* file is newer than the object files, and thus
 * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
 * reinvokes ctfmerge, is to remove the file to which we are adding CTF
 * data (confusingly named the output file).  This means that the link will need
 * to happen again, but links are generally fast, and we can't allow the merge
 * to be skipped.
 *
 * Another possibility would be to block SIGINT entirely - to always run to
 * completion.  The run time of ctfmerge can, however, be measured in minutes
 * in some cases, so this is not a valid option.
 */
static void
handle_sig(int sig)
{
	terminate("Caught signal %d - exiting\n", sig);
}

static void
terminate_cleanup(void)
{
	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;

	if (tmpname != NULL && dounlink)
		unlink(tmpname);

	if (outfile == NULL)
		return;

#if !defined(__FreeBSD__)
	if (dounlink) {
		fprintf(stderr, "Removing %s\n", outfile);
		unlink(outfile);
	}
#endif
}

static void
copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
{
	tdata_t *srctd;

	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
		terminate("No CTF data found in source file %s\n", srcfile);

	tmpname = mktmpname(destfile, ".ctf");
	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
	if (rename(tmpname, destfile) != 0) {
		terminate("Couldn't rename temp file %s to %s", tmpname,
		    destfile);
	}
	free(tmpname);
	tdata_free(srctd);
}

static void
wq_init(workqueue_t *wq, int nfiles)
{
	int throttle, nslots, i;

	if (getenv("CTFMERGE_MAX_SLOTS"))
		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
	else
		nslots = MERGE_PHASE1_MAX_SLOTS;

	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
	else
		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;

	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
	    wq->wq_maxbatchsz);

	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
	wq->wq_nwipslots = nslots;
	wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
	wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);

	if (getenv("CTFMERGE_INPUT_THROTTLE"))
		throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
	else
		throttle = MERGE_INPUT_THROTTLE_LEN;
	wq->wq_ithrottle = throttle * wq->wq_nthreads;

	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
	    wq->wq_nthreads);

	wq->wq_next_batchid = 0;

	for (i = 0; i < nslots; i++) {
		pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
		pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL);
		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
	}

	pthread_mutex_init(&wq->wq_queue_lock, NULL);
	wq->wq_queue = fifo_new();
	pthread_cond_init(&wq->wq_work_avail, NULL);
	pthread_cond_init(&wq->wq_work_removed, NULL);
	wq->wq_ninqueue = nfiles;
	wq->wq_nextpownum = 0;

	pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
	wq->wq_donequeue = fifo_new();
	wq->wq_lastdonebatch = -1;

	pthread_cond_init(&wq->wq_done_cv, NULL);

	pthread_cond_init(&wq->wq_alldone_cv, NULL);
	wq->wq_alldone = 0;

	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
	barrier_init(&wq->wq_bar2, wq->wq_nthreads);

	wq->wq_nomorefiles = 0;
}

static void
start_threads(workqueue_t *wq)
{
	sigset_t sets;
	int i;

	sigemptyset(&sets);
	sigaddset(&sets, SIGINT);
	sigaddset(&sets, SIGQUIT);
	sigaddset(&sets, SIGTERM);
	pthread_sigmask(SIG_BLOCK, &sets, NULL);

	for (i = 0; i < wq->wq_nthreads; i++) {
		pthread_create(&wq->wq_thread[i], NULL,
		    (void *(*)(void *))worker_thread, wq);
	}

#ifdef illumos
	sigset(SIGINT, handle_sig);
	sigset(SIGQUIT, handle_sig);
	sigset(SIGTERM, handle_sig);
#else
	signal(SIGINT, handle_sig);
	signal(SIGQUIT, handle_sig);
	signal(SIGTERM, handle_sig);
#endif
	pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
}

static void
join_threads(workqueue_t *wq)
{
	int i;

	for (i = 0; i < wq->wq_nthreads; i++) {
		pthread_join(wq->wq_thread[i], NULL);
	}
}

static int
strcompare(const void *p1, const void *p2)
{
	char *s1 = *((char **)p1);
	char *s2 = *((char **)p2);

	return (strcmp(s1, s2));
}

/*
 * Core work queue structure; passed to worker threads on thread creation
 * as the main point of coordination.  Allocate as a static structure; we
 * could have put this into a local variable in main, but passing a pointer
 * into your stack to another thread is fragile at best and leads to some
 * hard-to-debug failure modes.
 */
static workqueue_t wq;

int
main(int argc, char **argv)
{
	tdata_t *mstrtd, *savetd;
	char *uniqfile = NULL, *uniqlabel = NULL;
	char *withfile = NULL;
	char *label = NULL;
	char **ifiles, **tifiles;
	int verbose = 0, docopy = 0;
	int write_fuzzy_match = 0;
	int keep_stabs = 0;
	int require_ctf = 0;
	int nifiles, nielems;
	int c, i, idx, tidx, err;

	progname = basename(argv[0]);

	if (getenv("CTFMERGE_DEBUG_LEVEL"))
		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));

	err = 0;
	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
		switch (c) {
		case 'c':
			docopy = 1;
			break;
		case 'd':
			/* Uniquify against `uniqfile' */
			uniqfile = optarg;
			break;
		case 'D':
			/* Uniquify against label `uniqlabel' in `uniqfile' */
			uniqlabel = optarg;
			break;
		case 'f':
			write_fuzzy_match = CTF_FUZZY_MATCH;
			break;
		case 'g':
			keep_stabs = CTF_KEEP_STABS;
			break;
		case 'l':
			/* Label merged types with `label' */
			label = optarg;
			break;
		case 'L':
			/* Label merged types with getenv(`label`) */
			if ((label = getenv(optarg)) == NULL)
				label = CTF_DEFAULT_LABEL;
			break;
		case 'o':
			/* Place merged types in CTF section in `outfile' */
			outfile = optarg;
			break;
		case 't':
			/* Insist *all* object files built from C have CTF */
			require_ctf = 1;
			break;
		case 'v':
			/* More debugging information */
			verbose = 1;
			break;
		case 'w':
			/* Additive merge with data from `withfile' */
			withfile = optarg;
			break;
		case 's':
			/* use the dynsym rather than the symtab */
			dynsym = CTF_USE_DYNSYM;
			break;
		default:
			usage();
			exit(2);
		}
	}

	/* Validate arguments */
	if (docopy) {
		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
		    outfile != NULL || withfile != NULL || dynsym != 0)
			err++;

		if (argc - optind != 2)
			err++;
	} else {
		if (uniqfile != NULL && withfile != NULL)
			err++;

		if (uniqlabel != NULL && uniqfile == NULL)
			err++;

		if (outfile == NULL || label == NULL)
			err++;

		if (argc - optind == 0)
			err++;
	}

	if (err) {
		usage();
		exit(2);
	}

	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
		keep_stabs = CTF_KEEP_STABS;

	if (uniqfile && access(uniqfile, R_OK) != 0) {
		warning("Uniquification file %s couldn't be opened and "
		    "will be ignored.\n", uniqfile);
		uniqfile = NULL;
	}
	if (withfile && access(withfile, R_OK) != 0) {
		warning("With file %s couldn't be opened and will be "
		    "ignored.\n", withfile);
		withfile = NULL;
	}
	if (outfile && access(outfile, R_OK|W_OK) != 0)
		terminate("Cannot open output file %s for r/w", outfile);

	/*
	 * This is ugly, but we don't want to have to have a separate tool
	 * (yet) just for copying an ELF section with our specific requirements,
	 * so we shoe-horn a copier into ctfmerge.
	 */
	if (docopy) {
		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);

		exit(0);
	}

	set_terminate_cleanup(terminate_cleanup);

	/* Sort the input files and strip out duplicates */
	nifiles = argc - optind;
	ifiles = xmalloc(sizeof (char *) * nifiles);
	tifiles = xmalloc(sizeof (char *) * nifiles);

	for (i = 0; i < nifiles; i++)
		tifiles[i] = argv[optind + i];
	qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);

	ifiles[0] = tifiles[0];
	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
			ifiles[++idx] = tifiles[tidx];
	}
	nifiles = idx + 1;

	/* Make sure they all exist */
	if ((nielems = count_files(ifiles, nifiles)) < 0)
		terminate("Some input files were inaccessible\n");

	/* Prepare for the merge */
	wq_init(&wq, nielems);

	start_threads(&wq);

	/*
	 * Start the merge
	 *
	 * We're reading everything from each of the object files, so we
	 * don't need to specify labels.
	 */
	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
	    &wq, require_ctf) == 0) {
		/*
		 * If we're verifying that C files have CTF, it's safe to
		 * assume that in this case, we're building only from assembly
		 * inputs.
		 */
		if (require_ctf)
			exit(0);
		terminate("No ctf sections found to merge\n");
	}

	pthread_mutex_lock(&wq.wq_queue_lock);
	wq.wq_nomorefiles = 1;
	pthread_cond_broadcast(&wq.wq_work_avail);
	pthread_mutex_unlock(&wq.wq_queue_lock);

	pthread_mutex_lock(&wq.wq_queue_lock);
	while (wq.wq_alldone == 0)
		pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
	pthread_mutex_unlock(&wq.wq_queue_lock);

	join_threads(&wq);

	/*
	 * All requested files have been merged, with the resulting tree in
	 * mstrtd.  savetd is the tree that will be placed into the output file.
	 *
	 * Regardless of whether we're doing a normal uniquification or an
	 * additive merge, we need a type tree that has been uniquified
	 * against uniqfile or withfile, as appropriate.
	 *
	 * If we're doing a uniquification, we stuff the resulting tree into
	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
	 */
	assert(fifo_len(wq.wq_queue) == 1);
	mstrtd = fifo_remove(wq.wq_queue);

	if (verbose || debug_level) {
		debug(2, "Statistics for td %p\n", (void *)mstrtd);

		iidesc_stats(mstrtd->td_iihash);
	}

	if (uniqfile != NULL || withfile != NULL) {
		char *reffile, *reflabel = NULL;
		tdata_t *reftd;

		if (uniqfile != NULL) {
			reffile = uniqfile;
			reflabel = uniqlabel;
		} else
			reffile = withfile;

		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
		    &reftd, require_ctf) == 0) {
			terminate("No CTF data found in reference file %s\n",
			    reffile);
		}

		savetd = tdata_new();

		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
			terminate("No room for additional types in master\n");

		savetd->td_nextid = withfile ? reftd->td_nextid :
		    CTF_INDEX_TO_TYPE(1, TRUE);
		merge_into_master(mstrtd, reftd, savetd, 0);

		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);

		if (withfile) {
			/*
			 * savetd holds the new data to be added to the withfile
			 */
			tdata_t *withtd = reftd;

			tdata_merge(withtd, savetd);

			savetd = withtd;
		} else {
			char uniqname[MAXPATHLEN];
			labelent_t *parle;

			parle = tdata_label_top(reftd);

			savetd->td_parlabel = xstrdup(parle->le_name);

			strncpy(uniqname, reffile, sizeof (uniqname));
			uniqname[MAXPATHLEN - 1] = '\0';
			savetd->td_parname = xstrdup(basename(uniqname));
		}

	} else {
		/*
		 * No post processing.  Write the merged tree as-is into the
		 * output file.
		 */
		tdata_label_free(mstrtd);
		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);

		savetd = mstrtd;
	}

	tmpname = mktmpname(outfile, ".ctf");
	write_ctf(savetd, outfile, tmpname,
	    CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
	if (rename(tmpname, outfile) != 0)
		terminate("Couldn't rename output temp file %s", tmpname);
	free(tmpname);

	return (0);
}